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Abstract. In the finite difference approximation of the fractional Laplacian the stiffness
matrix is typically dense and needs to be approximated numerically. The effect of the
accuracy in approximating the stiffness matrix on the accuracy in the whole computa-
tion is analyzed and shown to be significant. Four such approximations are discussed.
While they are shown to work well with the recently developed grid-over finite dif-
ference method (GoFD) for the numerical solution of boundary value problems of the
fractional Laplacian, they differ in accuracy, economics to compute, performance of
preconditioning, and asymptotic decay away from the diagonal line. In addition, two
preconditioners based on sparse and circulant matrices are discussed for the iterative
solution of linear systems associated with the stiffness matrix. Numerical results in
two and three dimensions are presented.
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1 Introduction

We are concerned with the finite difference (FD) solution of the boundary value problem
(BVP) of the fractional Laplacian,#

p�∆qsu� f , in Ω,
u�0, in Ωc,

(1.1)
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where p�∆qs is the fractional Laplacian with the fractional order sPp0,1q, Ω is a bounded
domain in Rd (d¥1), Ωc�RdzΩ is the complement of Ω, and f is a given function. The
fractional Laplacian can be expressed in the singular integral form as
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or in terms of the Fourier transform as

p�∆qsu�F�1p|⃗ξ|2sFpuqq, (1.3)

where p.v. stands for the Cauchy principal value, Γp�q is the gamma function, and F and
F�1 denote the Fourier and inverse Fourier transforms, respectively. When Ω is a simple
domain such as a rectangle or a cube, BVP (1.1) can be solved using finite differences on
a uniform grid (see, e.g., [26, 28]). When Ω is an arbitrary bounded domain (including a
simple domain), BVP (1.1) can be solved using the recently developed grid-overlay finite
difference (GoFD) method with a simplicial mesh [28] or a point cloud [40]. Generally
speaking, the stiffness matrix in FD approximations is dense and needs to be approxi-
mated numerically. The effect of the accuracy in the approximation on the accuracy in
the numerical solution of BVP (1.1) has not been studied in the past. A main objective
of the present work is to study this important issue for the numerical approximation of
the fractional Laplacian. It will be shown that the effect is actually significant. As a re-
sult, it is necessary to develop accurate and reasonably economic approximations for the
stiffness matrix. We will study four approximations. The first two are based on the fast
Fourier transform (FFT) with uniform and non-uniform sampling points. The third one
is the spectral approximation of Zhou and Zhang [47]. We will discuss a new and fast
implementation of this approximation and derive the asymptotic decay rate of its entries
away from the diagonal line. The last one is a modification of the spectral approximation.
Properties of these approximations are summarized in Table 3. In addition, we will study
two preconditioners based on sparse and circulant matrices for the iterative solution of
linear systems associated with the stiffness matrix.

For the purpose of numerical verification and demonstration, we consider an example
of BVP (1.1) with the analytical exact solution (cf. [21, Theorem 3]),
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where B1p0q is the unit ball centered at the origin. Numerical results will be given in two
and three dimensions.

The fractional Laplacian is a fundamental non-local operator in the modeling of anoma-
lous dynamics; see, for example, [6,31,33] and references therein. A number of numerical
methods have been developed, including FD methods [16,18,19,26,30,31,34,37,43,45,46],
finite element methods [1–4, 10, 11, 22, 44], spectral methods [32, 41, 47], discontinuous


