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Abstract. This paper focuses on discussing Newton’s method and its hybrid with ma-
chine learning for the steady state Navier-Stokes Darcy model discretized by mixed el-
ement methods. First, a Newton iterative method is introduced for solving the relative
discretized problem. It is proved technically that this method converges quadratically
with the convergence rate independent of the mixed element mesh size, under certain
standard conditions. Later on, a deep learning algorithm is proposed for solving this
nonlinear coupled problem. Following the ideas of an earlier work by Huang, Wang
and Yang (2020), an Int-Deep algorithm is constructed by combining the previous two
methods so as to further improve the computational efficiency and robustness. A se-
ries of numerical examples are reported to show the numerical performance of the
proposed methods.
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1 Introduction

The Navier-Stokes Darcy model is frequently encountered in various industrial engineer-
ing scenarios, for instance, in groundwater [10,14,27], flow in porous media [2,3], indus-
trial filtrations [18] and so on. Due to its importance, many numerical methods have
been developed and analyzed for the nonlinear coupled model, which can be roughly
divided into two categories. The first one focuses on numerically solving the coupled
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system directly. Historically, Girault and Riviére [17] propose and analyze a discontin-
uous Galerkin method for the Navier-Stokes Darcy model. Following [17], Chidyagwai
and Riviére [12] develop a hybrid coupled method, where the continuous finite elements
are employed in the free flow region and the discontinuous Galerkin finite elements in
the porous medium region, respectively. Wu and Mei [32] discretize the model with a
non-conforming finite volume element method. Cesmelioglu and Rhebergen present and
analyze in [11] a strongly conservative hybridizable discontinuous Galerkin scheme. The
other strategy is to decouple the model first and then numerically solve two subprob-
lems separately. In [9], Cai, Mu and Xu propose a decoupled and linearized two-grid
algorithm. The two-grid decoupled method is further studied in [25, 36]. In addition,
Cai, Huang and Mu also develop a multi-grid algorithm in [8]. He et al. [20] design
a domain decomposition method for the Navier-Stokes Darcy model with the BJ inter-
face condition. In order to further improve computational efficiency, Du et al. develop
in [16, 31] a series of parallel algorithms based on decoupled model. We mention that all
the previous methods are used to solve steady-state Navier-Stokes Darcy models. In fact,
there are deep and through works on numerical solution for unsteady state models, and
we skip the details due to the limit of space.

Both the direct and decoupling methods require solving nonlinear system of equa-
tions globally or locally through iterative methods, e.g. Newton iterative method. How-
ever, there are few works on investigating the global convergence analysis of these it-
erative methods. As far as we know, only Badea, Discacciati, and Quarteroni [4] study
Newton iterative method for the Navier-Stokes Darcy model in the case of infinite di-
mensions. The analysis is rather involved; the key techniques are first reformulating the
coupled nonlinear problem as an interface equation and then developing the underlying
convergence analysis of Newton iterative method by means of the Kantorovich theo-
rem. However, when applying the previous arguments to the nonlinear system arising
from discretization of the Navier-Stokes Darcy model by mixed element methods, it is
very hard to show the convergence rate is uniformly bounded with respect to the finite
element mesh size h. This study is important for real applications. In fact, if the con-
vergence rate goes to 1 when h goes to zero, then we even cannot observe convergence
of the underlying iterative method due to the rounding-off error. The other point to be
emphasized is that Newton’s method is locally convergent, so it is very challenging to
develop a strategy on the choice of initial guesses to ensure convergence. For our prob-
lem under discussion, a common way is to set the initial guess as the numerical solution
of the corresponding linear Stokes Darcy problem. However, such a choice is not robust
with respect to the model coefficients; we refer to numerical results in Subsection 5.1.2
for details. Therefore, it’s necessary to develop an effective approach to choosing initial
guesses in order to improve the computational performance and robustness of Newton
iterative method.

With the above discussion in mind, our study in this paper is twofold. First of all,
we analyze in detail the convergence of Newton iterative method for the Navier-Stokes
Darcy model discretized by mixed finite element methods. Different from the approach
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in [4], we derive the required result (cf. Theorem 3.1) in another way. Our analysis
relies on a key observation which indicates that a critical interface term in the Navier-
Stokes equations, which is connected with Darcy equations, can be decomposed into a
positive term plus an easily estimated term. Combining this finding with the analysis of
Newton’s iteration for Navier-Stokes model in [22], we prove that the iterative method
(cf. (3.1)-(3.3)) is convergent quadratically under certain standard conditions, with the
convergence rate independent of the finite element mesh size h.

On the other hand, it is observed that a deep learning initialized iterative (Int-Deep)
method is introduced in [23] for nonlinear variational problems. It is a hybrid iterative
method, consisting of two phases. In the first phase, an expectation minimization prob-
lem formulated for a given nonlinear partial differential equations (PDE) is solved by
deep learning (DL) methods. In the second phase, the numerical solution from the first
phase is interpolated as the initial guess, and some Newton-type iterative methods are
used to solve the finite-dimensional problem discretized by mixed finite element meth-
ods, which converges rapidly to the mixed element solution. This method has been used
successfully to solve semi-linear elliptic problems, linear and nonlinear eigenvalue prob-
lems (cf. [23]). The success of the method may rely partly on the so-called frequency
principle mentioned in [33, 34], which asserts that a deep neural network (DNN) tends
to fit training data by a low-frequency function. This result implies that the DL solution
with few iteration steps may capture the low frequency components of the exact solu-
tion, so it is reasonable to act as an initial guess of an iterative method for a variational
problem.

Thus, the second goal of this paper is to use the ideas of the above Int-Deep method
to solve the Navier-Stokes Darcy model combined with Newton iterative method just
mentioned. To this end, we first design a physics informed neural networks (PINN)-
type [28,29,35] DL algorithm for the Navier-Stokes Darcy model, through expressing the
unknowns with ResNet functions [21] and constructing a log-loss function (see (4.5)) to
improve computational efficiency. Furthermore, following the ideas in [23], we intro-
duce the Int-Deep algorithm for the discrete Navier-Stokes Darcy model (cf. (2.6)-(2.7)).
In other words, we solve the discrete problem by means of Newton iterative method,
with the interpolant of the DNN solution as an initial guess. Finally, we perform a se-
ries of numerical examples to confirm that this Int-Deep algorithm is able to reach the
accuracy of the mixed element method with few iteration steps. In particular, our nu-
merical experiments in this paper indicate that the algorithm is robust with respect to the
underlying physical parameters, e.g., the viscosity coefficient of fluid and the hydraulic
conductivity tensor of the porous medium.

The rest of the paper is organized as follows. In Section 2, we introduce the model
problem and recall some existing results of the mixed element method for the nonlinear
coupled system. In Section 3, we discuss the stability and convergence of Newton itera-
tive method under some conditions. In Section 4, a DL algorithm for the Navier-Stokes
Darcy model is designed, and then the Int-Deep algorithm is developed for the Navier-
Stokes Darcy model. In Section 5, we present some numerical examples to demonstrate
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the accuracy and efficiency of the Int-Deep algorithm. Finally, Section 6 offers some con-
cluding remarks.

2 The Navier-Stokes Darcy problem and its discretization

In this section, we aim to introduce the Navier-Stokes Darcy model and its mixed element
discretization. We also recall some important existing results which will be frequently
used later on.

2.1 Navier-Stokes Darcy model

Let Ω ⊂ Rd (d = 2, 3) be a bounded polytopal domain, which is subdivided into a free
fluid region Ω f and a porous media region Ωp by an interface Γ, as shown in Fig. 1.
Let Γ f = ∂Ω f \Γ and Γp = ∂Ωp\Γ be the outer boundaries of the domains Ω f and Ωp,
respectively. Denote by n f and np the unit outward normal vectors on ∂Ω f and ∂Ωp,
respectively. The unit tangential vector on Γ is denoted by τ.

The free flow in Ω f is governed by the steady Navier-Stokes equations:{
−div(T(u,p))+ρ(u·∇)u= f f in Ω f ,
divu=0 in Ω f ,

(2.1)

where u and p indicate the velocity field and the pressure field of the flow, respectively;
ν > 0 stands for the viscosity coefficient, T(u,p) = 2νD(u)−pI is the stress tensor, and
D(u)= 1

2

(
∇u+∇Tu

)
is the deformation rate tensor; ρ denotes the density of the flow and

f f is the external force.

Figure 1: Domain schematic for Naiver-Stokes Darcy coupled flow.
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The flow motion in the porous media region Ωp is described by Darcy’s law:

−div(K∇φ)= fp in Ωp, (2.2)

where φ is the hydraulic head, fp is a source term and K represents the hydraulic conduc-
tivity tensor. In this paper, we assume that K is symmetric Kij=Kji, and positive definite,
i.e.

α1(x,x)≤ (Kx,x)≤α2(x,x) ∀ x∈ Ωp,

for two positive constants α1 and α2.
The physical quantities are coupled on the interface Γ through three interface condi-

tions: 
u·n f =−K∇φ·n f ,[
−T(u,p)n f

]
·n f =ρgφ,[

−T(u,p)n f
]
·τj =

να√
τj·νK·τj

u·τj, j=1,··· ,d−1,
(2.3)

where g is the gravitational acceleration,
{

τj
}d−1

j=1 are linearly independent unit tangential
vectors on Γ, and α is an experimentally determined positive parameter.

For simplicity, we consider homogeneous Dirichlet boundary conditions on the outer
boundaries: {

u=0 on Γ f ,
φ=0 on Γp.

(2.4)

In order to describe the variational formulation of this model, we have to introduce some
function spaces in advance. Denote the admissible spaces for velocity, pressure and hy-
draulic head, respectively by

X f =
{

v∈H1(Ω f )= [H1(Ω f )]
d |v=0 on Γ f

}
, Q=L2(Ω f

)
,

Xp =
{

ψ∈H1(Ωp
)
|ψ=0 on Γp

}
.

Then, the variational formulation of the coupled Navier-Stokes Darcy model (2.1)−(2.4)
is given as follows.

Find u∈X f ,φ∈Xp and q∈Q such that


a f (u,v)+ap(φ,ψ)+aΓ(u,ψ;v,φ)+c(u;u,v)+b(v,p)
=( f f ,v)+ρg( fp,ψ) ∀ v∈X f , ψ∈Xp,

b(u,q)=0 ∀ q∈Q,

(2.5)
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where

a f (u,v)=
∫

Ω f

2νD(u) : D(v)+
d−1

∑
j=1

να√
τj ·νKτj

∫
Γ

(
u·τj

)(
v·τj

)
,

ap(φ,ψ)=ρg
∫

Ωp

K∇φ·∇ψ, aΓ(u,ψ;v,φ)=ρg
∫

Γ
(φv−ψu)·n f ,

c(u;v,w)=ρ
∫

Ω f

(u·∇)v·w, b(v,p)=−
∫

Ω f

pdivv,

( f f ,v)=
∫

Ω f

f f ·v, ( fp,ψ)=
∫

Ωp

fpψ.

Here and hereafter, we omit the infinitesimal element over an integration symbol when
there is no confusion caused.

The existence and uniqueness of solution of (2.5) can be found in [17].

2.2 Finite element approximation

In this subsection, we shall give the mixed element discretization of the Navier-Stokes
Darcy model and review some existing results for subsequent analysis.

Let T f ,h (resp. Tp,h) be a nondegenerate quasi-uniform triangulation of Ω f (resp. Ωp).
The partition T f ,h matches with the partition Tp,h at the interface Γ. Let Th = T f ,h∪Tp,h
be the partition of the whole domain Ω. For each element T ∈Th, we denote by hT the
diameter of T; the mesh size of Th is defined by h=maxT∈Th hT. Let k be a non-negative
integer, and denote by Pk(T) the set of polynomials with the degree no more than k on
element T ∈ Th. Moreover, we use C (with or without subscripts) to denote a generic
positive constant independent of the mesh size h, which may take different values at
different occurrences.

There are various combinations of the stable Stokes finite element pairs [6, 24] (such
as MINI element, Taylor-Hood element, conforming Crouzeix-Raviart element) with con-
tinuous finite elements for Darcy equations. For convenience, we focus on the traditional
Taylor-Hood element as an typical example in this paper. It is not difficult to extend the
corresponding theory to other elements.

Define some finite element spaces by

X f ,h ={vh ∈X f , vh|T ∈ [P2(T)]d ∀ T∈T f ,h},

Qh ={qh ∈Q∩C0(Ω), qh|T ∈P1(T) ∀ T∈T f ,h},

Xp,h ={ψh ∈Xp, ψh|T ∈P2(T) ∀ T∈Tp,h}.

With these discrete function spaces, we give the mixed element method for the coupled
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Navier-Stokes Darcy model (2.1)-(2.4): Find uh ∈X f ,h, ph ∈Qh, and φh ∈Xp,h such that

a f (uh,vh)+ap(φh,ψh)+aΓ(uh,ψh;vh,φh)+c(uh;uh,vh)+b(vh,ph)

=( f f ,vh)+ρg( fp,ψh) ∀ vh ∈X f ,h, ψh ∈Xp,h, (2.6)

b(uh,qh)=0 ∀ qh ∈Qh. (2.7)

To proceed with the forthcoming discussion about the well-posedness and convergence
of the mixed element method, we first recall some basic inequalities in Sobolev spaces as
follows [1]. There exist constants Cp, Ct, Ck and Cs only depending on the domain Ω f ,
and C̃p and C̃t only depending on the domain Ωp, such that for all v∈X f and ψ∈Xp,

(the Poincaré inequality) ∥v∥0,Ω f ≤Cp|v|1,Ω f , ∥ψ∥0,Ωp ≤ C̃p|ψ|1,Ωp ;

(the trace inequality) ∥v∥0,Γ ≤Ct|v|1,Ω f , ∥ψ∥0,Γ ≤ C̃t|ψ|1,Ωp ;

(Korn’s inequality) |v|1,Ω f ≤Ck∥D(v)∥0,Ω f ;

(the Sobolev inequality) ∥v∥L6(Ω f )
≤Cs|∇v|1,Ω f .

Using the Hölder inequality, the Sobolev inequality and Korn’s inequality, we immedi-
ately have (cf. [30])

c(u;v,w)≤Nd∥D(u)∥0,Ω f ∥D(v)∥0,Ω f ∥D(w)∥0,Ω f , (2.8)

with Nd depending only on Cs, Ck and d.
In order to describe some important results, we define

∥ f f ∥∗=
( f f ,v)

∥D(v)∥0,Ω f

, ∥ fp∥∗=
( fp,ψ)
|ψ|1,Ωp

.

The theoretical results given below indicate the well-posedness and convergence of the
mixed element method (2.6)-(2.7). We refer the interesting readers to [9] for details along
this line.

Theorem 2.1. Assume that f f ∈ [L2(Ω f )]
d, fp ∈L2(Ωp) and the viscosity coefficient ν satisfies

ν
3
2 ≥

√
2NdR, (2.9)

with

R=

(
1
ν
∥ f f ∥2

∗+
ρg
α1

∥ fp∥2
∗

) 1
2

. (2.10)

Then the finite element scheme (2.6)-(2.7) has a unique solution satisfying the following estimate

2ν∥D(uh)∥2
0,Ω f

+ρg∥K∇φh∥2
0,Ωp

≤R2. (2.11)
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Remark 2.1. Under the assumption (2.9), it follows from (2.10) that

∥D(uh)∥0,Ω f ≤
ν

2Nd
. (2.12)

Lemma 2.1. There is a constant β>0 independent of h such that

inf
qh∈Qh

sup
vh∈X f ,h

b(vs,h,qh)

∥D(vh)∥0,Ω f ∥qh∥0,Ω f

≥β. (2.13)

Theorem 2.2. Let (u,p,φ) be the solution of problem (2.1)-(2.4) and (uh,ph, φh) be the solution
of finite element scheme (2.6)-(2.7). Assume that u∈ H3(Ω f ), p∈ H2(Ω f ) and φ∈ H3(Ωp).
Then the following estimates hold:

2ν∥D(u−uh)∥2
0,Ω f

+
d−1

∑
j=1

∥(u−uh)·τj∥2
0,Γ+ρg∥K

1
2 ∇(φ−φh)∥2

0,Ωp

≤Ch4(∥u∥2
3,Ω f

+∥p∥2
2,Ω f

+∥φ∥2
3,Ωp

), (2.14)

∥p−ph∥2
0,Ω f

≤Ch4(∥u∥2
3,Ω f

+∥p∥2
2,Ω f

+∥φ∥2
3,Ωp

). (2.15)

3 Newton’s method for the Navier-Stokes Darcy model

In this section, we give Newton iterative method for solving the Navier-Stokes Darcy
model under the mixed element discretization and provide stability and convergence
analysis of the iterative method.

According to Newton iterative method for Navier-Stokes Darcy problem in infinite
dimension (cf. [4]), its finite element analogue can be described as follows.

Given uh
0 ∈X f ,h, for n≥1, find uh

n ∈X f ,h, ph
n ∈Qh and φh

n ∈Xp,h such that

a f (uh
n,vh)+b(vh,ph

n)+ρg⟨φh
n,vh ·n f ⟩Γ+c(uh

n;uh
n−1,vh)+c(uh

n−1;uh
n,vh)

=( f f ,vh)+c(uh
n−1;uh

n−1,vh), (3.1)

b(uh
n,qh)=0, (3.2)

ap(φh
n,ψh)=ρg⟨ψh,uh

n ·n f ⟩Γ+ρg( fp,ψh), (3.3)

for any vh ∈X f ,h, qh ∈Qh, ψh ∈Xp,h.
To analyze Newton iterative method, we next introduce two auxiliary problems given

below.
For any ζ∈L2(Γ) or η∈L2(Ωp), find ϕh ∈Xp,h such that

ap(ϕh,ψh)=ρg⟨ζ,ψh⟩Γ ∀ψh ∈Xp,h, (3.4)

or

ap(ϕh,ψh)=ρg(η,ψh) ∀ψh ∈Xp,h. (3.5)
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It is easy to prove by the Lax-Milgram lemma that problem (3.4) or problem (3.5) has a
unique solution, which induces a linear operator ϕh =Th(ζ) or ϕh =Th(η). Furthermore,
we have the following estimate which is easy to derive but important in our forthcoming
analysis

∥Th(η)∥1,Ωp ≤Cr∥η∥∗, (3.6)

with Cr a positive constant independent of h.
The discussion on stability and convergence will be based on the following assump-

tions about the initial function uh
0 ∈X f ,h in Newton iterative method (3.1)-(3.3):

2ν∥D(uh
0)∥0,Ω f ≤C1(∥ f f ∥∗+∥ fp∥∗), (3.7)

∥D(uh−uh
0)∥0,Ω f ≤

C1

ν

(
∥ f f ∥∗+∥ fp∥∗

)
, (3.8)

where
C1=1+ρgCrC̃tCtCk.

Lemma 3.1. Assume the initial conditions (3.7)-(3.8) and the following stability condition hold:

∥ f f ∥∗+∥ fp∥∗≤
ν2

9C1Nd
. (3.9)

Then uh
m defined by Newton iterative method (3.1)-(3.3) satisfies

∥D(uh
m)∥0,Ω f ≤

3C1

2ν

(
∥ f f ∥∗+∥ fp∥∗

)
, (3.10)

for all m≥0.

Proof. We prove (3.10) by mathematical induction. The initial condition (3.7) implies that
(3.10) holds for m = 0. Assuming that (3.10) holds for m = J and we aim to prove the
estimate holds for m+1. Taking ζ = uh

J+1 ·n f in (3.4) gives ϕb
J+1 = Th(uh

J+1 ·n f ). Taking
η = fp in (3.5) gives ϕi, which satisfies ∥ϕi∥1,Ωp ≤ Cr∥ fp∥∗ from (3.6). According to the
superposition principle, φh

J+1=ϕb
J+1+ϕi solves (3.3), which implies that

ρg⟨φh
J+1,uh

J+1 ·n f ⟩Γ =ρg⟨ϕb
J+1,uh

J+1 ·n f ⟩Γ+ρg⟨ϕi,uh
J+1 ·n f ⟩Γ

= ap(Th(un
J+1 ·n f ),ϕb

J+1)+ρg⟨ϕi,uh
J+1 ·n f ⟩Γ

= ap(ϕ
b
J+1,ϕb

J+1)+ρg⟨ϕi,uh
J+1 ·n f ⟩Γ

≥ρg⟨ϕi,uh
J+1 ·n f ⟩Γ. (3.11)
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Taking (vh,qh)=(uJ+1
h ,pJ+1

h )∈X f ,h×Qh in (3.1) with n= J+1 and using Korn’s inequality,
the estimates (2.8), (3.11) and the induction assumption, we have

2ν∥D(uh
J+1)∥2

0,Ω f

≤( f f ,uh
J+1)−ρg⟨φh

J+1,uh
J+1 ·n f ⟩Γ

+c(uh
J ;uh

J ,uh
J+1)−c(uh

J+1;uh
J ,uh

J+1)−c(uh
J ;uh

J+1,uh
J+1)

≤∥ f f ∥∗∥D(uh
J+1)∥0,Ω f −ρg⟨ϕi,uh

J+1 ·n f ⟩Γ

+Nd∥D(uh
J )∥2

0,Ω f
∥D(uh

J+1)∥0,Ω f +2Nd∥D(uh
J )∥0,Ω f ∥D(uh

J+1)∥2
0,Ω f

≤C1(∥ f f ∥∗+∥ fp∥∗)∥D(uh
J+1)∥0,Ω f +

9Nd

4ν2 C2
1(∥ f f ∥∗+∥ fp∥∗)2∥D(uh

J+1)∥0,Ω f

+
3Nd

ν
C1(∥ f f ∥∗+∥ fp∥∗)∥D(uh

J+1)∥2
0,Ω f

.

This, in conjunction with (3.9), gives rise to(
ν− ν

6

)
∥D(uh

J+1)∥0,Ω f ≤
5
4

C1(∥ f f ∥∗+∥ fp∥∗),

which implies (3.10).

Lemma 3.2. The function uh defined by the mixed element method (2.6)-(2.7) satisfies

ν∥D(uh)∥0,Ω f ≤C1(∥ f f ∥∗+∥ fp∥∗). (3.12)

Proof. Taking vh =uh, ψh =0 in (2.6) and noting that

b(uh,ph)=0,

we get

2ν∥D(uh)∥2
0,Ω f

=( f f ,uh)−c(uh;uh,uh)−ρg⟨φh,uh ·n f ⟩Γ. (3.13)

In view of the estimates (2.8) and (2.12), the trilinear from in the above equation can be
bounded as

c(uh;uh,uh)≤Nd∥D(uh)∥3
0,Ω f

≤ ν

2
∥D(uh)∥2

0,Ω f
. (3.14)

In order to handle the interface term ρg⟨φh,uh ·n f ⟩Γ, taking vh =0 in (2.6), we get

ap(φh,ψh)=ρg( fp,ψh)+ρg⟨uh ·n f ,ψh⟩Γ. (3.15)
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Applying a similar argument used for proving Lemma 3.1, we decompose φh as φh =
ϕb

h+ϕi
h, where ϕb

h is the solution of (3.4) with ζ = uh ·n f , and ϕi
h is the solution of (3.5)

with η= fp. Then, for the interface term, we have

ρg⟨φh,uh ·n f ⟩Γ =ρg⟨ϕb
h,uh ·n f ⟩Γ+ρg⟨ϕi

h,uh ·n f ⟩Γ

= ap(ϕ
b
h,ϕb

h)+ρg⟨ϕi
h,uh ·n f ⟩Γ

≥ρg⟨ϕi
h,uh ·n f ⟩Γ. (3.16)

The combination of (3.14)-(3.16) implies the estimate (3.12).

Finally, we derive error estimates of Newton iterative method. Let (uh,φh,ph) be
the solution of the scheme (2.6)-(2.7) and (uh

n,ph
n,φh

n) be the solution of Newton iterative
method (3.1)-(3.3). Set eu

n =uh−uh
n, ep

n = ph−ph
n and eφ

n = φh−φh
n.

Theorem 3.1. Under the assumptions of Lemma 3.1, the following error estimates hold true.

∥D(eu
n)∥0,Ω f ≤

C1

ν

(
3C1Nd

2ν2 (∥ f f ∥∗+∥ fp∥∗)
)2n−1

(∥ f f ∥∗+∥ fp∥∗), (3.17)

|∇eφ
n |1,Ωp ≤

C̃tCtCkC1

α1ν

(
3C1Nd

2ν2 (∥ f f ∥∗+∥ fp∥∗)
)2n−1

(∥ f f ∥∗+∥ fp∥∗), (3.18)

∥ep
n∥0,Ω f ≤

C1

β
(

10
3
+

C̃2tC2
t C2

k
α1ν

)(
3C1Nd

2ν2 (∥ f f ∥∗+∥ fp∥∗)
)2n−1

(∥ f f ∥∗+∥ fp∥∗), (3.19)

for all n≥1.

Proof. Subtracting (3.1)-(3.3) from the mixed element scheme (2.6)-(2.7), we find the error
equations for Newton iterative method are determined by

a f (eu
n,vh)+ap(e

φ
n ,ψh)+b(vh,ep

n)+aΓ(eu
n,ψh;vh,eφ

n )+c(eu
n;uh

n−1,vh)

+c(uh
n−1;eu

h ,vh)+c(eu
n−1;eu

n−1,vh)=0 ∀ vh ∈X f ,h, ψh ∈Xp,h, (3.20)

b(eu
n,qh)=0 ∀ qh ∈Qh. (3.21)

Taking vh = eu
n, ψh =0 in (3.20) and noting that b(eu

n,ep
n)=0, we achieve

2ν∥D(eu
n)∥2

0,Ω f

=−ρg⟨eφ
n ,eu

n ·n f ⟩Γ−c(eu
n−1;eu

n−1,eu
n)−c(eu

n;uh
n−1,eu

n)−c(uh
n−1;eu

n,eu
n)

≤Nd∥D(eu
n−1)∥2

0,Ω f
∥D(eu

n)∥0,Ω f +2Nd∥D(uh
n−1)∥0,Ω f ∥D(eu

n)∥2
0,Ω f

,
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and with (3.10) and (3.9), we further have

∥D(eu
n)∥0,Ω f ≤

3Nd

2ν
∥D(eu

n−1)∥2
0,Ω f

, (3.22)

for n≥1.
Now, we prove (3.17) by mathematical induction. It follows from the initial condition

(3.7) that (3.17) holds for n=0. Assuming that (3.17) holds for n= J, we are going to prove
that the estimate still holds for n= J+1. Applying the estimate (3.22) and the induction
assumption gives

∥D(eu
J+1)∥0,Ω f ≤

3Nd

2ν
∥D(eu

J )∥2
0,Ω f

≤ 3Nd

2ν
·C2

1
ν2

(
3C1Nd

2ν2 (∥ f f ∥∗+∥ fp∥∗)
)2J+1−2

(∥ f f ∥∗+∥ fp∥∗)2

=
C1

ν

(
3C1Nd

2ν2 (∥ f f ∥∗+∥ fp∥∗)
)2J+1−1

(∥ f f ∥∗+∥ fp∥∗),

which is (3.17) with n= J+1. So we prove (3.17) holds.
Let us consider the boundedness of |eφ

n |1. Taking vh=0, ψh=eφ
n in (3.21) and applying

(3.17) gives

α1|∇eφ
n |21,Ωp

≤∥eφ
n∥0,Γ∥eu

n∥0,Γ

≤ C̃t|∇eφ
n |1,Ωp CtCk∥D(eu

n)∥0,Ω f

≤ C̃tCtCkC1

ν
|∇eφ

n |1,Ωp

(
3C1Nd

2ν2 (∥ f f ∥∗+∥ fp∥∗)
)2n−1

(∥ f f ∥∗+∥ fp∥∗).

Finally, we estimate ep
n. By using the discrete inf-sup condition (2.13), and the estimates

(3.10), (3.9), (3.17) and (3.18), we obtain

β∥ep
n∥0,Ω f ≤2ν∥D(eu

n)∥0,Ω f +ρgCtC̃tCk|e
φ
n |1,Ωp

+2Nd∥D(uh
n−1)∥0,Ω f ∥D(eu

n)∥0,Ω f +Nd∥D(eu
n−1)∥2

0,Ω f

≤
(

2ν+
ν

3

)
∥D(eu

n)∥0,Ω f +ρgCtC̃tCk|e
φ
n |1,Ωp +

3
2
Nd∥D(eu

n−1)∥2
0,Ω f

≤7C1

3

(
3C1Nd

2ν2 (∥ f f ∥∗+∥ fp∥∗)
)2n−1

(∥ f f ∥∗+∥ fp∥∗)

+
C̃2

t C2
t C2

k C1

α1ν

(
3C1Nd

2ν2 (∥ f f ∥∗+∥ fp∥∗)
)2n−1

(∥ f f ∥∗+∥ fp∥∗)

+C1

(
3C1Nd

2ν2 (∥ f f ∥∗+∥ fp∥∗)
)2n−1

(∥ f f ∥∗+∥ fp∥∗)

=(
10
3
+

C̃2
t C2

t C2
k

α1ν
)C1

(
3C1Nd

2ν2 (∥ f f ∥∗+∥ fp∥∗)
)2n−1

(∥ f f ∥∗+∥ fp∥∗).
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The proof is complete.

Corollary 3.1. The initial function uh
0 ∈X f ,h defined by the following mixed element method for

Stokes Darcy problem:

a f (uh
0,vh)+b(vh,ph

0)+ρg⟨φh
0,vh ·n f ⟩Γ =( f f ,vh) ∀ vh ∈X f ,h, (3.23)

b(uh
0,qh)=0 ∀ qh ∈Qh, (3.24)

ap(φh
0,ψh)=ρg⟨ψh,uh

0 ·n f ⟩Γ+ρg( fp,ψh) ∀ ψh ∈Xp,h, (3.25)

satisfies the initial conditions (3.7)-(3.8).

Proof. Taking ζ = uh
0 ·n f in auxiliary problem (3.4) and η = fp in (3.5), the correspond-

ing solutions are denoted by ϕb
0 and ϕi, respectively. Then, we have ϕb

0 =Th(uh
0 ·n f ) and

∥ϕi∥1,Ωp ≤Cr∥ fp∥∗. According to the superposition principle, we know that φh
0 =ϕb

0+ϕi

solves (3.25), which implies that

ρg⟨φh
0,vh

0 ·n f ⟩Γ =ρg⟨ϕb
0,vh

0 ·n f ⟩Γ+ρg⟨ϕi,vh
0 ·n f ⟩Γ

= ap(Th(vh
0 ·n f ),ϕb

0)+ρg⟨ϕi,vh
0 ·n f ⟩Γ. (3.26)

Taking vh =uh
0 in (3.23), and using (3.26) and (3.6), we have

2ν∥D(uh
0)∥2

0,Ω f
≤ ( f f ,uh

0)−ρg⟨φh
0,uh

0 ·n f ⟩Γ

≤ ( f f ,uh
0)−ap(ϕ

b
0,ϕb

0)−ρg⟨ϕi,uh
0 ·n f ⟩Γ

≤ ( f f ,uh
0)−ρg⟨ϕi,uh

0 ·n f ⟩Γ

≤∥ f f ∥∗∥D(uh
0)∥0,Ω f +ρgCrC̃tCtCk∥ fp∥∗∥D(uh

0)∥0,Ω f

≤C1(∥ f f ∥∗+∥ fp∥∗)∥D(uh
0)∥0,Ω f , (3.27)

which yields (3.7).
Next, we verify the initial condition (3.8). Let uh, ph, φh be the solution of the finite

element scheme (2.6)-(2.7). For convenience, set eu
0 =uh−u0

h, ep
0 = ph−p0

h, eφ
0 = φh−φ0

h.
Subtracting (3.23)-(3.25) from (2.6)-(2.7) gives the error equations:

a f (eu
0 ,vh)+ap(e

φ
0 ,ψh)+aΓ(eu

0 ,ψh;vh,eφ
0 )+b(vh,ep

0 )+c(uh;uh,vh)=0, (3.28)

b(eu
0 ,qh)=0, (3.29)

for any vh ∈X f ,h, ψh ∈Xp,h and qh ∈Qh.
Taking vh = eu

0 , ψh =0 in (3.28) and noting that b(eu
0 ,ep

0 )=0, we have

ν∥D(eu
0)∥2

0,Ω f
=−ρg⟨eφ

0 ,eu
0 ·n f ⟩Γ−c(uh;uh,eu

0). (3.30)
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Now, it suffices to estimate the terms on the right side of (3.30). Taking vh =0, ψh = eφ
0 in

(3.28) yields that

ρg⟨eu
0 ·n f ,e

φ
0 ⟩Γ = ap(e

φ
0 ,eφ

0 )≥0. (3.31)

Using the estimates (2.8) and (3.12) and the assumption (3.9), we have

|c(uh;uh,eu
0)|≤Nd∥D(uh)∥2

0,Ω f
∥D(eu

0)∥0,Ω f

≤ 9NdC2
1

4ν2

(
∥ f f ∥∗+∥ fp∥∗

)2∥D(eu
0)∥0,Ω f

≤ 9NdC2
1

4ν2 · ν2

9C1Nd

(
∥ f f ∥∗+∥ fp∥∗

)
∥D(eu

0)∥0,Ω f

≤ 1
4

C1
(
∥ f f ∥∗+∥ fp∥∗

)
∥D(eu

0)∥0,Ω f . (3.32)

By the estimates (3.31) and (3.32),

∥D(eu
0)∥0,Ω f ≤

C1

4ν

(
∥ f f ∥∗+∥ fp∥∗

)
,

which implies the initial condition (3.8).

4 The Int-Deep method

In this section, we first design a PINN-type (cf. [28, 29]) deep learning method for the
Navier-Stokes Darcy model and then propose the Int-Deep algorithm, where the solution
obtained from the DL method serves as an initial function for Newton iterative method.

4.1 Deep learning method

In a DL method, the solution of a PDE is approximated by deep neural networks func-
tions. In this work, we employ the classical residual neural network (ResNet) [21] to
approximate the solutions of the Navier-Stokes Darcy model. For this purpose, we first
recall its structure. Given an input x∈Rd, consider the following residual network archi-
tecture with skip connection in each layer.

h0=V x, (4.1)
gl =σ(Wlhl−1+bl), l=1, ··· , L, (4.2)

hl =hl−1+gl , l=1, ··· , L, (4.3)

ϕ(x; θ̃)=aThL, (4.4)

where θ̃={Wl , bl , a}, V ∈Rm×d,

V(i, j)=

{
1 i= j, j≤d,
0 otherwise,

Wl ∈Rm×m, bl ∈Rm,
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a∈Rm×n, L is the number of layers, n is the number of neurons of output layer, m is the
width of the residual blocks and σ is an activation function.

Next, we present the DL method in detail. Following the approach in [5], for the given
essential boundary conditions u= gu(x), x∈Γ f , φ(x)= gφ(x), x∈Γp, we construct three
neural network functions ϕu(x; θu), ϕp(x; θp) and ϕφ(x; θφ) as follows.

ϕu(x; θu)=Bu(x)Nu(x; θu)+ ḡu(x),
ϕp(x; θp)=Np(x; θp),
ϕφ(x; θφ)=Bφ(x)Nφ(x; θφ)+ ḡφ(x),

where Bu(x) and Bφ(x) are two smooth scalar functions which satisfy the conditions
Bu(x)|Γ f =0 and Bφ(x)|Γp =0; Nu(x; θu), Np(x; θp) and Nφ(x; θφ) are three distinct resid-
ual neural network functions; ḡu is the extension of gu to Ω f , and ḡφ is the extension
of gφ to Ωp. Obviously, all the above neural network functions automatically satisfy the
prescribed boundary conditions.

Setting θ :={θu, θp, θφ}, we respectively approximate u, p and φ by

u(x)≈ϕu(x; θu), p(x)≈ϕp(x; θp), φ(x)≈ϕφ(x; θφ),

with the network parameters determined by minimizing the log square loss

θ∗=argmin
θ

log2(I(θu, θp, θφ)+1), (4.5)

where

I(θu, θp, θφ)

=γ1

(
|Ω f |Eξ

(∥∥−divT
(
ϕu(ξ; θu), ϕp(ξ; θp)

)
+ρ(ϕu(ξ; θu)·∇)ϕu(ξ; θu)− f f (ξ)

∥∥2

+|divϕu(ξ; θu)|2
)
+|Ωp|Eη

(∣∣ fp(η)+div(K∇ϕφ(η; θφ)
∣∣2))

+γ2

(
|Γ|Eζ

(∣∣ϕu(ζ; θu)·n f +K∇ϕφ(ζ; θφ)·n f
∣∣2

+||K||2
∣∣(ρgϕφ(ζ; θφ)+(T(ϕu(ζ; θu), ϕp(ζ; θp))n f )·n f )

)∣∣2
+

d−1

∑
j=1

(∣∣(T(ϕu(ζ; θu), ϕp(ζ; θp))n f )·τj+
ναBJ√

τj ·νK ·τj
ϕu(ζ; θu)·τj

∣∣2)).

Here γ1, γ2 are two positive parameters, ∥·∥ is the Euclidean norm of a vector, ∥·∥2 is
the 2-norm of a matrix, and ξ, η, ζ are random variables that are uniformly distributed
on Ω f , Ωp and Γ, respectively. Furthermore, we use the Monte-Carlo method to approx-
imate the related expectation to derive the discretization of (4.5), which is solved by the
stochastic gradient descent (SGD) method or its variants (e.g. Adam [26]).

With these preparations, the DL algorithm for Navier-Stokes Darcy model (2.1)-(2.4)
is described as Algorithm 1.



J. Huang, H. Peng and H. Wu / Commun. Comput. Phys., 37 (2025), pp. 30-60 45

Algorithm 1 Deep learning method for Navier-Stokes Darcy problem.
Input: the maximum number of training Epoch, the learning rate η, sample size N1, N2 and N3.
Output:

uDL =ϕu(x; θ
Epoch
u ), pDL =ϕp(x; θ

Epoch
p ), φDL =ϕφ(x; θ

Epoch
φ ).

Initialization: Let l=0, η0=η, the default initialization method in PyTorch is used to initialize
the parameters of neural networks θ0

u, θ0
p, θ0

φ.
while l<Epoch do

Generate uniformly distributed points {ξ i}N1
i=1 in Ω f , {ηi}N2

i=1 in Ωp, and {ζ i}N3
i=1 on γ, respec-

tively.
Computing loss:

L= log2(I1(θ
l
u, θl

p, θl
φ)+1), (4.6)

where

I1(θ
l
u, θl

p, θl
φ)

=γ1

(
|Ω f |
N1

N1

∑
i=1

(
∥∥∥−divT

(
ϕu(ξ i; θl

u), ϕp(ξ i; θl
p)
)
+ρ
(

ϕu(ξ i; θl
u)·∇

)
ϕu(ξ i; θl

u)− f f (ξ i)
∥∥∥2

+
∣∣∣divϕu(ξ i; θl

u)
∣∣∣2)+ |Ωp|

N2

N2

∑
i=1

(∣∣∣ fp(ηi)+div(K∇ϕφ(ηi; θl
φ)
∣∣∣2))

+γ2

(
|Γ|
N3

N3

∑
i=1

(
∣∣ϕu(ζ i; θl

u)·n f +K∇ϕφ(ζ i; θl
φ)·n f

∣∣2
+||K||2

∣∣(ρgϕφ(ζ i; θl
φ)+(T(ϕu(ζ i; θl

u), ϕp(ζ i; θl
p))n f )·n f )

)∣∣2
+

d−1

∑
j=1

(∣∣(T(ϕu(ζ i; θl
u), ϕp(ζ i; θl

p))n f )·τj+
ναBJ√

τj ·νK ·τj
ϕu(ζ i; θl

u)·τj
∣∣2)).

Updating parameters θl+1
u =θl

u−ηl∇θu L, θl+1
p =θl

p−ηl∇θp L, θl+1
φ =θl

φ−ηl∇θφ L.

Let l= l+1,ηl =ηl−1×(0.01
1

100000 ).
end while

4.2 The Int-Deep method for solving the Navier-Stokes Darcy model

Since Newton iterative method is only locally convergent, it is very challenging to choose
reasonably an initial guess. One natural choice is taking the initial guess as the solutions
to the Stokes Darcy model (cf. (3.23)-(3.25)). However, the convergence is very sensitive
to the physical parameters in the model. Motivated by the ideas in [23], we are tempted
to choose IhuDL as an initial guess, where uDL denotes the deep learning solution ob-
tained from Algorithm 1 with few iteration steps, and Ih is the usual nodal interpolation
operator (cf. [7, 13]). Similar to [23], this method is referred to as the Int-Deep method
for the Navier-Stokes Darcy problem (2.1)-(2.4), and is described as Algorithm 2. It is



46 J. Huang, H. Peng and H. Wu / Commun. Comput. Phys., 37 (2025), pp. 30-60

worthy to emphasize that the later choice may rely on the so-called frequency principle
mentioned in [33, 34], as also emphasized in the introduction part. In particular, in the
appendix we present an one-dimensional numerical experiment to demonstrate that the
numerical solution of the PINN-type method is tempted to capture the low-frequency
components of the exact solution in the first few training steps, which can be used as a
good initial guess of the Newton’s method, so that the later method can further capture
high-frequency components of the exact solution and converges rapidly. Furthermore,
our numerical results in this paper also show the superiority of such a choice for solving
the Navier-Stokes Darcy model.

Algorithm 2 Int-Deep method for Navier-Stokes Darcy problem.
Input: the target accuracy ϵ, the maximum number of iterations Nmax, the approximate

solution in a form of a DNN uDL.

Output: uh
ID =uh

n, ph
ID = ph

n, φh
ID = φh

n.

Initialization: Let uh
0 = IhuDL, n=1, and e0=1.

while en−1>ϵ and n≤Nmax do

find uh
n ∈X f , h, ph

n ∈Qh, and φh
n ∈Xp such that

a f (uh
n,vh)+b(vh,ph

n)+ρg⟨ϕh
n,vh ·n f ⟩Γ+c(uh

n;uh
n−1,vh)+c(uh

n−1;uh
n,vh)

=( f f ,vh)+c(uh
n−1;uh

n−1,vh),

b(uh
n,qh)=0,

ap(φh
n,ψh)=ρg⟨ψh,uh

n ·n f ⟩Γ+ρg( fp,ψh).

en =max
( ∥uh

n−uh
n−1∥0, Ω f

∥uh
n−1∥0, Ω f

,
∥φh

n−φh
n−1∥0, Ωp

∥φh
n−1∥0, Ωp

,
∥ph

n−ph
n−1∥0, Ω f

∥ph
n−1∥0, Ω f

)
, n=n+1.

end while

5 Numerical experiments

In this section, we shall present some numerical experiments to illustrate the performance
of Algorithm 1 and Algorithm 2 for Navier-Stokes Darcy problem.

The specific details about the implementation of algorithms are provided in advance.
The activation function in all neural networks is taken as σ = max{x3, 0}. During the
training process, we train the neural networks using the Adam optimizer [26] with a
learning rate of η=5e−03. In Algorithm 1, we use ResNets of width 50, depth 5 for the
Navier-Stokes problem and width 50, depth 6 for the Darcy problem. The batch size is
taken as: N1 = N2 = 1024, N3 = 256 for all 2D examples; N1 = N2 = 3000, N3 = 512 for the
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3D example. In Algorithm 2, we set Nmax=20, ϵ=1e−07 for all examples.
Some notations in the following part are summarized here. In numerical experiments,

different strategies are employed to generate initial guesses for Newton iterative method,
and corresponding results will be compared with the Int-Deep algorithm. We will refer
to uDL

0 as the initial guess IhuDL where uDL is provided by Algorithm 1 with 200 epochs
in the Adam, uSD

0 as the initial guess obtained by solving the discretized Stokes Darcy
problem (3.23)-(3.25), and C means a finite element function whose vector components
under the nodal basis functions are taken as a constant C. The number of epochs in the
Adam for DL method is denoted by #Epoch and the number of iterations in Newton iter-
ative method is denoted by #K. The accuracy of the solution of Algorithm 1 is measured
by the discrete maximum norm: for any v∈C(Ω̄),

∥v∥0, ∞, h =max
x∈Ωh

|v(x)|,

where Ωh is the set of all vertices in Th. We measure the accuracy of solution of Algorithm
2 by the relative L2-error and H1-error:

∥eh
u∥0=

∥u−uh
ID∥0, Ω f

∥u∥0, Ω f
, ∥eh

p∥0=
∥p−ph

ID∥0, Ω f
∥p∥0, Ω f

, ∥eφh
h ∥0=

∥φh−φh
ID∥0, Ωp

∥φ∥0, Ωp
,

∥eh
u∥1=

|u−uh
ID|1, Ω f

|u|1, Ω f
, ∥eh

φ∥1=
|φ−φh

ID|1, Ωp
|φ|1, Ωp

.

5.1 A 2D-example with a closed-form solution

In this example, we will verify the convergence and robustness of our algorithms. This
example is adapted from an example in Subsection 9.2 of [15] so that the required inter-
face conditions are fulfilled. Moreover, the external force f f and the source term fp are
independent of the parameters ν and K. The details are given as follows.

We consider the coupled problem (2.1)-(2.4) in Ω∈R2 with Ω f =(0, 1)×(1, 2), Ωp =
(0, 1)× (0, 1) and the interface Γ=(0, 1)×{1}. The exact solution is given by

u=y2−2y+1+(y−1)(1−2x) in Ω f ,
v= x2−x+(y−1)2 in Ω f ,
p=2ν(x+2(y−1))+ 1

3κ , in Ω f ,

φ= 1
κ (x(1−x)(y−1)+ y3

3 −y2+y)+ 2νx
g in Ωp,

where the components of u are denoted by (u, v) for convenience. For simplicity, all the
parameters except ν and κ (K= κI) in the coupled model are set to be 1. In (4.6), we set
γ1 = 100, γ2 = 1; Bu(x)= x(x−1)(y−2) and Bφ(x)= xy(x−1). To evaluate the test error
of DL method, we adopt a mesh size h= 1

1024 to generate the uniform triangulation Th as
the test locations.
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5.1.1 The performance of Algorithm 1

In this part, we focus on the performance of Algorithm 1 and the results are presented
in Tables 1-4. We denote the components of uDL obtained by Algorithm 1 as (uDL, vDL).
Here are some observations.

1. As the viscosity coefficient ν decreases, the absolute discrete maximum errors of
all unknowns can reach O(10−3) after 10000 epochs but it is difficult to further
improve the accuracy with the increase of the iterations. When both the viscosity
coefficient ν and hydraulic conductivity κ are set to be extremely small, the errors
of pressure p and hydraulic head φ can only reach O(10−1) or O(10−2), and the
error of velocity u can still reach O(10−3) after 10000 epochs.

2. For different values of viscosity coefficient ν and hydraulic conductivity κ, the ab-
solute discrete maximum errors of velocity u can reach O(10−1) or O(10−2) after
200 epochs. Therefore, the approximate velocity uDL generate by Algorithm 1 with
O(100) iterations can serve as a good initial guess for Algorithm 2.

Table 1: The absolute discrete maximum errors of Algorithm 1 with ν=1, κ=1.

#Epoch ||u−uDL||0, ∞, h ||v−vDL||0, ∞, h ||κ∗(p−pDL)||0, ∞, h ||κ∗(φ−φDL)||0, ∞, h

200 2.5287e-01 2.6556e-01 6.2147e-01 4.4382e-01
500 9.1186e-02 1.1459e-01 5.3835e-01 8.2253e-02

1000 7.1441e-02 8.6823e-02 5.9128e-01 1.8872e-02
1500 3.5708e-02 4.9980e-02 6.2699e-01 5.3279e-03
2000 3.5881e-02 4.4790e-02 6.2020e-01 6.7503e-03
2500 2.1491e-02 3.2071e-02 5.9471e-01 1.0134e-02
3000 1.2654e-02 2.3105e-02 5.2633e-01 4.2378e-03
3500 5.4843e-03 1.4041e-02 2.6764e-01 5.1807e-03
5000 1.0809e-03 3.3421e-03 6.4445e-02 2.1010e-03
7500 1.2335e-03 1.0001e-03 3.8443e-02 7.7657e-04
10000 1.0256e-03 6.9977e-04 3.2053e-02 6.1445e-04
15000 9.9100e-04 4.9650e-04 2.8792e-02 5.7223e-04
20000 1.0007e-03 4.5690e-04 2.8224e-02 5.7376e-04
25000 1.0103e-03 4.5177e-04 2.8161e-02 5.7422e-04
30000 1.0018e-03 4.5314e-04 2.8140e-02 5.7152e-04

5.1.2 The performance of Algorithm 2

In this part, we pay attention to the stability and effectiveness of Algorithm 2. To this end,
we first compare the iteration steps #K of Newton iterative method employing different
initial guesses. Tables 5-8 show that for various values of ν and κ, the iterative steps of
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Table 2: The absolute discrete maximum errors of Algorithm 1 with ν=1e−03, κ=1.

#Epoch ||u−uDL||0, ∞, h ||v−vDL||0, ∞, h ||κ∗(p−pDL)||0, ∞, h ||κ∗(φ−φDL)||0, ∞, h

200 1.5228e-01 7.8899e-02 1.0821e-01 1.3050e-01
500 3.2690e-02 6.7493e-02 6.9836e-02 3.3034e-02

1000 4.8649e-02 3.3678e-02 1.6692e-02 1.7064e-02
1500 1.5276e-02 1.5477e-02 4.3203e-03 4.0101e-03
2000 1.1154e-02 1.1725e-02 2.5474e-03 1.5258e-03
2500 8.1252e-03 1.0360e-02 1.5529e-03 1.9448e-03
3000 7.5076e-03 9.1052e-03 1.7594e-03 1.0383e-03
3500 6.5818e-03 8.9840e-03 1.8445e-03 8.2254e-04
5000 6.4812e-03 8.1881e-03 1.4697e-03 1.2283e-03
7500 5.9790e-03 7.7442e-03 1.4521e-03 1.1481e-03

10000 5.7681e-03 7.2189e-03 1.3932e-03 1.1389e-03
15000 5.5520e-03 6.7599e-03 1.3696e-03 1.0710e-03
20000 5.4419e-03 6.6387e-03 1.3253e-03 1.0894e-03
25000 5.4207e-03 6.6333e-03 1.2974e-03 1.0759e-03
30000 5.4197e-03 6.6308e-03 1.3030e-03 1.0741e-03

Table 3: The absolute discrete maximum errors of Algorithm 1 with ν=1e−05, κ=1.

#Epoch ||u−uDL||0, ∞, h ||v−vDL||0, ∞, h ||κ∗(p−pDL)||0, ∞, h ||κ∗(φ−φDL)||0, ∞, h

200 1.2267e-01 2.6950e-01 5.2884e-01 2.7065e-01
500 7.2845e-02 3.1214e-02 1.0978e-01 4.3782e-02
1000 8.4428e-02 6.1127e-02 1.0669e-02 2.3048e-02
1500 4.5015e-02 4.0511e-02 1.2635e-02 5.0194e-03
2000 2.6260e-02 2.7103e-02 6.4048e-03 4.2232e-03
2500 2.0447e-02 2.2834e-02 4.5544e-03 3.4207e-03
3000 1.8230e-02 2.1036e-02 4.3835e-03 3.2771e-03
3500 1.7129e-02 1.9659e-02 4.3157e-03 3.4534e-03
5000 1.4332e-02 1.7132e-02 3.4013e-03 2.5777e-03
7500 1.1559e-02 1.4041e-02 2.7369e-03 2.1010e-03

10000 1.0130e-02 1.2115e-02 2.3879e-03 1.7258e-03
15000 8.8846e-03 1.0759e-02 2.1902e-03 1.4898e-03
20000 8.6222e-03 1.0508e-02 2.1309e-03 1.4656e-03
25000 8.6160e-03 1.0461e-02 2.1178e-03 1.4720e-03
30000 8.6120e-03 1.0458e-02 2.1204e-03 1.4664e-03
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Table 4: The absolute discrete maximum errors of Algorithm 1 with ν=1e−05, κ=1e−08.

#Epoch ||u−uDL||0, ∞, h ||v−vDL||0, ∞, h ||κ∗(p−pDL)||0, ∞, h ||κ∗(φ−φDL)||0, ∞, h

200 4.3039e-02 3.2012e-02 3.3333e-01 1.0108e-08
500 1.4437e-02 1.2377e-02 3.3333e-01 9.6933e-09

1000 3.0128e-03 3.5399e-03 3.3333e-01 9.7415e-09
1500 4.0819e-03 4.4276e-03 3.3333e-01 3.4149e-07
2000 1.9469e-03 1.9256e-03 3.3333e-01 2.0512e-04
2500 2.0033e-03 1.5658e-03 3.3333e-01 1.3423e-04
3000 1.7536e-03 3.2420e-03 3.3333e-01 3.8973e-02
3500 2.1632e-03 3.0824e-03 3.3333e-01 3.9326e-02
5000 1.2825e-03 2.8897e-03 3.3333e-01 3.9214e-02
7500 1.2791e-03 3.1104e-03 3.3333e-01 3.8878e-02
10000 1.4466e-03 3.1671e-03 3.3333e-01 3.8691e-02
15000 1.5980e-03 3.3951e-03 3.3333e-01 3.8457e-02
20000 1.6034e-03 3.3725e-03 3.3333e-01 3.8464e-02
25000 1.6084e-03 3.4061e-03 3.3333e-01 3.8458e-02
30000 1.6141e-03 3.4001e-03 3.3333e-01 3.8457e-02

Table 5: The number of iterations #K under different initial guesses with ν=1, κ=1.

Initial value
Mesh size

h= 1
70 h= 1

80 h= 1
90 h= 1

100

uSD
0 4 4 4 4
0 5 5 5 5
1 5 5 5 5

uDL
0 4 4 4 4

Table 6: The number of iterations #K under different initial guesses with ν=1e−03, κ=1.

Initial value
Mesh size

h= 1
70 h= 1

80 h= 1
90 h= 1

100

uSD
0 × × × ×
0 × × × ×
1 7 7 7 7

uDL
0 6 6 6 6
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Table 7: The number of iterations #K under different initial guesses with ν=1e−05, κ=1.

Initial value
Mesh size

h= 1
70 h= 1

80 h= 1
90 h= 1

100

uSD
0 × × × ×
0 × × × ×
1 × × × ×

uDL
0 7 7 7 7

Table 8: The number of iterations #K under different initial guesses with ν=1e−05, κ=1e−08.

Initial value
Mesh size

h= 1
70 h= 1

80 h= 1
90 h= 1

100

uSD
0 × × × ×
0 × × × ×
1 × × × ×

uDL
0 6 6 6 5

Algorithm 2 are less than or equal to that of Newton iterative method with other initial
guesses, and the Newton iterative method with other initial guesses even fails in conver-
gence. Furthermore, when the parameter ν or κ is extremely small, only Algorithm 2 is
convergent.

Remark 5.1. ”×” indicates that the iterative method does not converge within Nmax=20
steps.

Next, we investigate the accuracy of Algorithm 2 for different values of viscosity co-
efficient ν and hydraulic conductivity κ. The relative errors for u, p and φ in L2 and H1

norms are displayed in Tables 9-12. Here are our observations.

1. Regarding the Navier-Stokes part, with different values of ν and κ, the relative error
in L2 norm of the velocity u is of the order O(h3) or higher, and in H1 norm, the
velocity u has an order of O(h2) or higher. Besides, The relative error in L2 norm of
the pressure p is of the order O(h3) or higher for different values of ν and κ.

2. For the Darcy part, we observe that the relative errors for φ in L2 norm are of order
O(h3) and the relative errors of φ in H1 norm are of order O(h2), which is in line
with our expectations. These results hold for different values of ν and κ.

5.2 A 2D-example without closed form solution

In this subsection, we test the Algorithm 2 by an example which is adapted from an
example in [19] so that it satisfies our boundary conditions. In addition, we also consider
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Table 9: The errors of Algorithm 2 with ν=1, κ=1.

∥eh
u∥0 order ∥eh

p∥0 order ∥eh
φ∥0 order ∥eh

u∥1 order ∥eh
φ∥1 order

h= 1
70 4.2609e-11 - 3.1352e-10 - 4.1530e-08 - 5.3915e-10 - 1.1848e-05 -

h= 1
80 2.5209e-11 3.9306 1.8491e-10 3.9539 2.7827e-08 2.9986 3.3530e-10 3.5569 9.0728e-06 1.9989

h= 1
90 1.5872e-11 3.9280 1.1583e-10 3.9715 1.9547e-08 2.9988 2.2062e-10 3.5539 7.1694e-06 1.9991

h= 1
100 1.0458e-11 3.9599 7.6790e-11 3.9012 1.4251e-08 2.9989 1.5172e-10 3.5535 5.8077e-06 1.9992

Table 10: The errors of Algorithm 2 with ν=1e−03, κ=1.

∥eh
u∥0 order ∥eh

p∥0 order ∥eh
φ∥0 order ∥eh

u∥1 order ∥eh
φ∥1 order

h= 1
70 9.7483e-09 - 1.8392e-08 - 2.4446e-07 - 4.7831e-07 - 7.2070e-05 -

h= 1
80 5.7736e-09 3.9227 1.0901e-08 3.9170 1.6379e-07 2.9989 3.0118e-07 3.4639 5.5187e-05 1.9989

h= 1
90 3.6378e-09 3.9217 6.8692e-09 3.9208 1.1505e-07 2.9990 2.0013e-07 3.4701 4.3609e-05 1.9991

h= 1
100 2.4060e-09 3.9237 4.5447e-09 3.9206 8.3879e-08 2.9991 1.3878e-07 3.4749 3.5326e-05 1.9992

Table 11: The errors of Algorithm 2 with ν=1e−05, κ=1.

∥eh
u∥0 order ∥eh

p∥0 order ∥eh
φ∥0 order ∥eh

u∥1 order ∥eh
φ∥1 order

h= 1
70 8.7243e-08 - 7.2017e-08 - 2.4602e-07 - 1.1941e-05 - 7.2072e-05 -

h= 1
80 5.3363e-08 3.6814 4.3147e-08 3.8365 1.6474e-07 3.0033 8.1309e-06 2.8779 5.5188e-05 1.9989

h= 1
90 3.4379e-08 3.7328 2.7386e-08 3.8594 1.1566e-07 3.0027 5.7670e-06 2.9165 4.3610e-05 1.9991

h= 1
100 2.3102e-08 3.7732 1.8225e-08 3.8650 8.4300e-08 3.0022 4.2260e-06 2.9509 3.5327e-05 1.9992

Table 12: The errors of Algorithm 2 with ν=1e−05, κ=1e−08.

∥eh
u∥0 order ∥eh

p∥0 order ∥eh
φ∥0 order ∥eh

u∥1 order ∥eh
φ∥1 order

h= 1
70 1.1704e-05 - 1.6194e-07 - 2.6092e-07 - 2.6384e-03 - 7.2153e-05 -

h= 1
80 7.9024e-06 2.9415 1.0636e-07 3.1485 1.7443e-07 3.0159 2.0308e-03 1.9603 5.5242e-05 2.0000

h= 1
90 5.5862e-06 2.9450 7.3426e-08 3.1458 1.2229e-07 3.0152 1.6111e-03 1.9653 4.3648e-05 2.0000

h= 1
100 4.1012e-06 2.9330 5.2725e-08 3.1434 8.9011e-08 3.0145 1.3101e-03 1.9630 3.5355e-05 2.0000

the situation where the parameter ν takes small values.
In the free fluid region Ω f =(0, 2)×(0, 1), the lid-driven problem is considered. The

fluid is mainly driven by a rightward velocity (u = [1, 0]⊺) on the top side (y = 1), and
no-slip boundary condition (u= 0) is imposed on the left- and right-sides. There is no
body force ( f f =0). We take the parameter ν=1, 0.1, 0.01.

In the porous media region Ωp=(0, 2)×(−1, 0). A heterogeneous permeability K=κI
is taken. In three blocks: (0.2, 0.6)×(−0.8, −0.6), (0.8, 1.2)×(−0.7, −0.5) and (1.4, 1.8)×
(−0.6, −0.4), the permeability κ is set to be 1e−06. For the remaining region, κ=1. There
is no source ( fp = 0). And φ= 0 is imposed on the left-, right-, and bottom-sides of the
region.
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Figure 2: (Left) Numerical velocity and pressure under different viscosity coefficients ν on a triangular mesh

with h = 1
16 ; (Right) The streamlines of velocity.

For simplicity, all the parameters except ν and κ in the coupled model are set to 1.
Besides, in (4.6), we take γ1=200, γ2=1, Bu(x)=x(x−2)(y−1) and Bφ(x)=x(x−2)(y+1).

Since there is no exact solution for comparison, we focus on corresponding physical
phenomena. From Fig. 2, we can clearly observe that there is a smooth exchange of flow
between the free flow (Navier-Stokes) and porous-medium flow (Darcy) across the inter-
face (y= 0). In Navier-Stokes region, singular pressure occurs at the two corners (0, 1)
and (2, 1) and in Darcy region, the flow path is diverted around three low-permeability
blocks. With the vary of ν, the fluid exhibits distinct flow patterns. For ν=1 and ν=0.1,
fluid travels from the Navier-Stokes region to the Darcy region when x > 1, and from
the Darcy region to the Navier-Stokes region when x< 1. For ν= 0.01, fluid travels the
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Navier-Stokes region to the Darcy region when x>1.3, and from the Darcy region to the
Navier-Stokes region when x<1.3.

5.3 A 3D-example with closed form solution

Finally, we test our algorithms for solving a three-dimensional problem with closed form
solution. Let Ω⊂R3 with Ω f =(0, 1)×(0, 1)×(0, 1), Ωp =(0, 1)×(0, 1)× (1, 2) and the
interface Γ=(0, 1)×{1}. The exact solution (u, φ, p) is given by

u=−(1−y)(1−z) in Ω f ,
v=−(1−x)(1−z) in Ω f ,
w=(1−x)(1−y) in Ω f ,
p=(1−z)(1−x−y−z+4xyz) in Ω f ,
φ=(1−x)(1−y)(1−z) in Ωp,

where the components of u is denoted by (u, v, w). All the parameters except ν in the
coupled model are set to be 1. In (4.6), we set γ1 = 1, γ2 = 1, Bu(x) = xyz(x−1)(y−1)
and Bφ(x)=xy(x−1)(y−1)(z−2). The uniform triangulation Th with mesh size h= 1

32 is
adopted to be the test locations.

Similar to the 2D situation, we denote the components of uDL obtained by Algorithm
1 as (uDL, vDL, wDL) and test the computational performance of Algorithm 1 and Al-
gorithm 2. From Tables 13-14, we observe that the absolute discrete maximum errors
of u, v, w, p and φ can reach O(10−3) or O(10−4). However, decreasing the iteration

Table 13: The absolute discrete maximum errors of Algorithm 1 with ν=1, κ=1.

#Epoch ||u−uDL||0, ∞, h ||v−vDL||0, ∞, h ||w−wDL||0, ∞, h ||p−pDL||0, ∞, h ||φ−φDL||0, ∞, h

200 1.1280e-01 1.1474e-01 1.2573e-01 9.8521e-01 1.9437e-01
500 5.8955e-03 6.0989e-03 4.6234e-03 1.8171e-01 7.3369e-03

1000 3.9364e-03 4.6433e-03 3.1881e-03 6.4626e-02 4.4960e-03
1500 8.2522e-03 8.5444e-03 8.1683e-03 2.9225e-02 2.2214e-03
2000 1.0683e-03 1.0316e-03 7.5461e-04 1.5038e-02 9.4810e-04
2500 2.4907e-03 2.4303e-03 2.6002e-03 1.2858e-02 8.1199e-04
2500 2.4907e-03 2.4303e-03 2.6002e-03 1.2858e-02 8.1199e-04
3000 7.7432e-04 1.1575e-03 1.1627e-03 8.1957e-03 1.2877e-03
3500 4.7258e-04 6.2618e-04 4.2063e-04 6.4445e-03 8.3823e-04
5000 3.6597e-04 6.0589e-04 3.5250e-04 7.9574e-03 6.8734e-04
7500 2.8277e-04 4.7100e-04 3.0724e-04 3.4871e-03 4.7562e-04

10000 1.3952e-04 3.0117e-04 2.9271e-04 3.3414e-03 3.3065e-04
15000 1.6717e-04 2.4263e-04 2.3134e-04 2.9260e-03 2.9287e-04
20000 1.3941e-04 2.2699e-04 2.1378e-04 2.5956e-03 2.9260e-04
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Table 14: The absolute discrete maximum errors of Algorithm 1 with ν=0.01, κ=1.

#Epoch ||u−uDL||0, ∞, h ||v−vDL||0, ∞, h ||w−wDL||0, ∞, h ||p−pDL||0, ∞, h ||φ−φDL||0, ∞, h

200 4.9421e-02 3.9340e-02 1.1578e-01 3.6239e-02 4.6330e-02
500 2.6120e-02 1.6990e-02 3.8038e-02 8.8871e-03 1.4511e-02

1000 1.7341e-02 1.1687e-02 2.1754e-02 8.6221e-03 8.6668e-03
1500 1.3706e-02 7.0937e-03 1.6307e-02 2.8401e-03 4.4740e-03
2000 1.2608e-02 5.5066e-03 1.3255e-02 2.1570e-03 3.2142e-03
2500 9.4278e-03 5.1800e-03 1.1713e-02 2.0543e-03 2.5913e-03
2500 9.4278e-03 5.1800e-03 1.1713e-02 2.0543e-03 2.5913e-03
3000 8.6336e-03 3.9181e-03 9.9709e-03 2.0516e-03 2.3925e-03
3500 7.9073e-03 3.6801e-03 9.5410e-03 2.6332e-03 1.8229e-03
5000 5.8340e-03 3.3927e-03 7.2748e-03 7.1876e-04 1.3675e-03
7500 3.9786e-03 3.3174e-03 5.5008e-03 3.2889e-04 1.0128e-03
10000 3.3260e-03 2.7889e-03 4.4905e-03 2.9798e-04 8.3913e-04
15000 2.7782e-03 2.3925e-03 3.9075e-03 1.8952e-04 6.8426e-04
20000 2.6754e-03 2.3359e-03 3.8142e-03 2.1757e-04 7.0270e-04

Table 15: The number of iterations #K under different initial values with ν=1, κ=1.

Initial value
Mesh size

h= 1
4 h= 1

8 h= 1
16

uSD
0 4 4 4
0 5 5 5
1 5 5 5

uDL
0 4 4 4

Table 16: The number of iterations #K under different initial values with ν=0.01, κ=1.

Initial value
Mesh size

h= 1
4 h= 1

8 h= 1
16

uSD
0 7 7 7
0 8 8 8
1 8 8 8

uDL
0 5 5 5

steps cannot further improve accuracy. In order to illustrate the accuracy of the Int-Deep
method, we compare the iteration steps #K of Newton iterative method employing dif-
ferent initial guesses with h= 1

2k , k= 2, 3, 4. The corresponding results are presented in
Tables 15-16. As we can see, when the viscosity coefficient ν decreases, only the Int-Deep
method can converge with few iteration steps.
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Table 17: The errors of Algorithm 2 with ν=1, κ=1.

∥eh
u∥0 order ∥eh

p∥0 order ∥eh
φ∥0 order ∥eh

u∥1 order ∥eh
φ∥1 order

h= 1
4 1.2611e-04 - 1.4169e-03 - 7.8653e-02 - 7.5859e-04 - 1.3749e-02 -

h= 1
8 9.6019e-06 3.7152 1.9505e-02 2.0117 9.3657e-05 3.0179 2.2331e-04 2.6656 3.4647e-03 1.9886

h= 1
16 7.2685e-07 3.7236 4.8542e-03 2.0065 1.1678e-05 3.0036 3.4100e-05 2.7112 8.6976e-04 1.9940

Table 18: The errors of Algorithm 2 with ν=0.01, κ=1.

∥eh
u∥0 order ∥eh

p∥0 order ∥eh
φ∥0 order ∥eh

u∥1 order ∥eh
φ∥1 order

h= 1
4 1.1766e-02 - 7.8758e-02 - 7.9584e-04 - 1.3575e-01 - 1.3819e-02 -

h= 1
8 8.8893e-04 3.7264 1.9508e-02 2.0134 9.4602e-05 3.0725 2.1471e-02 2.6605 3.4671e-03 1.9948

h= 1
16 6.6064e-05 3.7501 4.8543e-03 2.0067 1.1691e-05 3.0165 3.2525e-03 2.7227 8.6985e-04 1.9949

Table 17 and Table 18 show that the orders of relative errors in L2 norm for u,p and φ
are O(h3.7),O(h2) and O(h3), respectively, and the orders of relative errors in H1 norm for
u and φ are O(h2.7) and O(h2), respectively, which is consistent with theoretical results.

6 Conclusion

In this paper, we are concerned with Newton’s method and its hybrid with machine
learning for solving Navier-Stokes Darcy model. We give the convergence analysis of
Newton’s method for the coupled nonlinear problem with mixed element discretization.
Then, we develop a deep learning initialized iterative (Int-Deep) method for Navier-
Stokes Darcy model. In this method, we employ the neural network solution generated
by a few training steps as the initial guess for Newton iterative method with the FEM
discretized problem. This hybrid method can converge to the true solution with the ac-
curacy of FEM method rapidly. Our numerical experiments also indicate the method is
robust with respect to the underlying physical parameters. It is our forthcoming topic to
study this property theoretically.

Acknowledgments

J. Huang was partially supported by the China National KeyR&D Project (Grant
2020YFA0709800), the National Natural Science Foundation of China (Grant No.
12071289) and the Strategic Priority Research Program of the Chinese Academy of Sci-
ences (Grant No. XDA25010402). H. Peng was supported by the National Natural Science
Foundation of China (Grant No. 12301519).



J. Huang, H. Peng and H. Wu / Commun. Comput. Phys., 37 (2025), pp. 30-60 57

Appendix

In this appendix, we consider frequency analysis of the Int-Deep method for an one-
dimensional nonlinear elliptic problem, described as follows.{

−u′′+u2= f , 0< x<1,
u(0)=u(1)=0.

The exact solution is given by

u(x)=sin(πx)+sin(4πx)/4−sin(8πx)/8+sin(16πx)/16+sin(24πx)/24,

which has low and high-frequency components. The deep learning method is shown in
Algorithm 3.

Algorithm 3 Deep learning method.
Input: the maximum number of training Epoch, the learning rate η, sample size M.
Output: uDL =ϕ(x,θEpoch).

Initialization: Let l=0, η0 =η, the default initialization method in PyTorch is used to
initialize the parameters of neural networks θ.
while l<Epoch do

Generate independent random variables {ξi}M
i=1 that are uniformly distributed on

[0 ,1].
Computing loss:

L= log2(l(θ
l)+1),

where

l(θl)=
1
M

M

∑
i=1

(|−ϕ′′(ξi; θl)+ϕ2(ξi; θl)− f (ξi)|2).

Updating parameters θl+1=θl−ηl .
Let l= l+1, ηl =ηl−1×(0.01

1
100000 ).

end while

In Algorithm 3, ϕ(x; θ)=x(x−1)N(x,θ), where N(x,θ) are ResNets of width 50, depth
5. Besides, the activation function is taken as σ=max{x3, 0} and the batch size M is 512.

The details of Newton method are shown as follows.
Divide the interval [0, 1] into N equal parts, with nodes xi, i=0, 1, ··· , N:

0= x0< x1< ···< xN =1.

Let

h=hj =
1
N

, ej =[xj−1, xj], j=1, ··· , N.
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Figure 3: Amplitude spectra of uDL (left), u (middle), and uNewton (right).

Table 19: L2 errors of uNewton for different mesh sizes.

Err order
h= 1

80 1.4559e-03 -
h= 1

160 3.4788e-04 2.0161
h= 1

320 8.6002e-05 2.0652
h= 1

640 2.1440e-05 2.2716

Construct the finite element space

Vh ={v∈C[0, 1] : v|ei ∈P1(ei), v(0)=v(1)=0}.

The finite element solution uh ∈Vh satisfies

a(uh, vh)+b(uh, vh)=F(vh) ∀vh ∈Vh,

where a(u,v)=
∫ 1

0 u′v′dx,b(u,v)=
∫ 1

0 u2vdx and F(v)=
∫ 1

0 f vdx.
At each Newton step n, we need to solve the following linear problem

a(uh
n, vh)+ b̃(uh

n, vh; uh
n−1)=F(vh)+b(uh

n−1, vh) ∀vh ∈Vh,

where b̃(uh
n, vh; uh

n−1)=
∫ 1

0 (2uh
n−1uh

nvh)dx.
Denote by uDL the approximate solution obtained from Algorithm 3 with 200 epochs

in the Adam algorithm, and uNewton the solution of Newton’s method with IhuDL as the
initial guess. On a uniform grid with h= 1

640 over the interval [0, 1], we perform a discrete
Fourier transform on uDL, uNewton and the exact solution u, and then display their ampli-
tude spectra of the first 31 frequencies in Fig. 3. Additionally, we display the L2 errors of
uNewton for different mesh sizes h in Table 19.

Fig. 3 shows that uDL captures the low-frequency components of the exact solution
while uNewton captures not only the previous components but also the high-frequency
ones that uDL fails to catch. Table 19 shows that uNewton converges to the exact solution u.
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