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Abstract. In many applications, such as plasma edge simulation of a nuclear fusion
reactor, a coupled PDE/kinetic description is required. Such systems can be solved
with a coupled finite-volume/Monte-Carlo method. Different procedures have been
proposed to estimate the source terms in the finite volume part that appear from the
Monte Carlo part of the simulation. In this series of papers, we present a systematic
(analytical and numerical) comparison of the variance and computational cost of a co-
herent set of such estimation procedures. The comparison is based on an invariant
imbedding procedure, in which systems of ordinary differential equations (ODEs) are
derived that quantify the statistical error and computational cost of each estimator. In
this paper, we discuss analog and collision simulation and estimation procedures. We
analyze in detail a scenario with forward-backward scattering in a one-dimensional
slab, uncovering and quantifying the effects determining the performance of the esti-
mation procedures.

AMS subject classifications: 65C05, 65L12
Key words: Monte Carlo, reaction rate estimation, invariant imbedding, survival biasing, colli-
sion estimator.

1 Introduction

One often encounters situations in which an accurate mathematical description of the
processes under study requires coupling a partial differential equation (PDE) of reaction-
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advection-diffusion type to a Boltzmann-type kinetic equation that models a distribu-
tion of particles in position-velocity phase space. Examples can be found in applications
that are as diverse as bacterial chemotaxis [21], rarified gas dynamics [28], and plasma
physics [20, 26, 29]. The motivating application in the present work is the simulation of
the plasma edge in fusion energy devices, which is of crucial importance to evaluate vital
aspects of reactor operation: energy and particle exhaust, as well as erosion of the plasma-
facing components and the related migration and deposition of material [12, 20, 26]. In
this application, the PDE part of the model describes the plasma, whereas the kinetic
equation describes the behaviour of neutral particles.

Such a coupled simulation presents a computational problem due to the different di-
mensionality of both parts of the model. Both the plasma model and the neutral model
can be simulated with either deterministic or stochastic methods, including but not lim-
ited to Galerkin methods [10], discrete velocity methods [18], particle-in-cell methods [3],
and particle-tracing methods [16]. This work focuses on particle-tracing methods for the
neutral kinetic model as they are used in the fusion codes EIRENE [20] and DEGAS2 [27].
These codes can be coupled with, for instance, the deterministic B2 [20] or UEDGE [5]
codes or the stochastic EMC3 code [4] for the plasma equations.

In this paper, we start from a prototypical model of this type that appears in plasma
edge simulations in nuclear fusion reactors, such as ITER [30]. In this model, the plasma
is discretized with a finite volume method, whereas the neutral particles are simulated
via Monte Carlo method. Plasma and neutral particles interact through ionization and
charge-exchange events [26], of which the rates depend on the plasma state. During ion-
ization, a neutral particle is ionized and is absorbed by the plasma; ionization is therefore
also called absorption in this text. Charge-exchange events model collisions of a neutral
particle with an ion during which an electron is transferred from the neutral particle to
the ion: the neutral particle then becomes ionized, whereas the ion becomes neutral. In a
Monte Carlo simulation, this effect can be emulated by keeping the same neutral particle
with a newly sampled velocity; charge-exchange events are therefore also called scatter-
ing events. The corresponding Monte Carlo particle tracking simulations are described
in Section 2.

During these interactions, mass, momentum, and energy are exchanged between
plasma and neutral particles. The exchanges between neutrals and plasma are modeled
as source terms in the plasma equations and estimating these source terms is the aim of
the neutral model simulation. Given the importance of accurate source term estimation,
many estimation procedures have been proposed. Because the source term estimation
procedures only trace a finite number of particles, they induce a statistical error and a
finite sampling bias on the coupled PDE/Monte-Carlo simulation. Both the statistical
error and the finite sampling bias scale with the variance on the source term estimation
in the Monte Carlo simulation [6]. Selecting the best estimator, that keeps this variance
low for a reasonable computational cost, is thus an important objective [11].

Currently, only a few works are available that compare the performance of source
term estimation procedures, usually in a very restrictive setting, leaving the choice of
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estimation procedure to the preference or experience of the user. A first important com-
parison of the estimation procedures was conducted in [17], where an invariant imbed-
ding methodology [1] is used to derive ODEs for the statistical error of a limited set
of estimation procedures in a one-dimensional forward scattering scenario. In this de-
generate scenario, neutrals always have the same velocity and do not change direction,
leading to very simple particle paths. Indira [7] performed a similar study that included
forward-backward scattering, but limited the study to estimation procedures for leakage,
the number of particles that leave the domain. Both the setting in [17] and [7] allowed for
significant simplifications, resulting in ODEs for the statistical error with a comprehen-
sive analytical solution. We also refer to the work of Lux for approximate formulas for
the variance of the most commonly used estimators [15], and for sufficient conditions for
one estimator to outperform an other one [14]. While useful, Lux’ results do not capture
the highly non-trivial behaviour at high scattering rates and low absorption rates, where
the paths are generally the most complex. For completeness, we also refer to [8,9,22–24],
in which analytical calculations of the variance are presented to optimize importance
sampling.

This paper forms a next step in the systematic study of source term estimators in cou-
pled finite-volume/Monte-Carlo methods. In particular, we discuss the different pro-
cedures that can be used for the Monte Carlo estimation of the mass, momentum, and
energy source terms, and analyze their variance and computational cost as a function of
the plasma background. Due to evolutions in fusion reactor design that push towards
so-called detached regimes with high collision rates, the Monte Carlo simulations have
often become the computational bottleneck in these simulations. These conditions there-
fore require careful selection of the most suitable Monte Carlo estimation procedure, or
(potentially) the use of different estimation procedures in different parts of the space-time
domain.

The main contributions of this paper are the following:

• From a theoretical viewpoint, we gather and propose a classification for the differ-
ent procedures that are available in the literature to generate particle trajectories
and to estimate their contributions to the mass, momentum, and energy sources.
In this paper, we treat analog and collision simulations, which are presented with
the kinetic model in Section 2, as well as the corresponding estimation procedures,
which are presented in Section 3.

• From a numerical analysis viewpoint, we assess the efficiency of these Monte Carlo
estimation procedures, with a focus on the estimation of mass. We extend the nu-
merical analysis of these Monte Carlo estimation procedures to anisotropic forward-
backward scattering in a one-dimensional slab. To this end, we use an invariant
imbedding [1] procedure to construct ODEs for the variance and computational
cost of the different estimators, which is described shortly in Section 4. The full
derivations, being extremely lengthy, can be found in the Technical Report [19]. The
systems of ODEs that result from the invariant imbedding procedure are solved nu-
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merically. In Section 5 we use these numerical solutions for different values of the
model parameters to discuss the performance of each estimation procedure. As
measures of performance, we consider both variance and computational cost.

The remainder of the paper is organised as follows. In Section 2, we discuss the cou-
pled kinetic model that will be used throughout this manuscript, as well as two Monte
Carlo simulation strategies for this model. In Section 3, we present two of the basic
estimators to extract the quantities of interest from the simulations of Section 2. Then,
in Section 4, we present and illustrate the analytical method with which we study the
simulation-estimator combinations. In Section 5 we then discuss how the different esti-
mators perform throughout the parameter space.

2 Kinetic neutral model

The neutral particles are modeled in the one-dimensional plasma edge domain D=[0,L]
of length L. In Section 2.1, we first describe the underlying particle model that gov-
erns the dynamics of the neutral particle population. From this description, a Monte
Carlo simulation method follows trivially, which is called the analog simulation method,
because the Monte Carlo particles behave analogous to physical particles. We then give
an equivalent population-level description, the corresponding Boltzmann-BGK equation,
in Section 2.2. We proceed with an alternative particle discretization of the Boltzmann-
BGK equation in Section 2.3 that does not explicitly execute ionization reactions, but uses
reweighing at scattering events to capture its effects in an unbiased manner. We refer to
this particle discretization as the non-analog collision type simulation.

While the particle physics has been extensively described in [16], the precise math-
ematical description of the analog and non-analog particle discretizations, as presented
here, does not appear in this detail in the literature. The presentation here is a one-
dimensional simplification of the software implementation that is available in [20] and [30].

2.1 Particle-based model

We provide a mathematical description of the behaviour of individual trajectories of neu-
trals, and consequently also of analog Monte Carlo particles. We consider the plasma
state fixed, and thus regard it as a background against which the neutral particles move.

Neutrals arise mostly due to collisions of plasma particles with the divertor target,
which is located at x = 0 in our domain D. There are also volumetric sources, due to
recombination of the plasma, and external sources. The entire source is denoted as q(x)
and the initial velocity distribution is f̂0(v|x).

We sample the initial position x0 from

q(x)∫
q(x)dx

, (2.1)
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and launch the particle from that position with velocity v0, sampled from f̂0(v|x0). Both
q(x) and f̂0(v|x0) are determined by the plasma.

In this paper, we will consider two velocity models. The first model, referred to
as 1D1D, allows continuous velocities and has a continuous initial probability density
function with the shape of a shifted Maxwellian. The second model, dubbed 1D0D, or
forward-backward scattering model, only has a single speed v0, which results in particles
having either v0 or −v0 as a velocity. This translates into an initial velocity distribution
f̂0(v|x0) which consists of the sum of two dirac deltas for fixed x0. The 1D0D case is
introduced to facilitate the invariant imbedding procedure discussed in Section 4.

Combined, we can regard the initial state of the neutral to be sampled as

(x0,v0)∼ f0(x,v)=
q(x)∫
q(x)dx

f̂0(v|x)=
Q(x,v)∫
q(x)dx

. (2.2)

After being launched, the particles move through the domain while undergoing a series
of events, which can be of two types: collisions and boundary hits. Collisions can be
either absorption (ionization) or scattering (charge-exchange), and are a result of inter-
actions with the background plasma. Boundary hits occur whenever a particle hits the
boundary ∂D= {0,L}: the particle can then either leave the domain or reflect back into
the domain. Each particle undergoes a sequence of scattering collisions and boundary
reflections until it is either absorbed or leaves the domain via the boundary.

Equations of motion. The state of the particle is represented as a function t∈ [0,Tend] 7→
(x(t),v(t)), with the initial time T0=0, initial position x(0)=x0, and initial velocity v(0)=
v0 given by Eq. (2.2). The particle moves according to a velocity jump process, in which
the velocity of the particle only changes at discrete times. Eqs. (2.3)-(2.5) describe this
process:

x(0)= x0, (2.3)
dx(t)

dt
=v(t), (2.4)

v(t)=vk for t∈ [Tk,Tk+1), k∈{0,··· ,K−1}. (2.5)

The Tk form the event times and TK = Tend is the time instance at which the final event
occurs and the particle disappears from the simulation. This final event can either be
an absorption collision or the particle leaving the domain through the boundary. The
velocity at this time instance does not change, v(TK)= vK−1. We now proceed to specify
the event times {Tk}K−1

k=1 , the behaviour at the different events, including the choice of the
velocities vk, and the end time TK.

Event times. The event times form an increasing sequence {Tk}K
k=1 of time instances

at which either a collision or a boundary hit occurs. It is only at these time instances
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that the velocity changes or the particle disappears. We first consider collision times.
Collisions are either scattering or absorption events. The absorption events model re-
actions between neutral particles and electrons in the plasma (with density ne(x)) that
result in ionizing the neutral particles. Scattering events model reactions between the
neutral particles and the ions in the plasma (with density ni(x)) that result in an ex-
change of an electron between neutral particles and ions. We assume the electron and
ion densities to be equal, i.e., ne(x)≡ni(x). The respective rate coefficients of these two
reactions are Ka(x) and Ks(x), implying that the probability of a particle undergoing
absorption (resp., scattering) during an infinitesimal time dt is Ra(x)dt = Ka(x)ne(x)dt
(resp., Rs(x)dt=Ks(x)ni(x)dt). Note that the rate coefficients Ka, Ks depend on the types
of particles involved, whereas the collision rates Ra, Rs also depend on the plasma state.

Writing the total collision rate as Rt(x)=Ra(x)+Rs(x), the next collision time Tc
k+1 can

be obtained from an exponential distribution with time-dependent rate and computed by
solving ∫ Tc

k+1

Tk

Rt(x(t))dt=ϵk+1, (2.6)

for Tc
k+1, with ϵk a standard exponentially distributed random number, i.e.,

ϵk ∼E(1). (2.7)

The resulting probability distribution of the time ∆tc
k = Tc

k+1−Tk to the next collision is
then given by

P(∆tc
k|x(Tk),vk)=Rt(x(Tk+∆tc

k))exp
(
−
∫ ∆tc

k

0
Rt(x(Tk+τ))dτ

)
. (2.8)

In the absence of collision events, the particle would hit the boundary of the domain at
time Tb

k+1, which depends deterministically upon x(Tk) and v(Tk):

Tb
k+1=Tk+min(τ|τ>0,x(Tk)+τv(Tk)∈∂D). (2.9)

Given the above processes, the next event, that marks the end of the current flight path,
occurs at time

Tk+1=min(Tc
k+1,Tb

k+1). (2.10)

We define convenient auxiliary variables bk+1 and ck+1 that encode whether the event
was a boundary hit or a collision.

(ck+1,bk+1)=

{
(1,0) if Tc

k+1≤Tb
k+1 (collision),

(0,1) if Tc
k+1>Tb

k+1 (boundary hit).
(2.11)

Remark 2.1 (Practical sampling of the next collision time, Tc
k+1). In a practical simulation,

the plasma state (and thus also Rt(x)) is only available on a grid [20], and will be treated
as piecewise constant. Then, Eq. (2.6) allows sampling of Tc

k+1 quite easily. With the index
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for Tc
k+1, with εk a standard exponentially distributed random number, i.e.,

εk∼E(1).

The resulting probability distribution of the time ∆tc
k =Tc

k+1−Tk to the next collision is then given
by

P(∆tc
k|x(Tk),vk)=Rt(x(Tk+∆tc

k))exp
(
−
∫ ∆tc

k

0
Rt(x(Tk+τ))dτ

)
. (2.6)

In the absence of collision events, the particle would hit the boundary of the domain at time Tb
k+1,

which depends deterministically upon x(Tk) and v(Tk):

Tb
k+1=Tk+min(τ|τ>0,x(Tk)+τv(Tk)∈∂D). (2.7)

Given the above processes, the next event, that marks the end of the current flight path, occurs at
time

Tk+1=min(Tc
k+1,Tb

k+1).

We define convenient auxiliary variables bk+1 and ck+1 that encode whether the event was a
boundary hit or a collision.

(ck+1,bk+1)=

{
(1,0) if Tc

k+1≤Tb
k+1 (collision),

(0,1) if Tc
k+1>Tb

k+1 (boundary hit).

Remark 2.1 (Practical sampling of the next collision time, Tc
k+1). In a practical simulation, the

plasma state (and thus also Rt(x)) is only available on a grid [20], and will be treated as piecewise
constant. Then, Equation (2.5) allows sampling of Tc

k+1 quite easily. With the index j referring
to the grid cells in the order the particle moves through them, a piecewise constant reaction rate
allows to rewrite Equation (2.5) as

J

∑
j=0

Rj
t∆tj

k =εk+1. (2.8)

The ∆tj
k refer to the time spent in the j-th encountered grid cell. Because the particle has constant

velocity between events, the time ∆tj
k spent in passing grid cell j equals the distance ∆xj

k to the
edge of the grid cell divided by the size of the velocity |vk|, hence Equation (2.8) can be rewritten
as

J

∑
j=0

Rj
t

1
|vk|

∆xj
k =εk+1. (2.9)

The meaning of ∆xj
k is illustrated in figure 1.

∆x1
k ∆x2

k ∆x3
k ∆x J−1

k ∆x J
k

x
(
Tc

k

)
x
(
Tc

k+1

)

Figure 1: A sketch showing the path of a particle from event k on the left, to the next collision at
time Tc

k+1. Intermediate grid cell crossings are indicated with red dots.

In practice, sampling of the time or distance to the next collision is done by calculating the dis-
tances to the subsequent grid cell walls until their weighted sum, as in Equation (2.9), exceeds εk+1.

Figure 1: A sketch showing the path of a particle from event k on the left, to the next collision at time Tc
k+1.

Intermediate grid cell crossings are indicated with red dots.

j referring to the grid cells in the order the particle moves through them, a piecewise
constant reaction rate allows to rewrite Eq. (2.6) as

J

∑
j=0

Rj
t∆tj

k =ϵk+1. (2.12)

The ∆tj
k refer to the time spent in the j-th encountered grid cell. Because the particle

has constant velocity between events, the time ∆tj
k spent in passing grid cell j equals the

distance ∆xj
k to the edge of the grid cell divided by the size of the velocity |vk|, hence

Eq. (2.12) can be rewritten as
J

∑
j=0

Rj
t

1
|vk|

∆xj
k =ϵk+1. (2.13)

The meaning of ∆xj
k is illustrated in Fig. 1.

In practice, sampling of the time or distance to the next collision is done by calculating
the distances to the subsequent grid cell walls until their weighted sum, as in Eq. (2.13),
exceeds ϵk+1. The last value, ∆tJ

k or ∆x J
k, can be found by solving Eq. (2.12), respectively

Eq. (2.13), exactly.

Remark 2.2 (Distance to the next collision.). The bijection between ∆tk and ∆xk as dis-
cussed in Remark 2.1 can be used to disregard event times in the description of a particle
path, only retaining the event positions and velocities [16]. Similarly to the probability
distribution of the next collision time in Eq. (2.8), we can express the probability distribu-
tion of the travelled distance d to the next collision as:

P(d|x,v)=
Rt(x+d v

|v| )

|v| e−
∫ d

0

Rt(x+ℓ v
|v| )

|v| dℓ . (2.14)

In our description of the particle paths of this section, we will hold on to the event times,
as this forms the most natural description of the particle path. In later sections, the de-
scription in Eq. (2.14) will be more convenient.

Remark 2.3 (Cross-sections.). An often-used different parameter to express the collision-
ality is the cross-section Σ. It is defined as

Σ(x,v)=
R(x)
|v| , (2.15)
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and expresses the expected number of events per distance travelled.
With Σt(x,v) = Σa(x,v)+Σs(x,v) the total cross-section, the probability distribu-

tion (2.14) of the travelled distance d to the next collision can also be written as

P(d|x,v)=Σt(x+dv/|v|,v)e−
∫ d

0 Σt(x+ℓv/|v|,v)dℓ . (2.16)

Collision events. If a collision occurs at time Tk+1 (ck+1 = 1), the collision is either an
absorption, with probability Ra(x(Tk+1))/Rt(x(Tk+1)), or a scattering otherwise. The
type of collision is decided by generating a Bernouilli distributed random number:

ak+1∼B
(

Ra(xk+1)

Rt(xk+1)

)
. (2.17)

If ak+1 =1, absorption occurs, which means the particle path ends. The index of the last
collision event, would then thus be

Ka=min(k|ckak =1) . (2.18)

If ak+1=0, a scattering collision takes place, and a new velocity is sampled according to

vs
k+1∼ f̂postcol(v|x(Tk+1)). (2.19)

Remark 2.4 (Fusion-specific postcollision velocity distribution). In the plasma edge sim-
ulations we study, the postcollision velocity is independent of the precollision velocity,
and completely determined by the plasma background. The theory about the estimation
procedures of this paper remains valid in the more general case where the postcollisional
velocity distribution does depend on the precollision velocity. This would require chang-
ing f̂postcol(v|x) to f̂postcol(v|x,v′).

The two velocity models, 1D1D and 1D0D, result in two different models for the post-
collision velocity distribution, similarly to the two initial velocity distribution shapes pre-
sented on page 108. In the 1D1D model, the post-collision velocity is sampled from a
normal distribution, whose moments are determined by the plasma properties. In the
simplified 1D0D model, where only a single velocity size is allowed, the post-collision
velocity only determines the probability of being −v0 or v0.

Boundary hits. If the event is a boundary hit (bk+1 = 1), the particle can either be ab-
sorbed at the boundary (with probability α(x)), or be reflected (with probability 1−α(x)).
To select the type of boundary hit, we again generate a Bernouilli distributed variable
βk+1:

βk+1∼B(α(xk+1)). (2.20)

If bk+1=1 and βk+1=1, the particle leaves the domain, as is expressed by

Kout=min(k|bkβk =1) . (2.21)
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Otherwise, if bk+1 = 1 and βk+1 = 0, the particle is reflected, which leads to a new de-
terministic velocity based on its current velocity and the normal to the boundary at the
reflection location, via the equation

vr
k+1=B(vk), (2.22)

with B(v)≡−v, a deterministic function that represents perfect reflection at the wall.

New velocity. To summarize, vk+1 equals vs
k+1 if the next event is a collision (bk+1 = 0)

and vr
k+1 if the event is a boundary hit (bk+1 = 1). Otherwise, the particle velocity does

not change. This is expressed by the equation

vk+1= ck+1vs
k+1+bk+1vr

k+1 . (2.23)

Note that if an absorption takes place (ck+1ak+1 = 1) or if the particle leaves the domain
(bk+1βk+1), the velocity vk+1 does not play a role.

End time. The particle path ends at the first absorption event or when it leaves the
domain, hence

K=min(Ka,Kout), (2.24)
Tend=TK =min(TKa ,TKout) . (2.25)

Grid cell crossings. This section provided a full description of particle paths that ad-
here to the physical model. Such a path is fully characterized by the initial state, the
positions of the events, the inter-event velocities, and the types of the events: (x0,v0) and
{xk,vk,ck,bk,ak,βk}K

k=1. (The event times, which played a central role in this discussion,
can be derived from the event positions and velocities, as is discussed in Remark 2.2.) In
a practical context, the plasma background is often discretized in a piecewise constant
manner, see Remark 2.1, and for some source term estimators it will be relevant to also
regard grid cell crossings as events, see Section 3. We may include grid cell crossings
by extending the set of events, which until now only comprised collisions and boundary
hits. Their treatment can be incorporated in the treatment of boundary hits by augment-
ing the set ∂D with ∪i∂C i in Eq. (2.9) and by including an additional auxiliary variable gk.
At a grid cell crossing gk =1 and ck = bk =0, and at other events gk =0. For convenience,
we also treat the entry of the particle in the domain as a grid cell crossing at t=0.

Analog particle path. The entire particle path can be summarized as

P={xk,vk,ck,bk,gk,ak,βk}K
k=0 . (2.26)

Simulations that follow the mathematical description of this section are called analog sim-
ulations and will be denoted by a in this paper. After introducing a kinetic description
of this model in Section 2.2, we will derive a different non-analog simulation of the same
model in Section 2.1, that loosens the connection to the physical model.
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2.2 Kinetic Boltzmann-BGK model

For the analog stochastic process discussed above, one can write a corresponding kinetic
equation for the equilibrium distribution ϕn(x,v) of an infinite number of such parti-
cles [16],

v∇ϕn(x,v)
︸ ︷︷ ︸

transport

= Q(x,v)
︸ ︷︷ ︸

source from
the plasma

−Ra(x)ϕn(x,v)
︸ ︷︷ ︸

sink due to
absorption

−Rs(x)ϕn(x,v)+
∫

Rs(x)ϕn(x,v′) f̂postcol(v|x)dv′

︸ ︷︷ ︸
velocity redistribution

due to scattering

.

(2.27)
The probability of a particle being absorbed during a time dt is equal to Ra(x)dt, resulting
in a sink of Ra(x)ϕn(x,v), since absorbed neutrals disappear from the neutral population.
Analogously for the scattering events, a fraction Rs(x)ϕn(x,v) gets scattered. Unlike the
absorbed neutrals, they remain in the neutral population: a particle undergoing scat-
tering at position x with precollision velocity v′, remains in the neutral population, but
changes velocity according to the velocity distribution f̂postcol(v|x). This aspect is mod-
eled by the last term of the right hand side of Eq. (2.27).

As in [16], we will split Eq. (2.27) into an event and a transport part to facilitate the
derivation of the different source term estimation procedures in Section 3. In [16], the
considered events are entry into the domain, absorption collisions, and scattering colli-
sions. In this paper, we add exits at the boundary, reflections at the boundary, and grid
cell crossings as events. Our construction derives from the particle-based model of Sec-
tion 2.1, which is equivalent to Eq. (2.27).

Event part. We introduce the collision rate ψc(x,v), the rate at which particles undergo
collisions, as

ψc(x,v)=(Ra(x)+Rs(x))ϕn(x,v)=Rt(x)ϕn(x,v), (2.28)

with Rt(x) the total rate. Similarly, we denote by ψb(x,v) and ψg(x,v) the boundary
hit rate and the grid cell crossing rate, which are of course only non-zero at domain,
respectively grid cell boundaries. With these event rates, we can write the following
equation for the post-event rate χ(x,v), being the rate at which particles appear after
events or due to sources:

χ(x,v)=Q(x,v)
︸ ︷︷ ︸

entry

+
∫

ψc(x,v′)C(v′→v|x)dv′

︸ ︷︷ ︸
collisions

+ψb(x,B−1(v))(1−α(x))
︸ ︷︷ ︸

boundary interactions

+ ψg(x,v)
︸ ︷︷ ︸

grid cell crossings

.

(2.29)
The second term of the right hand side of Eq. (2.29) contains the collision kernel

C(v′→v|x)= Rs(x)
Rt(x)

f̂postcol(v|x), (2.30)

which describes the effect of a collision. Its form in Eq. (2.30) corresponds to the descrip-
tion of collision events in Section 2.1, where a particle that undergoes a collision has a
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probability 1−Rs(x)/Rt(x) to be ionized and thus disappear from the neutral simula-
tion, and a probability Rs(x)/Rt(x) of reappearing with a new velocity that is sampled
according to the distribution f̂postcol(v|x), see Eqs. (2.19) and (2.17). The third term of the
right hand side of Eq. (2.29) represents that particles that hit a boundary with a velocity
B−1(v) will end up with a velocity v after the boundary hit with the reflection probability
(1−α(x)). (They disappear from the domain with a probability α(x), also in correspon-
dence with the boundary hits description of Section 2.1, see Eqs. (2.20) and (2.22).) At a
grid cell crossing, the velocity of the particle does not change, as this is not a physical
event. Therefore, the disappearing particles ψg(x,v) simply reappear unaltered.

Transport part. Eqs. (2.29)-(2.30) describe the result of events. We still need to describe
the effect of particle transport, which will connect the post-event rate χ(x,v) to the event
rates, ψc(x,v), ψb(x,v), and ψg(x,v). Together with Eqs. (2.29)-(2.30), the transport de-
scription presented below will give rise to a closed set of equations. Particles arising
at position x′ with velocity v move to their next event position x. This transport phase
is modelled by transport kernels Te(x′ → x|v), which express the probability of a par-
ticle that entered the simulation or resulted from a previous event at position x′ with
velocity v′, to undergo a next event at x. We split the transport kernel into two parts:
Tc(x′→x|v) that expresses the probability of undergoing a collision, and Tgeom(x′→x|v)
that expresses the probability of a geometric event, which groups boundary hits and grid
cell crossings. The total transport kernel is T(x′→ x|v)= Tc(x′→ x|v)+Tgeom(x′→ x|v).
With these two kernels, equations for the event rates are:

ψc(x,v)=
∫

χ(x′,v)Tc(x′→ x|v)dx′ , (2.31)

ψb(x,v)=
∫

χ(x′,v)Tgeom(x′→ x|v)1∂D(x)dx′ , (2.32)

ψg(x,v)=
∫

χ(x′,v)Tgeom(x′→ x|v)(1−1∂D(x))dx′ . (2.33)

1∂D is an indication function that is one domain boundaries and zero otherwise. Eq. (2.31)
connects back to Eq. (2.14) which gives the probability distribution of the distance to the
next collision event. Using Eq. (2.14), the following equation for the collision transport
kernel is obtained for the case without any geometric event:

Tc,∞(x′→ x|v)dx=





Rt(x)
|v| e−

∫ d
0

Rt(x′+ℓ v
|v| )

|v| dℓdd if x= x′+D v
|v| with D≥0,

0 else.
(2.34)

In Section 2.1, a collision only occurred when the particle did not hit the boundary first.
We add this to Eq. (2.34) to get the actual collision transition kernel

Tc(x′→ x|v)dx=





Rt(x)
|v| e−

∫ d
0

Rt(x′+ℓ v
|v| )

|v| dℓdd
if x= x′+D v

|v| with D≥0 and
x and x′ are in the same grid cell,

0 else.
(2.35)
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For completeness we include a single-line expression for Tc(x′ → x|v). In a one-
dimensional setting, the distance (D) equals the difference in the position (x) times the
sign of the velocity ( v

|v| ). Hence, we have v
|v|dx=dD, and we can implement the first part

of the if-else switch in Eq. (2.35) by multiplication with a factor 1
2

∣∣∣ x−x′
|x−x′|+

v
|v|

∣∣∣. The second
part of the if-else switch is added by multiplication of maxj(1C j(x)1C j(x′)), which is one
only if x and x′ are in the same grid cell and zero otherwise. The resulting single-line
expression for the collision transport kernel is

Tc(x′→ x|v)= 1
|v|Rt(x)e

−
∫ x

x′
v

|v|2 Rt(x′′)dx′′ 1
2

∣∣∣∣
x−x′

|x−x′|+
v
|v|

∣∣∣∣max
i

(1C i(x)1C i(x′)). (2.36)

If the next event of a particle is not a collision, it is either a grid cell crossing or a boundary
hit. The probability of having either of these geometric events as the next event equals
the probability of not colliding before reaching a grid cell boundary or domain boundary,
hence the total probability of a geometric event equals

∫
Tgeom(x′→ x|v)dx=1−

∫
Tc(x′→ x|v)dx , (2.37)

where Tgeom(x′ → x|v) is the geometric transition kernel, combining grid cell crossings
and boundary hits. The position x of the next geometric event is always the first po-
sition on a boundary (a domain boundary, or grid cell boundary) that is reached when
continuing along the line x′+vτ,τ>0. With

Θ(x′,v)=min(τ|τ>0 ,x′+vτ∈∪i∂C i), with ∂D⊂∪i∂C i , (2.38)

the time after which the boundary would be reached, and similar to Eq. (2.9), we can ex-
press the position at which a geometric event takes place as x′+vΘ(x′,v). Consequently,
the geometric transition kernel is

Tgeom(x′→ x|v)=
(

1−
∫ x

x′
Tc(x′→ x′′′|v)dx′′′

)
δ
(
x−x′−vΘ(x′,v)

)

=

(
1−

∫ x

x′

v
|v|2 Rt(x′′′)e

−
∫ x′′′

x′
v

|v|2 Rt(x′′)dx′′
dx′′′

)
δ
(
x−x′−vΘ(x′,v)

)

= e
−
∫ x

x′
v

|v|2 Rt(x′′)dx′′
δ
(
x−x′−vΘ(x′,v)

)
. (2.39)

Eqs. (2.29), (2.31), (2.32), and (2.33), combined with the expressions for the kernels in
Eqs. (2.30), (2.36), and (2.39), form a closed set of integral equations for ψc(x,v).

2.3 Non-analog collision type simulation

In the analog simulation of neutral particles, it often occurs that certain regions of the
domain have a very low probability of being reached, for instance due to high absorp-
tion rates in surrounding regions. In non-analog simulations, this situation is circum-
vented by considering weighted particles, introducing a so-called survival biasing proce-
dure [13]. In such methods, absorption is not executed by letting the particle disappear,
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but by adapting its weight instead. This way, particles are much more likely to traverse
regions with a high absorption probability, a ‘survival bias’ that is compensated by a
decrease of the particle weight to maintain unbiasedness of the simulation.

In the analog situation, there is a probability of Ra(x)/Rt(x) to be absorbed at col-
lisions (which means the particle is gone from the simulation) and a probability of
Rs(x)/Rt(x) to be scattered. One can therefore also decide to execute a scattering event
at each collision, regardless of the type, while simultaneously adjusting the weight with
a factor Rs(x)/Rt(x). The resulting simulation is called a collision simulation.

Kinetic description. When regarding Eqs. (2.29) and (2.30), the particle paths gener-
ated by the model of this section can be interpreted as changing only how the collision
kernel C(v′ → v|x) is applied with respect to the model in Section 2.1. Instead of hav-
ing probability Ra(x)/Rt(x) of taking the particle out of the simulation and probability
Rs(x)/Rt(x) of the particle undergoing a scattering event, one always performs a scat-
tering event, but multiplies the particle’s weight by Rs(x)/Rt(x). This process thus leads
to exactly the same equation for the densities ψc(x,v)dxdv, ψb(x,v)dxdv, ψg(x,v)dxdv,
and χ(x,v)dxdv as the process described in Section 2.1, so sampling at events in this
simulation type samples the same measure.

Particle description. With minor changes, the model in Section 2.1 can be adapted to
represent this altered simulation process. We will elaborate the entire non-analog col-
lision type model in Eqs. (2.40)-(2.57) and indicate changes with respect to the analog
model of Section (2.1) with a shaded background. Now, a particle path is represented as
a function t ∈ [0,Tend] 7→ (x̄(t),v̄(t),w̄(t)), which includes a weight function. The initial
state of the particle now also contains a deterministic initial weight, set to 1. The initial
state is now determined as

(x̄0,v̄0)∼ f0(x,v)=
Q(x)∫
Q(x)dx

f̂0(v|x), (2.40)

w̄0=1 . (2.41)

Just as the velocity function, the weight function is only updated at events, resulting in a
similar equation for w̄(t) as for v̄(t):

x̄(0)= x̄0, (2.42)
dx̄(t)

dt
= v̄(t), (2.43)

v̄(t)= v̄k for t∈ [T̄k,T̄k+1[, k∈{0,··· ,K̄−1}, (2.44)
w̄(t)= w̄k for t∈ [T̄k,T̄k+1[, k∈{0,··· ,K̄−1}. (2.45)

As before, v̄(T̄K̄)= v̄K̄−1 and w̄(T̄K̄)= w̄K̄−1.
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The weight updates replace the execution of absorption collisions with scattering col-
lisions. Hence the equations that express absorption in an analog simulation (Eqs. (2.17)
and (2.18)) are no longer included in the collision type non-analog (nac) model. The
resulting survival bias is mitigated by the weight updates at collisions as expressed by
Eq. (2.52) to obtain an unbiased simulation. We thus get the following set of equations
for the sampling of events:

θ̄k+1∼E(1), (2.46)
∫ T̄c

k+1

T̄k

Rt(x̄(t))dt= θ̄k+1 , (2.47)

T̄b
k+1= T̄k+min(τ|τ≥0, x̄(T̄k)+τv̄(T̄k)∈∂D) , (2.48)

T̄k+1=min(T̄c
k+1,T̄b

k+1), (2.49)

(b̄k+1, c̄k+1)=

{
(1,0) if T̄c

k+1≤ T̄b
k+1 (collision),

(0,1) if T̄c
k+1> T̄b

k+1 (boundary hit),
(2.50)

v̄s
k+1∼ f̂postcol(v|x̄(T̄k+1)), (2.51)

w̄k+1= w̄k

(
1− c̄k+1

Ra(x̄(T̄k+1))

Rt(x̄(T̄k+1))

)
, (2.52)

As a consequence of the absence of absorption, the last event will always be a boundary
hit in which the particle leaves the domain, expressed by Eqs. (2.55) and (2.57), which
replace Eqs. (2.21) and (2.25) from Section 2.1. The equations modeling boundary hits
and the new velocity and end time, therefore become:

β̄k+1∼B(α(x̄k+1)), (2.53)
v̄r

k+1=B(v̄k), (2.54)
K̄=K̄out=min

(
k|b̄k β̄k =1

)
, (2.55)

v̄k+1= c̄k+1v̄s
k+1+ b̄k+1v̄r

k+1 , (2.56)
T̄end= T̄K , (2.57)

with f̂postcol the post-collision velocity distribution and B(v)≡−v.
Due to its focus on the collision events, this type of simulation will be called the non-

analog collision type simulation in subsequent sections and will be denoted by nac.

Remark 2.5 (Reweighing at the boundary). A logical extension is to apply reweighing
also at boundary hits, by reweighing the particle with its probability of surviving. Doing
so would mean the particle has no more means of disappearing from the simulation,
which is solved in practice by using either a cut-off weight below which the particle
disappears, Russian roulette, or a similar strategy [16].

As for the analog simulation, it suffices to only keep the path information at the events
to perform a Monte Carlo estimation. As before, we include grid cell crossings and the
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initial entry into the domain, which have ḡk =1 and c̄k = b̄k =0. The non-analog collision
type path can be represented as

P̄={x̄k,v̄k, c̄k,b̄k, ḡk,w̄k, β̄k}K̄
k=0. (2.58)

Note that the absorption indicators ak are replaced by weights w̄k compared to Section 2.1.

Remark 2.6 (Simulations with a piecewise constant plasma background). In practical
fusion simulations, the neutral particles of the Monte Carlo simulation usually move
against a piecewise constant plasma background, as is discussed in Remark 2.1. This fa-
cilitates sampling of the next event times by transforming the integral in Eq. (2.6) or (2.47)
to a sum. For both the analog simulation (a) as the non-analog collision type simulation
(nac), this is the only simplification with respect to the general plasma model.

3 Source term estimation procedures

The purpose of the particle simulations in Sections 2.1 and 2.3 is to estimate transfer
of mass, momentum, and energy from the neutral particles to the plasma. To achieve
this, one additionally needs source term estimation procedures, which we introduce in
this section. The analysis of the variance and computational cost of these estimation
procedures forms the core of the paper. Since the source terms in the plasma equations
arise from collisions between the neutrals and the plasma, we can express them in terms
of the collision rate distribution ψc(x,v), see Eq. (2.29), as

S∗(x)=
∫ (Ra(x)

Rt(x)
sa,∗(v)+

Rs(x)
Rt(x)

∫
ss,∗(v→v′) f̂postcol(v′|x)dv′

)
ψc(x,v)dv, (3.1)

with sa,∗(v) the source contribution due to an absorption of a particle with velocity v
and ss,∗(v→v′) the source contribution due to a particle with velocity v scattering with a
resulting velocity v′.

The precise functions sa,∗(v) and ss,∗(v → v′) depend on the quantity that is being
estimated. The mass source from the neutrals to the plasma for instance only arises due
to absorption events, and at absorption events the full mass of the particle is transferred
to the plasma. This is expressed by sa,mass(v)=1 and ss,mass(v→v′)=0, resulting in

Smass(x)=
∫ Ra(x)

Rt(x)
ψc(x,v)dv, (3.2)

as the mass source. The momentum source arises from both absorption and scattering
collisions. At absorption collisions the entire momentum, proportional to v, is trans-
ferred. At scattering collisions, the transferred momentum is proportional to the pre-
collisional velocity v minus the post-collisional velocity v′. For each possible outcome v′

of a scattering collision of a particle with velocity v, the transferred momentum, which
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is proportional to (v−v′), has to be multiplied by the probability of having v′ as a post-
collisional velocity. This results in sa,mom(v)=v, ss,mom(v→v′)=v−v′, and

Smom(x)=
∫ (Ra(x)

Rt(x)
v+

Rs(x)
Rt(x)

∫
(v−v′) f̂postcol(v′|x)dv′

)
ψc(x,v)dv. (3.3)

In a coupled finite-volume/Monte-Carlo simulation, we introduce a finite volume grid
with grid cell boundaries {x0 =0,x1,x2,··· ,xI−1,xI = L}. We are interested in the value of
the source terms in each of the I grid cells C i =[xi−1,xi], i=1... I. We obtain these source
terms by multiplying the functions sa(v) and ss(v→ v′) with the characteristic function
1C i(x) of the grid cell,

Si
∗=

∫ (Ra(x)
Rt(x)

sa,∗(v)+
Rs(x)
Rt(x)

∫
ss,∗(v→v′) f̂postcol(v′|x)dv′

)
1C i(x)ψc(x,v)dvdx . (3.4)

A Monte Carlo approximation replaces Eq. (3.4) by contributions at events, averaged
over N particle paths {Pn}N

n=1, see Eqs. (2.26) and (2.58) for the definition of the particle
paths. The subscript n = 1,.. .,N denotes the particle index. Note that the number of
events that each particle undergoes can depend on the particle’s index, so we denote this
number of events as K−n. In general, each of the Kn+1 events of a particle path can
result in a score for the source term estimator in the grid cell i. Depending on the event
type, the scoring can differ. In general, we denote the score at an event as si,⋆

e,∗, with the
superscript ⋆ serving as a place-holder for the estimator type, the e for the event type, and
the subscript ∗ for the estimated quantity. Precise definitions of these scores are given in
Section 3.1 for analog estimators and in Section 3.2 for collision estimators. The resulting
Monte Carlo estimator then reads

S i,⋆
∗ =

1
N

N

∑
n=1

Kn

∑
k=0

(
si,⋆

a,∗(Pn,k)cn
k an

k︸ ︷︷ ︸
absorption

+si,⋆
s,∗(Pn,k)ck(1−an

k )︸ ︷︷ ︸
scattering

+si,⋆
out,∗(Pn,k)bn

k (1−βn
k )︸ ︷︷ ︸

boundary absorption

+ si,⋆
r,∗(Pn,k)bn

k βn
k︸ ︷︷ ︸

boundary reflection

+ si,⋆
g,∗(Pn,k)cn

k︸ ︷︷ ︸
grid cell crossing


 , (3.5)

where all the symbols are introduced in Section 2.1. The Monte Carlo approximation in
Eq. (3.5) is for analog particle paths. For non-analog particle paths, the scores should be
multiplied by the appropriate weight, as will be discussed for each estimator separately.

In Section 3.1 we present the analog estimator which scores the contributions as they
occur within the particle path simulation. In Section 3.2 the collision estimator is presented,
which will score on more events than only those that occur, in an unbiased fashion. For
each estimator, we include an involved example and a discussion of how the estimators
reduce in the fundamental cases of estimating the expected number of absorption events
and scattering events when the plasma is piecewise-constant. For these fundamental
cases, we analytically study the estimation variance and cost in Sections 4 and 5.
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3.1 Analog estimator

As discussed in the introduction of this section, an analog MC estimator for Si
∗ is the

most straightforward estimator from the perspective of an analog simulation. An analog
estimator scores according to the physical event that is being simulated. So in an analog
simulation, an analog estimator scores

si,a
a,∗(Pn,k)= sa,∗(vk)1C i(xn

k ) (3.6)

at each absorption collision and

si,a
s,∗(Pn,k)= ss,∗(vk →vk+1)1C i(xn

k ) (3.7)

at each scattering collision. The superscript a denotes the analog estimator. At other
events, there is no physical exchange with the plasma, hence si,a

out,∗(Pn,k)= si,a
r,∗(Pn,k)=

si,a
g,∗(Pn,k)=0. Non-analog simulations are not relevant for an analog estimator, since the

events lose their physical meaning. We illustrate this estimator type with a momentum
estimator:

Example 3.1 (Momentum estimation by an analog estimator in an analog simulation (a a

estimation procedure)). We will show the formula for an estimate of the momentum
source in cell i from an analog particle path. The particle path of the n-th particle is
represented by the set of positions, incoming velocities and event identification, as given
on page 112, at the Kn+1 events of the particle path Pn = {xn

k ,vn
k ,an

k ,bn
k ,cn

k}Kn

k=0. For an
analog estimator, only the events at which there is a physically founded interaction with
the plasma result in a score, hence if cn

k =1. For momentum the source at an absorption
event is sa,mom(v)= v and at a scattering event it is ss,mom(v→ v′)= v−v′. Consequently
the terms in Eq. (3.5) become si,a

a,mom(Pn,k)=vn
k 1C i(xn

k ), si,a
s,mom(Pn,k)=

(
vn

k −vn
k+1

)
1C i(xn

k ),
and si,a

out,mom(Pn,k) = si,a
r,mom(Pn,k) = si,a

g,mom(Pn,k) = 0. All of collisions with the plasma
are scattering collisions, except for the last, Kn-th, event, which, if it is a collision, is an
absorption. Hence, Eq. (3.5) specifies to

S i,a
mom=

1
N

N

∑
n=1

(
Kn−1

∑
k=1

(vn
k −vn

k+1)c
n
k 1C i(xn

k )

︸ ︷︷ ︸
scattering collisions

+ vn
Kn cn

k 1C i(xn
Kn)

︸ ︷︷ ︸
absorption collision

)
. (3.8)

Fundamental cases. We end the description of the analog estimator by applying it to
the fundamental cases of estimating the expected number of absorption events and the
expected number of scattering events when the plasma is piecewise-constant. These cases
correspond to sa,a(v)=1 and ss,a(v→v′)=0, respectively sa,sc(v)=0 and ss,sc(v→v′)=1,
or thus si,a

a,a(P ,k)= 1C i(xk) and si,a
a,sc(P ,k)= 0, respectively si,a

a,a(P ,k)= 0 and si,a
a,sc(P ,k)=

1C i(xk). The plasma being piecewise-constant has no impact on what has to be scored
here. We denote the analog estimator for the number of absorption events in an analog
simulation by a a abs and for the number of scattering events by a a sc.
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3.2 Collision estimator

The collision estimator does not distinguish between absorption and scattering collisions,
but only samples the measure ψc(x,v)dxdv. Then,

(
Ra(x)
Rt(x)

sa,∗(v)+
Rs(x)
Rt(x)

∫
ss,∗(v→v′) f̂postcol(v′|x)dv′

)
1C i(x) (3.9)

has to be scored for every sample to compute the integral in Eq. (3.4).
This estimator is called the collision estimator, since it boils down to counting the

expected contribution due to a collision in grid cell i, at every collision regardless of its
outcome. We denote collision estimators by c. Since this estimator can be combined
with the analog simulation and the non-analog collision type simulations of Section 2,
we obtain two collision type source term estimation procedures, which we denote by
a c, respectively nac c.

We denote the expected score of a collision at position x with pre-collision velocity v
by

sc,∗(x,v)=
Ra(x)
Rt(x)

sa,∗(v)+
Rs(x)
Rt(x)

∫
ss,∗(v→v′) f̂postcol(v′|x)dv′ . (3.10)

This factor only depends on the estimated quantity, the position where the collision takes
place, and the pre-collision velocity v. Note furthermore that the integral over the post-
collisional velocity v′ in Eq. (3.10) is not difficult to compute: since ss,∗(v→ v′) is a sim-
ple polynomial in v′, the solution of the inner integral is a combination of moments of
f̂ i
postcol(v

′), which are known from the plasma simulation. For instance, if the momentum
is the estimated quantity, sa,mom(v)=v and ss,mom(v→v′)=v−v′ and Eq. (3.10) becomes

sc,mom(x,v)=
Ra(x)
Rt(x)

v+
Rs(x)
Rt(x)

(v−up(x)), (3.11)

with up(x) the expected post-collisional velocity at position x, a quantity that is computed
by the plasma simulation.

With sc,∗(x,v) as defined in Eq. (3.10), the scores for a collision estimator can be written
as

si,c
a,∗(P ,k)= si,c

s,∗(P ,k)= sc,∗(xk,vk)1C i(xk), (3.12)

and si,c
out,∗(P ,k)= si,c

r,∗(P ,k)= si,c
g,∗(P ,k)=0.

For the non-analog collision type simulation, the only change consists in multiply-
ing the score at each collision event k with the weight at the collision, being w̄k−1. The
collision estimator can be used for each quantity of interest and combined with both sim-
ulation types. We illustrate this estimator with a collision estimator for momentum in an
analog simulation.
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Example 3.2 (Momentum estimation by an a c estimator). We apply a collision estimator
to the same case as in example 3.1, and with Eq. (3.11) and Eq. (3.12), we find

si,c
a,mom(Pn,k)= si,c

s,mom(Pn,k)=
(

Ra(xn
k )

Rt(xn
k )

vn
k +

Rs(xn
k )

Rt(xn
k )

(vn
k −up(xn

k ))

)
1C i(xn

k ) (3.13)

as scores at the different collisions. With Eq. (3.13) and si,c
out,∗(Pn,k) = si,c

r,∗(Pn,k) =
si,c

g,∗(Pn,k)=0, Eq. (3.5) specifies to

S i,c
mom=

N

∑
n=1

Kn

∑
k=1

(
Ra(xn

k )

Rt(xn
k )

vn
k +

Rs(xn
k )

Rt(xn
k )

(vn
k −ui

p)

)
cn

k 1C i(xn
k ). (3.14)

As for the analog estimator, we end the description of the collision estimator by using
it to estimate the number of absorption events and the number of scattering events when
the plasma is piecewise constant. First, we discuss how the collision estimator simplifies
in general when the plasma is piecewise-constant. Then, we apply it to the fundamental
case.

For piecewise-constant plasma the reaction rates are constants Ri
a, Ri

s, and Ri
t in each

grid cell i and the post-collisional velocity distribution is a position-independent function
f̂ i
postcol(v

′). We use these constants and this position-independent function to simplify the
factor sc,∗(x,v) in the scores by the collision estimator, Eq. (3.12), as

sc,∗(x,v)1C i(x)= si
c,∗(v)1C i(x)=

(
Ri

a

Ri
t
sa,∗(v)+

Ri
s

Ri
t

∫
ss,∗(v→v′) f̂ i

postcol(v
′)dv′

)
1C i(x).

(3.15)

Fundamental cases. Applying the collision estimator for the number of absorption
events and the number of scattering events when the plasma background is piecewise-
constant, amounts to scoring a constant at every collision. Hence, when applying these
two estimators to the same simulation, the result only differs by a constant. Conse-
quently, the statistical properties of a collision estimator for the expected number of
absorption events and for the expected number of scattering events are identical, and
shared by a collision estimator for the expected total number of collisions. We thus re-
strict ourselves to only considering one of these fundamental cases, namely a collision
estimator for the total number of collisions, which amounts to scoring the particle weight
at every collision.

4 Derivation of the ODEs for the estimation procedure
performance using invariant imbedding

In the previous two sections, we arrived at several source term estimation procedures: the
basic estimation procedures a a abs and a a scat, and the competing estimation proce-
dures for the expected total number of collisions, a c, and nac c. The goal of this paper
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is to provide a quantitative analysis of these estimators based on the parameters of the
problem. In this Section we discuss the method used to compare the estimation proce-
dures, the results of which are shown in Section 5.

To do so, we simplify the model problem in Section 4.1 to a situation with only
forward-backward scattering and constant rates. We denote this simplified model as
the 1D0D problem, since it is one-dimensional in space, but zero-dimensional in velocity.
The performance of the estimation procedures is measured in both relative statistical er-
ror (given a number of simulated particles) and the computational cost (given a certain
statistical error). For each of the estimation procedures, it is possible to construct sets of
ODEs that allow computation of both measures of performance in the 1D0D problem.
The method used for this is called invariant imbedding. It is discussed in Section 4.2.1
and illustrated in Section 4.2.2. For the full derivation of all the ODEs (which is extremely
lengthy), we refer to the Technical Report [19].

4.1 1D0D simplification

To facilitate an analytical study of the performance of the different estimation procedures,
we simplify the one-dimensional model to only have forward-backward scattering. Con-
cretely, we restrict the velocity to being ±1, making the model zero-dimensional in ve-
locity. The post-collisional velocity distribution is then completely determined by one
parametric value: the probability of going right after a collision, pr. This reduces the
post-collision velocity distribution to

f̂ 1D0D
postcol(v)= prδ(v−1)+(1−pr)δ(v+1), (4.1)

with δ the Dirac-delta. The constant size of the velocity and the space-independence of
the rates, result in constant cross-sections Σa and Σs which can be used instead of the
reaction rates (see Remark 2.3). With all the particles entering from the left, the initial
velocity distribution is also reduced to

f̂ 1D0D
0 (v)=δ(v−1). (4.2)

Furthermore, we take the probability of being reflected equal to be 0 at each end of the
domain, hence α(r)≡1.

This reduces the investigated parameter space to three dimensions: the survival prob-
ability at a collision Σa/Σt, the dedimensionalized total collision rate ΣtL and the post-
collisional parameter pr.

The constant size of the velocity in this simplification has as an additional effect that
energy of the particles always remains proportional to their mass. This means the energy
source estimates are proportional to the mass source estimate and consequently that their
performance is identical, meaning that the results for mass source estimation that we
attain by this method hold for energy source estimation as well.
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4.2 Invariant imbedding procedure

4.2.1 Principle

For the simplified 1D0D model of Section 4.1, we can derive ODEs to calculate both the
variance and the expected computational cost for a given statistical error, which feature
as measures of performance. The invariant imbedding procedure [1,2] consists of writing
the moment of a quantity, the score for example, for a slab of length x that is extended to
a slab of length x+∆x as a function of moments of quantities for a slab of length x and
its extension ∆x. By taking the limit of ∆x→0, an ODE is formed with the domain length
as an integration variable. For the other quantities that arise, a similar procedure can be
followed, until the set of ODEs is closed.

For each of the estimation procedures, this invariant imbedding procedure leads to a
system of ODEs. In each of these ODE systems the parameters (Σa,Σs,pr) are fixed, and
the domain length x is the integration variable.

4.2.2 Invariant imbedding example

To illustrate the procedure, we include part of the invariant imbedding procedure of the
non-analog collision type collision estimation procedure (nac c). More details, as wells
as the derivations for all other estimator-simulation combinations are described in detail
in the Technical Report [19].

A non-analog collision type simulation (nac) executes every collision as a scattering
event, keeping the simulation unbiased by reweighing the particle by a factor Σs/Σt at
every collision, see Section 2.3. The final weight change of a particle in an nac simulation
after it passed through a domain of length x, in which multiple collisions might have
taken place, is denoted by W̄(x). As discussed in Section 3.2, a collision estimator for
the expected number of collisions, scores 1 at every collision. To estimate the expected
number of a certain type of collisions, instead of 1, Σa/Σt is scored for absorption events,
respectively by Σs/Σt for scattering events. To clarify the use of cross-sections in our
derivation, we denote the score at every collision as Σ/Σt. The total score by an nac c

estimation procedure by a single particle path through a domain of length x is denoted
by C̄(x).

Here, we will focus on the second moment of the score of an nac c estimation proce-
dure, an indispensable quantity to compute its variance. We consider here the contribu-
tion by paths that leave and enter the domain from the left. Other outcomes are treated
similarly. We denote the outcome by a subscript of two letters, of which the first denotes
the place of entry and the second the place of exit. The probability of a path under the
condition that it enters and leaves from the left is denoted by P̄ll(x).

The quantity we focus on here is P̄ll(x)E[C̄2(x)], the contribution to the second mo-
ment of a collision estimator in a non-analog collision type simulation in a domain of
length x by the particle paths that enter and leave from the left. To do so, we will express
P̄ll(x+∆x)E[C̄2(x+∆x)], as a function of quantities over x. To this end, we condition the
paths that enter and leave the domain of length x+∆x from the left by their behaviour



B. Mortier, M. Bealmans and G. Samaey / Commun. Comput. Phys., 37 (2025), pp. 104-136 125

1

2

3

4

5 s

s

s

s

∆x xj

Figure 2: The possible paths in a domain of length x+∆x that start and end on the left side in a non-analogous
simulation and have a probability of order at most 1 in ∆x. The symbol s in the part of length ∆x identifies
that a collision took place there. The dashed lines in the x part of the domain signify that the behaviour there
is irrelevant, as long as the outcome is correct: entering and leaving the x part from the left.

in the part of ∆x. Since our aim is to arrive at an ODE for P̄ll(x)E[C̄2(x)], we can neglect
contributions to P̄ll(x+∆x)E[C̄2(x+∆x)] of order o(∆x), ∆x→0. Hence, we can neglect
paths that collide more than once in the ∆x part of the domain, since these would occur
with a probability of order O(∆x2), ∆x→0, because when travelling a length of ∆x→0
the probability of colliding is Σt∆x, ∆x→0. When restricting the outcome of the paths to
leaving and entering from the left, and to having at most one collision in the ∆x part of
the domain, there are five options left of how the particle can act within the domain of
length ∆x, which are shown in Fig. 2.

With j referring to the cases in Fig. 2, we can write

P̄ll(x+∆x)E[C̄ll(x+∆x)]=
5

∑
j=1

P̄ll,j(x+∆x)E
[
C̄2

ll,j(x+∆x)
]

, (4.3)

by Taylor expansion of the exponential. We now explicitly work out P̄ll,4 and E[C̄ll,4],
after which we will provide all five terms and show how this leads to an ODE.

In the first case of Fig. 2, the particle does not collide in the ∆x part of the domain
after its entry, returns to the ∆x part as the outcome of its passage through the x part of
the domain and, then collides in the ∆x part, after which it exits the domain of length
x+∆x. The probability of this case is thus

P̄ll,4(x+∆x)=
(

1−e−Σt∆x
)

P̄ll(x)e−Σt∆x pl , (4.4)

the probability of not colliding when passing through the ∆x part for the first time, times
the probability of returning to the ∆x part, times the probability of colliding in the second
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passage through the ∆x part and going left after the collision. Since we can neglect all
contributions of o(∆x), ∆x→0, we write

P̄ll,4(x+∆x)= P̄ll(x)Σt∆xpl+O(∆x2), ∆x→0. (4.5)

The score by a particle conditioned on the first case equals

C̄ll,1(x+∆x)= C̄ll(x)+W̄ll(x)
Σ
Σt

, (4.6)

and thus the second moment conditioned on that case is equal to

E

[(
C̄ll(x)+W̄ll(x)

Σ
Σt

)2
]
=E

[
C̄2

ll(x)
]
+2

Σ
Σt

E[C̄ll(x)W̄ll(x)]+
Σ2

Σ2
t

E
[
W̄2

ll(x)
]
. (4.7)

The new quantities on the right hand side of Eq. (4.7), E[C̄ll(x)W̄ll(x)] and E[W̄2
ll(x)]

are all at most second-order in the path variables (C̄ll(x) and W̄ll(x)), as is the quantity,
E[C̄2

ll(x+∆x)], we are after. This feature of the invariant imbedding procedure is true for
all our derivations, and allows to find a closed set of ODEs, since the number of second-
order moments we can take is finite and each of them depends on moments of at most
second order.

With Eqs. (4.5) and (4.7) we can find the fourth term of the right hand side of Eq. (4.3)
as

term 4=P̄ll(x)Σt∆xpl

(
E
[
C̄2

ll(x)
]
+2

Σ
Σt

E[C̄ll(x)W̄ll(x)]+
Σ2

Σ2
t

E
[
W̄2

ll(x)
])

+O(∆x2), ∆x→0, (4.8)

For the other four terms of Eq. (4.3), one can work similarly (see the Technical Re-
port [19]), taking into account that at collisions the particle is reweighed by a factor Σs/Σt.
The results for the remaining four cases are

term 1= P̄ll(x)(1−2Σt∆x)E
[
C̄2

ll(x)
]
+O

(
∆x2), ∆x→0, (4.9)

term 2=Σt∆xpr P̄ll(x)
(

Σ2

Σ2
t
+2

ΣsΣ
Σ2

t
E[C̄ll(x)]+

Σ2
s

Σ2
t

E
[
C̄2

ll(x)
])

+O
(
∆x2), ∆x→0, (4.10)

term 3= pl
Σ2

Σt
∆x+O

(
∆x2), ∆x→0, (4.11)

term 5= P̄ll(x)Σt∆xpr P̄ll(x)
(

E
[
C̄2

ll(x)
]
+2

Σ
Σt

E[W̄ll(x)C̄ll(x)]

+2
Σs

Σt
E[W̄ll(x)C̄ll(x)]E[C̄ll ]+

Σ
Σt

E
[
W̄2

ll(x)
]
+

Σ2
s

Σ2
t

E
[
W̄2

ll(x)
]
E
[
C̄2

ll(x)
]

+2
ΣΣs

Σ2
t

E
[
W̄2

ll(x)C̄ll(x)
])

+O
(
∆x2), ∆x→0.

(4.12)



B. Mortier, M. Bealmans and G. Samaey / Commun. Comput. Phys., 37 (2025), pp. 104-136 127

Substituting the five terms in Eq. (4.3) gives an expression for P̄ll(x+∆x)E[C̄2
ll(x+∆x)],

which, by dividing by ∆x and taking the limit ∆x→0, can be transformed into an ordinary
differential equation for the quantity P̄llE[C̄2

ll ],

d
(

P̄ll(x)E[C̄2
ll(x)]

)

dx

=−2ΣtP̄ll(x)E[C̄2
ll(x)]+pr

Σ2

Σt
P̄ll(x)+2pr

ΣΣs

Σt
P̄ll(x)E[C̄ll(x)]

+pr
Σ2

s
Σt

P̄ll(x)E[C̄2
ll(x)]+pl

Σ2

Σt
+plΣtP̄ll(x)E[C̄2

ll(x)]+2plΣP̄ll(x)E[W̄ll(x)C̄ll(x)]

+pl
Σ2

Σt
P̄ll(x)E[W̄2

ll(x)]+prΣtP̄ll(x)P̄ll(x)E[C̄2
ll(x)]+2prΣP̄ll(x)P̄ll(x)E[W̄ll(x)C̄ll(x)]

+2prΣsP̄ll(x)E[W̄ll(xC̄ll(x)]P̄ll(x)E[C̄ll(x)]+prΣP̄ll(x)P̄ll(x)E[W̄2
ll(x)]

+pr
Σ2

s
Σt

P̄ll(x)E[W̄2
ll(x)]P̄ll(x)E[C̄2

ll(x)]+2pr
ΣΣs

Σt
P̄ll(x)E[W̄2

ll(x)]P̄ll(x)E[C̄ll(x)], (4.13)

which equals Equation (60) in the Technical Report [19]. The initial value to solve this
ODE is 0, because the probability of turning in a slab of length zero is zero, hence so is
P̄ll(0) and E[C̄2

ll(0)].
The same procedure can be applied recursively for each of the terms appearing here,

eventually leading to a closed set of ODEs. The full details of this derivation (and all other
derivations for the other estimation procedures) are included in the Technical Report [19].

To evaluate the estimation procedures for a set of the non-dimensional parameters as
introduced in Section 4.1 (Σs/Σt, ΣtL, pr), the ODEs are to be evaluated until x = L. In
doing so, we also find the results for smaller values of L. Hence, to find the measure of
performance of the estimation procedures on a fine mesh of parameter values, we have
to integrate these ODEs as our mesh has values of Σs/Σt and pr and integrate them with
a step length and final value, determined by the desired values of ΣtL.

5 Comparison of the estimation procedures in 1D0D

For each of the estimation procedures, we have evaluated the statistical error and the
computational cost throughout the parameter space of the 1D0D problem by numerically
evaluating the ODEs constructed with the invariant imbedding procedure as discussed
in Section 4 and included in the Technical Report [19].

An alternative to compute the performance of the different estimation procedures in
the parameter space, is using multiple MC experiments for each parameter set and com-
puting both measures of performance. This method is of limited use because estimating
the relative statistical error and the computational cost sufficiently accurately is compu-
tationally expensive for every parameter set. Even in the three-dimensional parameter
space introduced in Section 4.1, computing these quantities for a fine mesh of parameter



128 B. Mortier, M. Bealmans and G. Samaey / Commun. Comput. Phys., 37 (2025), pp. 104-136

values is infeasible. We do use individual MC simulations to compute the performance
of the different estimation procedures, but only on a coarse mesh of parameter values.
Individual MC simulations have been used in our work to validate the analytical results
of the invariant imbedding method.

In Sections 5.1 and 5.2, we solve the ODE systems originating from the invariant
imbedding procedure to discuss the impact of the problem parameters (the total colli-
sionality ΣtL, the survival probability Σa/Σt and the anisotropy pr) on the performance
of the different estimation procedures. These effects can be easily understood, but the
exact trade-off is non-trivial. In paper, we restrict ourselves to a discussion of the per-
formance of analog and collision estimation procedure individually as a function of the
scattering rate and ionization rate. In future work, we will consider additional, more
advanced estimation procedures, and perform a detailed comparison on a realistic test
case.

5.1 Relative standard deviation

We first compare the different estimation procedures based on the relative standard de-
viation. If the number of particles entering the domain is given, the relative standard
deviation is a measure for the relative statistical error.

In Section 5.1.1 we first focus on the case with trivial scattering: pr = 1, for particles
entering from the left. Doing so allows to explain most of the effects that determine the
performance of the different estimation procedures. In Section 5.1.2 we discuss how these
effects are deformed in the case of non-trivial scattering.

5.1.1 Trivial scattering, pr =1

If pr = 1, the scattering is trivial: the particles never change velocity since the post-
scattering velocity is always 1, which is also the velocity at which the particles enter the
simulation. In this setting, the mechanisms at hand are still very clear. Still, even in this
simple situation, it is nontrivial which of the mechanisms dominates for which parameter
set, and what the quantitative results are. To attain that, ODEs as derived with invariant
imbedding are necessary and this simple situation with trivial scattering often has easily
obtainable analytic solutions for the ODEs, as has been done by [17] for, among others,
a a abs and a c. In this section, we incorporate these results and complement them with
the additional estimation procedures, a a scat and nac c. The results in this section form
a stepping stone towards the rest of our results which, to the best of our knowledge, are
completely new.

Fig. 3 shows the results of this part and includes a graph for each of the four es-
timation procedures. Below, we refer to the position of the estimation procedure with
a pictogram , where the correct position is coloured. The axes of these figures are
the non-dimensional scattering and absorption cross-sections of which combinations are
taken up to ΣtL= 10. For larger values of ΣtL, the contour lines become invariant to L,
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Figure 3: Relative standard deviation for different simulation-estimator combinations with pr =1.

so they become straight lines. This is because, with large collision probabilities, the prob-
ability of a particle reaching the end of the domain is very small, so their contribution
becomes negligible. Since particles reaching the end constitute a negligible part, making
the domain larger has no effect. In the discussion below, the different estimation proce-
dures are indicated by pictograms that refer to the ordering of the combinations in the
figure.

The analog absorption estimator (a a abs, ) is one of the most trivial estimators,
both in how it works and in the resulting figure. The statistical error is independent
of the scattering rate since the scattering events do not contribute to the estimate and,
if pr =1, the scattering collisions furthermore do not impact the particle weight, nor the
trajectory. If ΣaL increases, the statistical error decreases, since it steadily becomes almost
certain that the particle will be absorbed.

The analog scattering estimator (a a sc, ) behaves completely differently compared
to the absorption estimator. Now the scattering events constitute scoring events, without
having any other impact, meaning that an increase of the scattering rate ΣsL improves
the variance. The occurrence of absorption events now has an adverse effect, since it
introduces a variable length and thus an increased variance in the amount of scattering
events that take place.

A much more complex situation is visible in the analog collision estimation procedure
(a c, ) which combines traits of the analog scattering estimator and the analog absorp-
tion estimator. It scores the same at both scattering and absorption events, so increasing
either ΣsL or ΣaL, increases the amount of scored events. In some instances it decreases
the variance but in others it increases. First, when scattering is dominant, increasing ΣaL
increases the variance. This is a result of the increased variability of the path length and
thus of the amount of scattering events at which scoring takes place, an argument we en-
countered when discussing the a a sc estimation procedure. Secondly, when absorption
is dominant, the variance increases when the amount of scattering increases. This can
be understood from the extreme situation with very high absorption and no scattering.
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Figure 4: The relative standard deviation for the different simulation-estimator combinations with pr=0.75.

Then, the variance is nearly zero due to the single, ‘almost certain’ absorption. Adding
scattering to this situation, introduces variance on the amount of events that occur.

In the non-analog collision type collision estimator (nac c, ), all events have an iden-
tical effect, both on the particle path and on the scoring. The only thing that is now
stochastic, is the amount of these equivalent collisions. Increasing the amount of colli-
sions consequently improves the variance. The picture is not symmetric however, due to
the fact that the weight is multiplied by the survival probability after every collision. If
the survival probability is lower, the later collisions are less significant, and since there
is more variability in the occurrence of these, an increase of ΣaL is more positive for the
variance than an increase of ΣsL.

5.1.2 Non-trivial scattering

The setting with trivial scattering served to introduce most of the effects at play. Now,
when the particle can change direction upon scattering, these effects drastically deform
and are supplemented with several new effects. We will introduce these in Fig. 4 where
the probability of going right after a scattering event, pr, equals 0.75.

Again, the analog absorption estimator ( ) provides a good starting point. In contrast
to the situation with trivial scattering (Fig. 3, ), scattering collisions do influence the
path of the particle now. This is a new source of stochasticity and increases the variance
of the score. This new negative effect of non-trivial scattering is visible in every subfigure,
as can be seen by comparing Fig. 4 with Fig. 3 and is to be compared with the other effects
an increase in the scattering has and were discussed in the previous section.

Especially for the two collision estimation procedures we consider here ( ), this com-
plicates the picture significantly. Now the effect of an increase in ΣsL on the statistical
error is no longer monotonous. For both, there are values of ΣaL to be found for which
there is first a decrease of the variance and then an increase. The reason lies in the ever-
increasing complexity of the path, which after a certain time dominates the initial de-
crease in variance due to extra scoring moments.
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Figure 5: The relative standard deviation for the different simulation-estimator combinations with pr =0.5.
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Figure 6: The relative standard deviation for the different simulation-estimator combinations with pr=0.25.

Other values of pr than 1 or 0.75 do not show other effects, but the specific trade-off
between the different effects at play changes. Different values are shown in Figs. 5, 6
and 7.

5.2 Computational cost

Using the invariant imbedding procedure, we can also find and solve ODEs for the ex-
pected computational cost for a given statistical error. The statistical error equals σ/

√
N

with σ the standard deviation of a single particle and N the number of simulated parti-
cles. We assume that the simulation cost per particle is dominated by the execution of
collisions, resulting in a simulation cost for a given statistical error that scales as

σ2E[collisions per path] . (5.1)

The expected number of collisions per path is independent of the chosen estimator, but
solely depends on the simulation type (a or nac). For the analog simulation (a), only the
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Figure 7: The relative standard deviation for the different simulation-estimator combinations with pr =0.
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Figure 8: A measure of computational cost for the different simulation-estimator combinations with pr =1.

physical scattering collisions, determined by the cross-section Σs have to be simulated as
such. The absorption collision cuts the path and keeps the computational cost down. In
the non-analog collision type simulation (nac) all collisions are simulated as if they are
scattering collisions, meaning the cost increases in comparison to the analog simulation
case.

We show the resultant computational cost measure for each of the simulation types
and for values of pr ∈{1,0.5,0} in Figs. 8 to 10.

For the estimation procedures with an analog simulation ( ), this means increased
scattering has as the additional effect of increasing the simulation cost. This shows itself
most clearly by comparing Fig. 3 to Fig. 8. For each estimation procedure, increasing the
scattering rate has an additional adverse effect.

For the non-analog collision type simulation ( ) this additional adverse effect is also
present when the absorption rate increases, although this is clouded by the previously
discussed drop in variance.
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Figure 9: A measure of computational cost for the different simulation-estimator combinations with pr=0.5.
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Figure 10: A measure of computational cost for the different simulation-estimator combinations with pr =0.

Note that the ever increasing cost for the non-analog simulations with increasing ΣtL
can in practice be avoided by using techniques like Russian roulette or weight cut-off [25].

6 Conclusion and future prospects

In this paper, we provide an extensive analysis of source term estimation procedures in
coupled finite-volume/Monte-Carlo methods. We first established the framework which
we use to derive the estimation procedures and prove their unbiasedness. We used this
framework to establish the more basic estimation procedures: the analog and collision
estimators for the analog simulation and the extension of the collision estimator to a dif-
ferent simulation type, where absorption events are executed via weight loss at collisions.
For these estimation procedures, we performed an analytical study for the mass source
estimation in a simplified 1D0D setting with a forward-backward scattering model and
the occurrence of only a single velocity. The simplifications of the 1D0D setting allow
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for an analytical study of the performance by using an invariant imbedding methodol-
ogy, which we explained and illustrated with an example. The full derivations are in the
Technical Report [19].

This analytical study provides the performance in terms of both statistical error and
computational cost for each estimation procedure throughout the parameter domain,
thereby extending existing analyses of the estimation procedures substantially. These re-
sults allow to clearly uncover the mechanisms that determine the parameter dependence
of the estimation procedures and how these mechanisms balance out in a quantitative
manner.

In future work, we will extend our methodology to other, more advanced estimation
procedures, and we will provide a full comparison and several numerical extensions to
establish which estimation procedure is competitive under different conditions.
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