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Abstract. We propose a kind of second-order stabilized Crank-Nicolson scheme which
can be applied to three types of Cahn-Hilliard model with dynamic boundary con-
ditions. We give the corresponding proof of stability and convergence theoretically
which takes the reaction rate dependent dynamic boundary conditions as an exam-
ple. We verify the effectiveness and universality of our proposed scheme by conduct-
ing some typical numerical simulations and comparing with the literature works. It’s
found that second-order scheme takes much less CPU time than the first-order scheme
to reach the same final time.
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1 Introduction

As pointed out in [33], the evolution range of Cahn-Hilliard equation is quite wide which
can describe the important qualitative characteristics of many systems undergoing phase
separation at different time stages, such as the phase separation, the process of nucle-
ation, coarsening in heterogeneous systems [4, 5, 33] and extension of coupling classical
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phase-field model with magnetic field [1, 53]. Cahn-Hilliard equation is a representative
of the so-called diffusion interface model which describes the evolution of free interface
during phase transition [44]. Different from the classical sharp-interface formulation, this
approach has several advantages. For instance, it can avoid evolution of complex geome-
tries and topological changes of the interface [12], and explicit tracking of the interface.

The standard Cahn-Hilliard equation can be written as follows,







φt=∆µ, (x,t)∈Ω×(0,T),

µ=−ε∆φ+
1

ε
F′(φ), (x,t)∈Ω×(0,T), (1.1)

where µ denotes the chemical potential, the parameter ε> 0 means the thickness of the
interface and Ω⊆R

d(d=2,3) denotes a bounded domain whose boundary Γ=∂Ω with the
unit outward normal vector n. The function φ has different interpretations depending on
the physical environment, such as volume fraction, mass fraction or mole fraction [12,33].
In general, it represents the concentration of two components by rescaling, therefore the
value of φ shall be taken in the physical interval [−1,1] with the φ=±1 corresponding
to the pure phase of the materials, which are separated by an interfacial region whose
thickness is proportional to ε.

The Cahn-Hilliard equation can be alternatively viewed as the gradient flow of the
Ginzburg-Landau type energy functional

Ebulk(φ)=
∫

Ω

{

ε

2
|∇φ|2+ 1

ε
F(φ)

}

dx,

in H−1. The energy functional Ebulk consists of two parts: the hydrophilic (gradient term)
and hydrophobic (double-well term) tendency of the phase-field variable φ. F(x) is a
given double-well potential and f (x)=F′(x) as below

F(x)=
1

4
(x2−1)2, f (x)= x3−x, x∈R. (1.2)

Since (1.1) is a fourth order parabolic equation for variable φ, suitable initial and bound-
ary conditions should be taken to form a well-posed problem. The classical setting is
homogeneous Neumann condition:

{

∂nµ=0, (x,t)∈Γ×(0,T),

∂nφ=0, (x,t)∈Γ×(0,T),

where ∂n represents the outward normal derivative on Γ. The energetic variational ap-
proach reveals that the Cahn–Hilliard equation together with the classical boundary con-
ditions naturally fulfills two important physical constraints, the mass conservation

∫

Ω
φ(t)dx=

∫

Ω
φ(0)dx, ∀t∈ [0,T],
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and energy dissipation
d

dt
Ebulk(φ)=−‖∇µ‖2

Ω ≤0.

The influence of boundary (solid wall) on the phase separation process of binary mix-
tures has attracted extensive attention of scientists. For example, the structure of bi-
nary polymer mixture during phase separation may be frozen by rapid quenching into
the glassy state, and micro-structure on small length scale can be generated on the sur-
face [14]. However, the standard homogeneous Neumann condition ignores the influ-
ence of boundary on volume dynamics. In order to describe the short-range interaction
between the two components of the wall and the mixture, a suitable surface free energy
functional should be introduced into the system

Etotal(φ,ψ)=Ebulk(φ)+Esur f (ψ), (1.3)

with

Esur f (ψ)=
∫

Γ

{

δκ

2
|∇Γψ|2+ 1

δ
G(ψ)

}

dS, (1.4)

where δ denotes the thickness of the interface area on the boundary and the parame-
ter κ is related to the surface diffusion. If κ = 0, it is related to the moving contact
line problem [24]. G is the surface potential, ∇Γ represents the tangential surface gra-
dient operator and ∆Γ denotes the Laplace-Beltrami operator on Γ. Like the classical
periodic Neumann boundary conditions, the Cahn-Hilliard equation for the phase sep-
aration process with boundary effects still needs to be supplemented by two boundary
conditions, and is required from mass conservation and energy dissipation. However,
the difference is that nontrivial boundary effects driven by surface energy (1.4) must be
involved [9, 11, 16, 26–28, 32, 34, 48]. In this paper, the following three types of dynamic
boundary conditions are considered.

Recently, Knopf, Lam, Liu and Metzger proposed a new type of dynamic boundary
conditions [27] as follows,



























φ|Γ =ψ, (x,t)∈Γ×(0,T), (1.5)

K∂nµ=µΓ−µ, (x,t)∈Γ×(0,T),

ψt=∆ΓµΓ−∂nµ, (x,t)∈Γ×(0,T),

µΓ =−δκ∆Γψ+
1

δ
G′(ψ)+ε∂nφ, (x,t)∈Γ×(0,T),

referred to the boundary conditions of KLLM model as in [3]. Here, µ, µΓ denote the
chemical potentials in the bulk and on the boundary, respectively. The equation on the
boundary can be viewed as a chemical reaction in a general case since it describes that
one species (φ) changes into another species (ψ) on the boundary. So it is also called
Cahn–Hilliard equation with reaction rate dependent dynamic boundary conditions. The
Robin type boundary condition indicates that the mass flux ∂nµ is driven by differences
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in the chemical potentials, where K is a positive parameter describing the extent of mass
exchange. This model fulfills the conservation of total mass

∫

Ω
φ(t)dx+

∫

Γ
ψ(t)dS=

∫

Ω
φ(0)dx+

∫

Γ
ψ(0)dS, ∀t∈ [0,T],

and dissipation of the total free energy

d

dt
Etotal(φ,ψ)=−‖∇µ‖2

Ω−‖∇ΓµΓ‖2
Γ−K‖∂nµ‖2

Γ ≤0.

There is no need to impose any boundary conditions on ψ and µΓ, since the boundary Γ

is assumed to be a closed manifold. The authors have proved the existence, uniqueness
and regularity of weak solutions [27] and investigated long-time behavior [18]. They also
investigated the asymptotic limits as K→0+ and K→∞, establishing convergence rates
for these limits.

Here, the dynamic boundary conditions of the case K→0+ is















φ|Γ =ψ, (x,t)∈Γ×(0,T),

ψt=∆Γµ−∂nµ, (x,t)∈Γ×(0,T), (1.6)

µ=−δκ∆Γψ+
1

δ
G′(ψ)+ε∂nφ, (x,t)∈Γ×(0,T),

which was proposed by Goldstein, Miranville and Schimperna in [19]. We also use the
authors’ initials and refer it to be the boundary conditions of GMS model for convenience.
Different from the KLLM model, the chemical potential on the boundary µΓ is equal to
potential in the bulk µ in GMS model. It also required that the total mass is conserved
and the total free energy decreases with time,

∫

Ω
φ(t)dx+

∫

Γ
ψ(t)dS=

∫

Ω
φ(0)dx+

∫

Γ
ψ(0)dS, ∀t∈ [0,T].

and
d

dt
Etotal(φ,ψ)=−‖∇µ‖2

Ω−‖∇ΓµΓ‖2
Γ ≤0.

The existence, uniqueness and regularity of global weak solutions are proved, and their
long-term behaviors are studied, including the existence of a compact global attractor
and convergence to a single equilibrium as t→∞ [19].

And the dynamic boundary conditions of the case K→∞ is



























φ|Γ =ψ, (x,t)∈Γ×(0,T),

∂nµ=0, (x,t)∈Γ×(0,T),

ψt=∆ΓµΓ, (x,t)∈Γ×(0,T), (1.7)

µΓ =−δκ∆Γψ+
1

δ
G′(ψ)+ε∂nφ, (x,t)∈Γ×(0,T),
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which was proposed by Liu and Wu, called Liu-Wu model [28]. It is worth noting that
the condition ∂nµ= 0 assumes that there is no mass exchange between the bulk and the
boundary, which is different from KLLM model and GMS model. So KLLM model (1.5)
can be interpreted as an interpolation between GMS model (1.6) and Liu-Wu model (1.7),
see [27] for detailed discussions. So except for the dissipation of the total free energy and
total mass is conserved, it has the conservation of mass both in the bulk Ω and on the
boundary Γ respectively,

∫

Ω
φ(t)dx=

∫

Ω
φ(0)dx,

∫

Γ
ψ(t)dS=

∫

Γ
ψ(0)dS, ∀t∈ [0,T].

Well-posedness of problem (1.7) was first analyzed in [28] when F and G are suitable reg-
ular potentials (including the typical choice like (1.2) for F and G). They obtained the exis-
tence of global weak (and strong) solutions by finding the convergent subsequence of the
approximate solution after passing to the limit (See [28], Theorem 3.1). Well-posedness
of problem (1.7) with singular potentials was also established in [10]. The existence and
uniqueness of global weak solutions as well as strong solution were proved.

There are many effective numerical methods for Cahn-Hilliard equation. For time
discretization, the convex splitting method [21, 35], the invariant energy quadratization
(IEQ) method [38,41,46,47,49,50,52–54], the scalar auxiliary variable (SAV) method [36],
the exponential time difference (ETD) scheme [25], the Runge-Kutta scheme [22, 39], the
stabilized linearly implicit approach and adaptive BDF2 implicit time-stepping method
[31] are developed recently. Researchers have constructed different numerical schemes
by adding different stabilizers [6, 23, 30, 37]. This idea has been adopted in [13] for the
stabilized Crank-Nicolson schemes for phase field models. Wu et al. [45] proposed an-
other stabilized second-order Crank-Nicolson scheme for tumor-growth system, which
involved a new concave-convex energy splitting. These time marching schemes will lead
to a linear system, which is easier to solve than the nonlinear system generated by the
traditional convex splitting scheme with implicitly dealing with the nonlinear convex
force.

Recently, various numerical approximations for the Cahn-Hilliard equation with dy-
namic boundary conditions have been studied (see [3,7,8,15,20,40]). Specifically, a finite
element approach for the Liu-Wu model has been proposed in [17, 40], where the model
is simulated by the direct discretization based on piecewise linear finite element, and the
corresponding nonlinear system is solved by the Newton’s method. A linear first-order
energy stable numerical scheme for Liu-Wu model and KLLM model has been proposed,
which is an extension of the stable linear implicit method for the classical boundary con-
ditions [2,3]. Meng and Bao et al. [29] extended the first-order scheme to the second-order
scheme for Liu-Wu model (1.7), where the time is discretized by BDF2 scheme.

In this paper, inspired by [3], we focus on the second-order Crank-Nicolson schemes
for the above three models (1.5), (1.6) and (1.7). The stability and convergence of second-
order semi-implicit time marching schemes are studied. In order to approximate the
nonlinear term with second-order accuracy, the explicit extrapolation method is used and
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stabilizers are added to ensure energy dissipation, where the stabilizers are inspired by
the work [42] and [43] by Wang and Yu, namely, SL-CN and SL-BDF2. The main features
of our scheme include the following:

(1) We propose the stabilized Crank-Nicolson scheme for three types of Cahn-Hilliard
model with dynamic boundary conditions;

(2) For KLLM model, to the best of our knowledge, this is the first linear, second-order
stabilized semi-implicit scheme;

(3) At the discrete level, the constant coefficient linear systems are produced, then we
only need to solve the linear equation at each step, which reduces the computation cost
greatly;

(4) Discrete energy dissipation and error analysis are proved in detail for KLLM
model (1.5);

(5) For the Cahn-Hilliard model with dynamic boundary conditions, we are the first
to compare the second-order scheme with the first-order scheme, which verifies the effi-
ciency of the second-order scheme.

The rest of this article is organized as follows. We first introduce some definitions and
notations in Section 2. In Section 3, we present second-order Crank-Nicolson schemes
of KLLM model. The stability of corresponding modified energy is given after the pro-
posed scheme. Subsequently, the convergence estimate of KLLM model (1.5) is provided
in Section 4. In Section 5, we present some numerical experiments, including the accu-
racy test about time t, the droplet model with different types of dynamic boundary con-
ditions and cases with different potential functions, validating the second-order scheme
and conducting comparisons between the second-order and first-order scheme. Finally,
the concluding remarks are given in Section 6.

2 Preliminaries

Before giving the stabilized scheme and corresponding error analysis, we make some
definitions in this section which will be used in the paper.

We consider a finite time interval [0,T] and a domain Ω ⊆R
d, which is a bounded

domain with sufficient smooth boundary Γ=∂Ω and n=n(x) is the unit outward normal
vector on Γ.

We use ‖·‖m,p,Ω to denote the standard norm of the Sobolev space Wm,p(Ω) and ‖·
‖m,p,Γ to denote the standard norm of the Sobolev space Wm,p(Γ). In particular, we use
‖·‖Lp(Ω), ‖·‖Lp(Γ) to denote the norm of W0,p(Ω)= Lp(Ω) and W0,p(Γ)= Lp(Γ); ‖·‖m,Ω,

‖·‖m,Γ to denote the norm of Wm,2(Ω) = Hm(Ω) and Wm,2(Γ) = Hm(Γ); we also use ‖·‖Ω

and ‖·‖Γ to denote the norm of W0,2(Ω)= L2(Ω) and W0,2(Γ)= L2(Γ). Let (·,·)Ω, (·,·)Γ

represent the inner product of L2(Ω) and L2(Γ), respectively.
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Let τ be the time step size. For a sequence of functions f 0, f 1,··· , f N in some Hilbert
space E, we denote the sequence by { fτ} and define the following discrete norm for { fτ},

‖ fτ‖l∞(E)= max
0≤n≤N

(

‖ f n‖E

)

.

We denote by C a general constant which is independent of τ but possibly depends on
the parameters and solutions, and use f .g to say that there is a general constant C such
that f ≤Cg.

For simplicity, we denote

δtφ
n+1 :=φn+1−φn, δttφ

n+1 :=φn+1−2φn+φn−1, φ̂n+ 1
2 =

3

2
φn− 1

2
φn−1,

δtψ
n+1 :=ψn+1−ψn, δttψ

n+1 :=ψn+1−2ψn+ψn−1, ψ̂n+ 1
2 =

3

2
ψn− 1

2
ψn−1.

3 Second-order scheme for KLLM model

In this section, we propose the stabilized linear Crank-Nicolson scheme (SL-CN) for
KLLM model. The surface diffusion term is treated implicitly, while the nonlinear chem-
ical potential is approximated by a second-order explicit extrapolation formula. In par-
ticular, f = F′, g = G′ are the derivatives of nonlinear chemical potentials. We notice
that a second-order approximation to f and g at time step tn+1 are taken in the form
f ( 3

2 φn− 1
2 φn−1) and g( 3

2 ψn− 1
2 ψn−1). T is the fixed time, N is the number of time steps

and τ = T/N is the step size. Five second-order accurate regularization terms, such
as Aτ∆

(

φn+1−φn
)

, Aτ∆Γ

(

ψn+1−ψn
)

, B1

(

φn+1−2φn+φn−1
)

, B2

(

ψn+1−2ψn+ψn−1
)

and
Aτ∂n

(

φn+1−φn
)

are added to the bulk equation and boundary equation to enhance the
energy stability at a theoretical level.

Below we will establish the energy stability for the second-order scheme with an as-
sumption given in advance.

Assumption 1. Assume that the Lipschitz properties hold for the second derivative of F
with respect to φ and the second derivative of G with respect to ψ (namely, f ′ and g′). f ′

and g′ are bounded. Precisely, there exists positive constants K1, K2, L1 and L2 such that

| f ′(φ1)− f ′(φ2)|≤K1|φ1−φ2|, |g′(ψ1)−g′(ψ2)|≤K2|ψ1−ψ2|, ∀φ1,φ2,ψ1,ψ2∈R,

and

max
φ∈R

| f ′(φ)|≤ L1, max
ψ∈R

|g′(ψ)|≤ L2.
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We propose a SL-CN scheme for the KLLM model as follows,







































































































φn+1−φn

τ
=∆µn+ 1

2 , x∈Ω, (3.1)

µn+ 1
2 =−ε∆

(

φn+1+φn

2

)

+
1

ε
f

(

3

2
φn− 1

2
φn−1

)

−Aτ∆
(

φn+1−φn
)

+B1

(

φn+1−2φn+φn−1
)

, x∈Ω, (3.2)

K∂nµn+ 1
2 =µ

n+ 1
2

Γ −µn+ 1
2 , x∈Γ, (3.3)

φn+1|Γ =ψn+1, x∈Γ, (3.4)

ψn+1−ψn

τ
=∆Γµ

n+ 1
2

Γ −∂nµn+ 1
2 , x∈Γ, (3.5)

µ
n+ 1

2
Γ =−δκ∆Γ

(

ψn+1+ψn

2

)

+
1

δ
g

(

3

2
ψn− 1

2
ψn−1

)

+ε∂n

(

φn+1+φn

2

)

−Aτ∆Γ

(

ψn+1−ψn
)

+B2

(

ψn+1−2ψn+ψn−1
)

+Aτ∂n

(

φn+1−φn
)

, x∈Γ. (3.6)

The energy stability is as follows.

Theorem 3.1. Assume that Assumption 1 holds, then under the conditions

A≥max

{

L2
1

16ε2
,

L2
2

16δ2

}

, (3.7)

B1≥
L1

2ε
, B2≥

L2

2δ
, (3.8)

we have

Ẽ(φn+1,ψn+1)

≤Ẽ(φn,ψn)−
(

2
√

A− L1

2ε

)

‖δtφ
n+1‖2

Ω−
(

2
√

A− L2

2δ

)

‖δtψ
n+1‖2

Γ

−
(

B1

2
− L1

4ε

)

‖δttφ
n+1‖2

Ω−
(

B2

2
− L2

4δ

)

‖δtψ
n+1‖2

Γ−
τ

K
‖µ

n+ 1
2

Γ −µn+ 1
2 ‖2

Γ, (3.9)

where

Ẽ(φn+1,ψn+1)=Etotal(φn+1,ψn+1)+

(

L1

4ε
+

B1

2

)

‖δtφ
n+1‖2

Ω+

(

L2

4δ
+

B2

2

)

‖δtψ
n+1
Γ ‖2

Γ.

(3.10)

Proof. Pairing (3.1) with τµn+ 1
2 , we obtain

(

φn+1−φn

τ
,τµn+ 1

2

)

Ω

=τ(∆µn+ 1
2 ,µn+ 1

2 )Ω=τ(∂nµn+ 1
2 ,µn+ 1

2 )Γ−τ(∇µn+ 1
2 ,∇µn+ 1

2 )Ω.
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Pairing (3.2) with −δtφ
n+1, we obtain

(−δtφ
n+1,µn+ 1

2 )Ω

=−ε

(

∇(φn+1−φn),∇
(

φn+1+φn

2

))

Ω

+ε

(

δtφ
n+1,∂n

(

φn+1+φn

2

))

Γ

− 1

ε

(

δtφ
n+1, f

(

3

2
φn− 1

2
φn

))

Ω

+
(

δtφ
n+1,Aτ∆(φn+1−φn)

)

Ω

−B1(δtφ
n+1,φn+1−2φn+φn−1)Ω. (3.11)

Pairing (3.1) with 2
√

Aτδtφ
n+1, we obtain

2
√

Aτ‖δtφ
n+1‖2

Ω=2
√

Aτ(∆µn+ 1
2 ,δtφ

n+1)Ω

=2
√

Aτ(∂nµn+ 1
2 ,δtφ

n+1)Γ−2
√

Aτ(∇µn+ 1
2 ,∇δtφ

n+1)Ω

≤2
√

Aτ(∂nµn+ 1
2 ,δtφ

n+1)Γ+τ‖∇µn+ 1
2 ‖2

Ω+Aτ‖∇δtφ
n+1‖2

Ω.

Expanding F(φn+1) and F(φn) at φ̂n+ 1
2 yields

F(φn+1)=F(φ̂n+ 1
2 )+ f (φ̂n+ 1

2 )(φn+1−φ̂n+ 1
2 )+

1

2
f ′(ξn

1 )(φ
n+1−φ̂n+ 1

2 )2,

and

F(φn)=F(φ̂n+ 1
2 )+ f (φ̂n+ 1

2 )(φn−φ̂n+ 1
2 )+

1

2
f ′(ξn

2 )(φ
n−φ̂n+ 1

2 )2,

where ξn
1 is between φn+1 and φ̂n+ 1

2 , ξn
2 is between φn and φ̂n+ 1

2 . Subtracting the above
two equations, we obtain

F(φn+1)−F(φn)− f (φ̂n+ 1
2 )δtφ

n+1

=
1

2
f ′(ξn

1 )δtφ
n+1δttφ

n+1− 1

8
( f ′(ξn

2 )− f ′(ξn
1 ))(deltatφ

n)2

≤ L1

4
(|δtφ

n+1|2+|δttφ
n+1|2)+ L1

4
|δtφ

n|2.

Multiplying the above equation with 1
ε , then taking integration leads to

1

ε

(

F(φn+1)−F(φn)− f (φn+ 1
2 )δtφ

n+1,1
)

Ω
≤ L1

4ε
(‖δtφ

n+1‖2
Ω+‖δttφ

n+1‖2
Ω+‖δtφ

n‖2
Ω).

For the term involving B1 in equation (3.11),

−B1(δtφ
n+1,φn+1−2φn+φn−1)Ω=−B1

2
‖δtφ

n+1‖2
Ω+

B1

2
‖δtφ

n‖2
Ω− B1

2
‖δttφ

n+1‖2
Ω.
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Summing up the above equations, we obtain

ε

2
(‖∇φn+1‖2

Ω−‖∇φn‖2
Ω)+

1

ε

(

F(φn+1)−F(φn),1
)

Ω

−ε

(

δtφ
n+1,∂n

(

φn+1+φn

2

))

Γ

+
B1

2
‖δtφ

n+1‖2− B1

2
‖δtφ

n‖2

≤−2
√

A‖δtφ
n+1‖2

Ω+2
√

Aτ(∂nµn+ 1
2 ,δtφ

n+1)Γ+τ(∂nµn+ 1
2 ,µn+ 1

2 )Γ+Aτ(∂nδtφ
n+1,δtφ

n+1)Γ

+
L1

4ε
‖δtφ

n+1‖2
Ω+

L1

4ε
‖δtφ

n‖2
Ω− B1

2
‖δttφ

n‖2
Ω+

L1

4ε
‖δttφ

n‖2
Ω. (3.12)

Similarly, pairing (3.5) with τµ
n+ 1

2
Γ , we obtain

(

ψn+1−ψn

τ
,τµ

n+ 1
2

Γ

)

Γ

=−τ‖∇Γµ
n+ 1

2
Γ ‖2

Γ−τ(∂nµn+ 1
2 ,µ

n+ 1
2

Γ )Γ.

Pairing (3.6) with −δtψ
n+1, we obtain

(−δtψ
n+1,µ

n+ 1
2

Γ )Γ

=−δκ

(

∇Γ(ψ
n+1−ψn),∇Γ

(

ψn+1+ψn

2

))

− 1

δ

(

δtψ
n+1,g

(

3

2
ψn− 1

2
ψn

))

Γ

−ε

(

δtψ
n+1,∂n

(

φn+1+φn

2

))

Γ

−Aτ‖∇Γδtψ
n+1‖2

Γ

−B2(δtψ
n+1,ψn+1−2ψn+ψn−1)Γ−Aτ(∂n(φ

n+1−φn),δtψ
n+1)Γ. (3.13)

Pairing (3.5) with 2
√

Aτδtψ
n+1, we obtain

2
√

A‖δtψ
n+1‖2

Γ =2
√

Aτ(∆Γµ
n+ 1

2
Γ −∂nµn+ 1

2 ,δtψ
n+1)Γ

≤−2
√

Aτ(∂nµn+ 1
2 ,δtψ

n+1)Γ+τ‖∇Γµn+ 1
2 ‖2

Γ+Aτ‖∇Γδtψ
n+1‖2

Γ.

The treatment of the term involving g is the same as that of the term involving f . Ex-

panding G(ψn+1) and G(ψn) at ψ̂n+ 1
2 and subtracting each other yields

G(ψn+1)−G(ψn)−g(ψ̂n+1)δtψ
n+ 1

2 ≤ L2

4
(|δtψ

n+1|2+|δttψ
n+1|2)+ L2

4
|δtψ

n|2,

Multiplying the above equation with 1
δ , then taking integration leads to

1

δ
(G(ψn+1)−G(ψn)−g(ψn+ 1

2 )δtψ
n+1,1)Γ ≤

L2

4δ
(‖δtψ

n+1‖2
Γ+‖δttψ

n+1‖2
Γ+‖δtψ

n‖2
Γ).

For the term involving B2 in (3.13),

−B2(δtψ
n+1,ψn+1−2ψn+ψn−1)Γ =−B2

2
‖δtψ

n+1‖2
Γ+

B2

2
‖δtψ

n‖2
Γ−

B2

2
‖δttψ

n+1‖2
Γ.
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Summing up the above equations, we obtain

δκ

2
(‖∇Γψn+1‖2

Ω−‖∇Γψn‖2
Γ)+

1

δ

(

G(ψn+1)−G(ψn),1
)

Γ

+ε

(

δtψ
n+1,∂n

(

φn+1+φn

2

))

Γ

+
B2

2
‖δtψ

n+1‖2− B2

2
‖δtψ

n‖2

≤−2
√

A‖δtψ
n+1‖2

Γ−2
√

Aτ(∂nµn+ 1
2 ,δtψ

n+1)Γ−τ(∂nµn+ 1
2 ,µ

n+ 1
2

Γ )Γ

−Aτ(∂nδtφ
n+1,δtψ

n+1)Γ+
L2

4δ
‖δtψ

n+1‖2
Γ+

L2

4δ
‖δtψ

n‖2
Γ

− B2

2
‖δttψ

n+1‖2
Γ+

L2

4δ
‖δttψ

n‖2
Γ. (3.14)

Combining the results in (3.12) and (3.14), we have

ε

2
(‖∇φn+1‖2

Ω−‖∇φn‖2
Ω)+

1

ε

(

F(φn+1)−F(φn),1
)

Ω
+

B1

2
‖δtφ

n+1‖2
Ω− B1

2
‖δtφ

n‖2
Ω

+
δκ

2
(‖∇Γψn+1‖2

Ω−‖∇Γψn‖2
Γ)+

1

δ

(

G(ψn+1)−G(ψn),1
)

Γ

+
B2

2
‖δtψ

n+1‖2
Γ−

B2

2
‖δtψ

n‖2
Γ

≤
( L1

4ε
−2

√
A
)

‖δtφ
n+1‖2

Ω+
(L2

4δ
−2

√
A
)

‖δtψ
n+1‖2

Γ−
τ

K
‖µ

n+ 1
2

Γ
−µn+ 1

2 ‖2
Γ

+
( L1

4ε
− B1

2

)

‖δttφ
n+1‖2

Ω+
(L2

4δ
− B2

2

)

‖δttψ
n+1‖2

Γ+
L1

4ε
‖δtφ

n‖2
Ω+

L2

4δ
‖δtψ

n‖2
Γ.

Then under the conditions (3.7)-(3.8), for the modified energy (3.22), the estimate (3.9)
holds.

Remark 3.1. The GMS model and Liu-Wu model are the same as KLLM model, except for
the boundary conditions. And thus, similarly, the second-order scheme for the boundary
equations of the GMS model (1.6) reads as follows,







































φn+1|Γ =ψn+1, x∈Γ, (3.15)

ψn+1−ψn

τ
=∆Γµn+ 1

2 −∂nµn+ 1
2 , x∈Γ, (3.16)

µn+ 1
2 =−δκ∆Γ

(

ψn+1+ψn

2

)

+
1

δ
g

(

3

2
ψn− 1

2
ψn−1

)

+ε∂n

(

φn+1+φn

2

)

−Aτ∆Γ

(

ψn+1−ψn
)

+B2

(

ψn+1−2ψn+ψn−1
)

+Aτ∂n

(

φn+1−φn
)

, x∈Γ. (3.17)
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And the second-order scheme for the boundary equations of Liu-Wu model (1.7) reads,



















































φn+1|Γ =ψn+1, x∈Γ, (3.18)

∂nµn+ 1
2 =0, x∈Γ, (3.19)

ψn+1−ψn

τ
=∆Γµ

n+ 1
2

Γ , x∈Γ, (3.20)

µ
n+ 1

2
Γ

=−δκ∆Γ

(

ψn+1+ψn

2

)

+
1

δ
g

(

3

2
ψn− 1

2
ψn−1

)

+ε∂n

(

φn+1+φn

2

)

−Aτ∆Γ

(

ψn+1−ψn
)

+B2

(

ψn+1−2ψn+ψn−1
)

+Aτ∂n

(

φn+1−φn
)

, x∈Γ. (3.21)

The energy stability of the above two schemes are similar to (3.1), where

Ẽ(φn+1,ψn+1)=Etotal(φn+1,ψn+1)+

(

L1

4ε
+

B1

2

)

‖δtφ
n+1‖2

Ω+

(

L2

4δ
+

B2

2

)

‖δtψ
n+1
Γ ‖2

Γ.

(3.22)

Compared with Ẽ(φn+1,ψn+1) in (3.9), the item related to K and the difference between
chemical potential is missing. And the proof of energy stability of GMS model and Liu-
Wu model are also similar to the case of KLLM model (see Theorem 3.1).

Remark 3.2. If B1=B2=0, we can take

A≥max

{

9L2
1

16ε2
,

9L2
2

16δ2

}

to make the SL-CN scheme unconditionally stable as well. The numerical results show
that A can take much smaller values in practice than theoretical one when nonzero B
values are used.

Remark 3.3. It should be noted that term ∂nµn+ 1
2 derived by integration by parts makes

a major difference among the three kinds of boundary conditions. In KLLM model,

(∂nµn+ 1
2 ,µn+ 1

2 )Γ and (∂nµn+ 1
2 ,µ

n+ 1
2

Γ )Γ can be combined into K‖µ
n+ 1

2
Γ −µn+ 1

2 ‖2
Γ by condi-

tion (3.3), while these two terms can offset each other in GMS model and ∂nµn+ 1
2 = 0 in

Liu-Wu model. Due to the above illustrations, we have similar stability theorems for
different boundary conditions.

4 Convergence analysis

We will establish the error estimate of the semi-discretized SL-CN scheme (3.1)-(3.6) of the
KLLM model (1.5) in detail. For the convergence of scheme (3.15)-(3.17) of GMS model
(1.6) and scheme (3.18)-(3.21) of Liu-Wu model (1.7) see Remark 4.1. Here, the mathe-
matical induction is utilized and the trace theorem is applied to estimate the boundary
terms.
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Let φ(tn), ψ(tn) be the exact solution at time t= tn to equation (1.5) and φn, ψn be the
solution at time t= tn to the numerical scheme (3.1)-(3.6). Define the error functions

en
φ=φn−φ(tn), en

ψ =ψn−ψ(tn), en
µ =µn−µ(tn), en

Γ =µn
Γ−µΓ(t

n).

We assume that the exact solution (φ,ψ,µ,µΓ) of the system (1.5) is sufficiently smooth,
or possesses the following regularity

φ,φt,φtt∈L∞(0,T;Hm1(Ω));

µ∈L∞(0,T;Hm2(Ω));

µΓ ∈L∞(0,T;Hm3(Ω));

with m1,m2,m3 sufficiently large (the assumption that m1 ≥ 7
2 , m2 ≥ 3

2 , m3 ≥ 1 is suitable
for the following error analysis). Due to the trace theorem and the linearity of the trace
operator, the trace ψ possesses the regularity

ψ,ψt,ψtt∈L∞(0,T;Hm1− 1
2 (Γ)).

A careful consistency analysis implies that











































































































































φ(tn+1)−φ(tn)

τ
=∆µ(tn+ 1

2 )+Rn+1
φ , x∈Ω, (4.1)

µn+ 1
2 =−ε∆

(

φ(tn+1)+φ(tn)

2

)

+
1

ε
f

(

3

2
φ(tn)− 1

2
φ(tn−1)

)

−Aτ∆
(

φ(tn+1)−φ(tn)
)

+B1

(

φ(tn+1)−2φ(tn)+φ(tn−1)
)

+R
n+ 1

2
µ , x∈Ω, (4.2)

K∂nµ(tn+ 1
2 )=µΓ(t

n+ 1
2 )−µ(tn+ 1

2 ), x∈Γ, (4.3)

φ(tn+1)|Γ =ψ(tn+1), x∈Γ, (4.4)

ψ(tn+1)−ψ(tn)

τ
=∆ΓµΓ(t

n+ 1
2 )−∂nµ(tn+ 1

2 )+Rn+1
ψ , x∈Γ, (4.5)

µΓ(t
n+1)=−δκ∆Γ

(

ψ(tn+1)+ψ(tn)

2

)

+
1

δ
g

(

3

2
ψ(tn)− 1

2
ψ(tn−1)

)

+ε∂n

(

φ(tn+1)+φ(tn)

2

)

−Aτ∆Γ

(

ψ(tn+1)−ψ(tn)
)

+B2

(

ψ(tn+1)−2ψ(tn)+ψ(tn−1)
)

+Aτ∂n

(

φ(tn+1)−φ(tn)
)

+R
n+ 1

2
Γ , x∈Γ, (4.6)
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where the residual terms are

R
n+ 1

2
φ =

φ(tn+1)−φ(tn)

τ
−φt(t

n+ 1
2 ),

R
n+ 1

2
ψ =

ψ(tn+1)−ψ(tn)

τ
−ψt(t

n+ 1
2 ),

R
n+ 1

2
µ = ε∆

(

φ(tn+1)+φ(tn)

2

)

−ε∆φ(tn+ 1
2 )+

1

ε
f
(

φ(tn+ 1
2 )
)

− 1

ε
f

(

3

2
φ(tn)− 1

2
φ(tn−1)

)

+Aτ∆
(

φ(tn+1)−φ(tn)
)

−B1

(

φ(tn+1)−2φ(tn)+φ(tn−1)
)

,

R
n+ 1

2
Γ =δκ∆Γ

(

ψ(tn+1)+ψ(tn)

2

)

−δκ∆Γψ(tn+ 1
2 )

+
1

δ
g
(

ψ(tn+ 1
2 )
)

− 1

δ
g

(

3

2
ψ(tn)− 1

2
ψ(tn−1)

)

+ε∂nφ(tn+ 1
2 )−ε∂n

(

φ(tn+1)+φ(tn)

2

)

+Aτ∆
(

ψ(tn+1)−ψ(tn)
)

−B2

(

ψ(tn+1)−2ψ(tn)+ψ(tn−1)
)

−Aτ∂n

(

φ(tn+1)−φ(tn)
)

.

Using the Taylor expansion and regularity of φ and ψ, it’s easy to prove the following
Lemma 4.1.

Lemma 4.1. The truncation errors satisfy

‖Rφ,τ‖l∞(H1(Ω))+‖Rµ,τ‖l∞(H1(Ω)).τ2,

‖Rψ,τ‖l∞(H1(Γ))+‖RΓ,τ‖l∞(H1(Γ)).τ2.

Thus we can establish the estimates for the scheme (3.1)-(3.6) as follows.

Theorem 4.1. Suppose that the exact solutions (φ,ψ,µ,µΓ) are sufficiently smooth and Assump-
tion 1 holds. Then ∀τ≤τ0, we have the following error estimate for the SL-CN scheme (3.1)-(3.6),

‖eφ,τ‖l∞(H1(Ω))+‖eψ,τ‖l∞(H1(Γ)).τ2.

Proof. By subtracting (3.1)-(3.6) from the corresponding scheme (4.1)-(4.6) we derive the
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error equations as follows,











































































































































en+1
φ −en

φ

τ
=∆e

n+ 1
2

µ +R
n+ 1

2
φ , x∈Ω, (4.7)

e
n+ 1

2
µ =−ε∆

(

en+1
φ +en

φ

2

)

+
1

ε

(

f

(

3

2
φ(tn)− 1

2
φ(tn−1)

)

− f

(

3

2
φn− 1

2
φn−1

))

−Aτ∆(en+1
φ −en

φ)+B1(e
n+1
φ −2en

φ+en−1
φ )+R

n+ 1
2

µ , x∈Ω, (4.8)

K∂ne
n+ 1

2
µ = e

n+ 1
2

Γ −e
n+ 1

2
µ , x∈Γ, (4.9)

en+1
φ |Γ = en+1

ψ , x∈Γ, (4.10)

en+1
ψ −en

ψ

τ
=∆Γe

n+ 1
2

Γ −∂ne
n+ 1

2
µ +R

n+ 1
2

ψ , x∈Γ, (4.11)

e
n+ 1

2
Γ =−δκ∆Γ

(

en+1
ψ +en

ψ

2

)

+
1

δ

(

g

(

3

2
ψ(tn+1)− 1

2
ψ(tn)

)

−g

(

3

2
ψn− 1

2
ψn−1

))

+ε∂n

(

en+1
ψ +en

ψ

2

)

−Aτ∆Γ(e
n+1
ψ −en

ψ)

+B2(e
n+1
ψ −2en

ψ+en−1
ψ )+Aτ∂n(e

n+1
φ −en

φ)+R
n+ 1

2
Γ , x∈Γ. (4.12)

We use the mathematical induction to prove this theorem. When m=0, we have e0
φ=e0

ψ=

∇e0
φ =∇Γe0

ψ=0. Obviously, Theorem 4.1 holds. Assuming that Theorem 4.1 holds for all

n≤m, we need to show that Theorem 4.1 holds for em+1
φ and em+1

ψ .

For each n≤m, pairing (4.7) with τe
n+ 1

2
µ , we have

(en+1
φ −en

φ,e
n+ 1

2
µ )Ω+τ‖∇e

n+ 1
2

µ ‖2
Ω =τ(∂ne

n+ 1
2

µ ,e
n+ 1

2
µ )Γ+τ(R

n+ 1
2

φ ,e
n+ 1

2
µ )Ω.

Pairing (4.7) with ετen+1
φ ,

ε

2
(‖en+1

φ ‖2
Ω−‖en

φ‖2
Ω+‖en+1

φ −en+1
φ ‖2

Ω)

=−ετ(∇e
n+ 1

2
µ ,∇en+1

φ )Ω+ετ(∂ne
n+ 1

2
µ ,en+1

φ )Γ+ετ(R
n+ 1

2
φ ,en+1

φ )Ω.

By taking the L2 inner product of (4.8) with −(en+1
φ −en+1

φ ) in Ω, we have

−(e
n+ 1

2
µ ,en+1

φ −en
φ)Ω=− ε

2
(‖∇en+1

φ ‖2
Ω−‖∇en

φ‖2
Ω)+ε

(

∂n

(

en+1
φ +en

φ

2

)

,en+1
φ −en

φ

)

Γ

− 1

ε

(

f

(

3

2
φ(tn)− 1

2
φ(tn−1)

)

− f

(

3

2
φn− 1

2
φn−1

)

,en+1
φ −en

φ

)

Ω
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+Aτ(∂n(e
n+1
φ −en

φ),e
n+1
φ −en

φ)Γ−Aτ(∇(en+1
φ −en

φ),∇(en+1
φ −en

φ))Ω

−B1(e
n+1
φ −2en

φ+en−1
φ ,en+1

φ −en
φ)Ω−(R

n+ 1
2

µ ,en+1
φ −en

φ)Ω.

Combining the equations above, we derive

ε

2
(‖∇en+1

φ ‖2
Ω−‖∇en

φ‖2
Ω)+

ε

2
(‖en+1

φ ‖2
Ω−‖en

φ‖2
Ω+‖en+1

φ −en+1
φ ‖2

Ω)

+Aτ‖∇(en+1
φ −en

φ)‖2
Ω+τ‖∇e

n+ 1
2

µ ‖2
Ω

+
B1

2
(‖en+1

φ −en
φ‖2

Ω−‖en
φ−en−1

φ ‖2
Ω+‖en+1

φ −2en
φ−en−1

φ ‖2
Ω)

=τ(∂ne
n+ 1

2
µ ,e

n+ 1
2

µ )Γ+τ(R
n+ 1

2
φ ,e

n+ 1
2

µ )Ω−ετ(∇e
n+ 1

2
µ ,∇en+1

φ )Ω

+ετ(∂ne
n+ 1

2
µ ,en+1

φ )Γ+ετ(R
n+ 1

2
φ ,en+1

φ )Ω+ε

(

∂n

(

en+1
φ +en

φ

2

)

,en+1
φ −en

φ

)

Γ

− 1

ε

(

f

(

3

2
φ(tn)− 1

2
φ(tn−1)

)

− f

(

3

2
φn− 1

2
φn−1

)

,en+1
φ −en

φ

)

Ω

−(R
n+ 1

2
µ ,en+1

φ −en
φ)Ω+Aτ(∂n(e

n+1
φ −en

φ),e
n+1
φ −en

φ)Γ. (4.13)

For the boundary term, taking the L2 inner product of (4.11) with τe
n+ 1

2
Γ , together with

the L2 inner product of (4.11) with ετen+1
ψ and adding the L2 inner product of (4.12) with

−(en+1
ψ −en

ψ) on Γ, we have

δκ

2
(‖∇Γen+1

ψ ‖2
Γ−‖∇en

ψ‖2
Γ)+

ε

2
(‖en+1

ψ ‖2
Γ−‖en

ψ‖2
Γ+‖en+1

ψ −en+1
ψ ‖2

Γ)

+Aτ‖∇Γ(e
n+1
ψ −en

ψ)‖2
Γ+τ‖∇Γe

n+ 1
2

Γ
‖2

Γ+τ(∂ne
n+ 1

2
µ ,e

n+ 1
2

Γ
)Γ

+
B2

2
(‖en+1

ψ −en
ψ‖2

Γ−‖en
ψ−en−1

ψ ‖2
Γ+‖en+1

ψ −2en
ψ−en−1

ψ ‖2
Γ)

=τ(R
n+ 1

2
ψ ,e

n+ 1
2

Γ )Γ−ετ(∇Γe
n+ 1

2
Γ ,∇Γen+1

ψ )Γ

−ετ(∂ne
n+ 1

2
µ ,en+1

ψ )Γ+ετ(R
n+ 1

2
ψ ,en+1

ψ )Γ−ε

(

∂n

(

en+1
φ +en

φ

2

)

,en+1
ψ −en

ψ

)

Γ

− 1

δ

(

g

(

3

2
ψ(tn)− 1

2
ψ(tn−1)

)

−g

(

3

2
ψn− 1

2
ψn−1

)

,en+1
ψ −en

ψ

)

Γ

−(R
n+ 1

2
Γ ,en+1

ψ −en
ψ)Γ−Aτ(∂n(e

n+1
φ −en

φ),e
n+1
ψ −en

ψ)Γ. (4.14)
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By putting (4.13) and (4.14) together, we derive

ε

2
(‖∇en+1

φ ‖2
Ω−‖∇en

φ‖2
Ω)+

ε

2
(‖en+1

φ ‖2
Ω−‖en

φ‖2
Ω+‖en+1

φ −en+1
φ ‖2

Ω)

+Aτ(‖∇(en+1
φ −en

φ)‖2
Ω+‖∇Γ(e

n+1
ψ −en

ψ)‖2
Γ)

+
B1

2
(‖en+1

φ −en
φ‖2

Ω−‖en
φ−en−1

φ ‖2
Ω+‖en+1

φ −2en
φ−en−1

φ ‖2
Ω)

+
δκ

2
(‖∇Γen+1

ψ ‖2
Γ−‖∇en

ψ‖2
Γ)+

ε

2
(‖en+1

ψ ‖2
Γ−‖en

ψ‖2
Γ+‖en+1

ψ −en+1
ψ ‖2

Γ)

+
B2

2
(‖en+1

ψ −en
ψ‖2

Γ−‖en
ψ−en−1

ψ ‖2
Γ+‖en+1

ψ −2en
ψ−en−1

ψ ‖2
Γ)

+τ‖∇e
n+ 1

2
µ ‖2

Ω+τ‖∇Γe
n+ 1

2
Γ

‖2
Γ+Kτ‖∂ne

n+ 1
2

µ ‖2
Γ

=ετ(R
n+ 1

2
φ ,en+1

φ )Ω+ετ(R
n+ 1

2
ψ ,en+1

ψ )Γ (:= termM1)

+τ(R
n+ 1

2
φ ,e

n+ 1
2

µ )Ω+τ(R
n+ 1

2
ψ ,e

n+ 1
2

Γ )Γ (:= termM2)

−ετ(∇e
n+ 1

2
µ ,∇en+1

φ )Ω−ετ(∇Γe
n+ 1

2
Γ ,∇Γen+1

ψ )Γ (:= termM3)

− 1

ε

(

f

(

3

2
φ(tn)− 1

2
φ(tn−1)

)

− f

(

3

2
φn− 1

2
φn−1

)

,en+1
φ −en

φ

)

Ω

−(R
n+ 1

2
µ ,en+1

φ −en
φ)Ω (:= termM4)

− 1

δ

(

g

(

3

2
ψ(tn)− 1

2
ψ(tn−1)

)

−g

(

3

2
ψn− 1

2
ψn−1

)

,en+1
ψ −en

ψ

)

Γ

−(R
n+ 1

2
Γ ,en+1

ψ −en
ψ)Γ (:= termM5). (4.15)

The right hand side of (4.15) can be estimated term by term as below.

For M1, we have

ετ(R
n+ 1

2
φ ,en+1

φ )Ω+ετ(R
n+ 1

2
ψ ,en+1

ψ )Γ

≤ετ‖R
n+ 1

2
φ ‖Ω‖en+1

φ ‖Ω+ετ‖R
n+ 1

2
ψ ‖Γ‖en+1

ψ ‖Γ

≤ ετ

2
‖en+1

φ ‖2
Ω+

ετ

2
‖en+1

ψ ‖2
Γ+C1ετ5, (4.16)

where C1 is a constant independent of τ and ε. And the estimates for the truncation terms

R
n+ 1

2
φ and R

n+ 1
2

ψ are used in (4.16).

We define

Hn,n−1= f

(

3

2
φ(tn)− 1

2
φ(tn−1)

)

− f

(

3

2
φn− 1

2
φn−1

)
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for simplicity. It can be rewritten as

Hn,n−1= f (φ̂(tn))− f (φ̂n)

=(φ̂(tn)−φ̂n)
∫ 1

0
f ′(sφ̂(tn)+(1−s)φ̂n)ds

=

(

3

2
en

φ−
1

2
en−1

φ

)

∫ 1

0
f ′(sφ̂(tn)+(1−s)φ̂n)ds,

where

φ̂(tn)=
3

2
φ(tn)− 1

2
φ(tn−1), φ̂n =

3

2
φn− 1

2
φn−1.

Since f ′ is bounded, we have

‖Hn,n−1‖Ω.‖en
φ‖Ω+‖en−1

φ ‖Ω.

By taking the gradient of Hn,n−1, we have

∇Hn,n−1= f ′(φ̂(tn))∇φ̂(tn)− f ′(φ̂n)∇φ̂n

=
(

f ′(φ̂(tn))− f ′(φ̂n)
)

∇φ̂(tn)+ f ′(φ̂n)∇(φ̂(tn)−φ̂n).

Since f ′ is bounded, Lipschitz continuous and φ∈L∞(0,T;Hm1), we have

‖∇Hn,n−1‖Ω.‖φ̂(tn)−φ̂n‖Ω+‖∇(φ̂(tn)−φ̂n)‖Ω

.‖en
φ‖Ω+‖en−1

φ ‖Ω+‖∇en
φ‖Ω+‖∇en−1

φ ‖Ω.

Similarly, we define

H̃n,n−1= g

(

3

2
ψ(tn)− 1

2
ψ(tn−1)

)

−g

(

3

2
ψn− 1

2
ψn−1

)

.

Since g′ is bounded, Lipschitz continuous and ψ∈L∞(0,T;Hm1− 1
2 ), we have

‖H̃n,n−1‖Γ.‖en
ψ‖Γ+‖en−1

ψ ‖Γ,

and

‖∇Γ H̃n,n−1‖Γ .‖en
ψ‖Γ+‖en−1

ψ ‖Γ+‖∇Γen
ψ‖Γ+‖∇Γen−1

ψ ‖Γ.
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For the first term of M2 in (4.15), we have

τ(R
n+ 1

2
φ ,e

n+ 1
2

µ )Ω

≤ ετ

2
‖∇R

n+ 1
2

φ ‖Ω‖∇(en+1
φ +en

φ)‖Ω+
τ

ε
‖Hn,n−1‖Ω‖R

n+ 1
2

φ ‖Ω

+Aτ2‖∇R
n+ 1

2
φ ‖Ω‖∇(en+1

φ −en
φ)‖Ω

+B1τ‖R
n+ 1

2
φ ‖Ω‖en+1

φ −2en
φ+en−1

φ ‖Ω+τ‖R
n+ 1

2
φ ‖Ω‖R

n+ 1
2

µ ‖Ω

≤ ετ

2
‖∇R

n+ 1
2

φ ‖2
Ω+

ετ

4
‖∇en+1

φ ‖2
Ω+

ετ

4
‖∇en

φ‖2
Ω+

τ

2ε
‖Hn,n−1‖2

Ω

+
τ

2ε
‖R

n+ 1
2

φ ‖2
Ω+

Aτ2

2
‖∇R

n+ 1
2

φ ‖2
Ω+

Aτ2

2
‖∇(en+1

φ −en
φ)‖2

Ω+B1τ‖R
n+ 1

2
φ ‖2

Ω

+
B1τ

2
‖en+1

φ −en
φ‖2

Ω+
B1τ

2
‖en

φ−en−1
φ ‖2

Ω+
τ

2
‖R

n+ 1
2

φ ‖2
Ω+

τ

2
‖R

n+ 1
2

µ ‖2
Ω. (4.17)

For the second term of M2, similar to the above estimate for the first term, we have

τ(R
n+ 1

2
ψ ,e

n+ 1
2

Γ )Γ

≤δκτ

2
‖∇ΓR

n+ 1
2

ψ ‖2
Γ+

δκτ

4
‖∇Γen+1

ψ ‖2
Γ+

δκτ

4
‖∇Γen

ψ‖Γ

+
τ

2δ
‖H̃n,n−1‖2

Γ+
τ

2δ
‖R

n+ 1
2

ψ ‖2
Γ+

Aτ2

2
‖∇ΓR

n+ 1
2

ψ ‖2
Γ

+
Aτ2

2
‖∇Γ(e

n+1
ψ −en

ψ)‖2
Γ+B2τ‖R

n+ 1
2

ψ ‖2
Γ+

B2τ

2
‖en+1

ψ −en
ψ‖2

Γ+
B2τ

2
‖en

ψ−en−1
ψ ‖2

Γ

+
τ

2
‖R

n+ 1
2

ψ ‖2
Γ+

τ

2
‖R

n+ 1
2

Γ ‖2
Γ. (4.18)

Combining (4.17) and (4.18), we have

τ(R
n+ 1

2
φ ,e

n+ 1
2

µ )Ω+τ(R
n+ 1

2
ψ ,e

n+ 1
2

Γ )Γ

≤C5τ5+
ετ

4
‖∇en+1

φ ‖2
Ω+

Aτ2

2
‖∇(en+1

φ −en
φ)‖2

Ω+
δκτ

4
‖∇Γen+1

ψ ‖2
Γ+

Aτ2

2
‖∇Γ(e

n+1
ψ −en

ψ)‖2
Γ

+
B1τ

2
‖en+1

φ −en
φ‖2

Ω+
B2τ

2
‖en+1

ψ −en
ψ‖2

Γ+o(τ6), (4.19)

where Ci(i = 2,3,4,5) are constants independent of τ. We use the estimates for Hn,n−1,

H̃n,n−1 and the truncation terms R
n+ 1

2
φ , R

n+ 1
2

ψ , R
n+ 1

2
µ and R

n+ 1
2

Γ in Lemma 4.1. We also use

the assumption that ‖en
φ‖Ω,‖∇en

φ‖Ω,‖en
ψ‖Γ,‖∇Γen

ψ‖Γ satisfy the Theorem 4.1. The fact that

τ2 ≤ τ, o(τ6) is bounded and R
n+ 1

2
φ |Γ =γ(R

n+ 1
2

φ )= R
n+ 1

2
ψ are also applied, where γ is the

trace operator.
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The term M3 in (4.15) is estimated as follows.

−ετ(∇e
n+ 1

2
µ ,∇en+1

φ )Ω−ετ(∇Γe
n+ 1

2
Γ ,∇Γen+1

ψ )Γ

≤2ε2τ‖∇en+1
φ ‖2

Ω+
τ

8
‖∇e

n+ 1
2

µ ‖2
Ω+2ε2τ‖∇Γen+1

ψ ‖2
Γ+

τ

8
‖∇Γe

n+ 1
2

Γ
‖2

Γ. (4.20)

For the first term of M4 in (4.15), we have

− 1

ε

(

f

(

3

2
φ(tn)− 1

2
φ(tn−1)

)

− f

(

3

2
φn− 1

2
φn−1

)

,en+1
φ −en

φ

)

Ω

=− τ

ε

(

Hn,n−1,
en+1

φ −en
φ

τ

)

Ω

=−τ

ε
(Hn,n−1,∆e

n+ 1
2

µ +R
n+ 1

2
φ )Ω

≤τ

ε
‖∇Hn,n−1‖Ω‖∇e

n+ 1
2

µ ‖Ω+
τ

ε
‖Hn,n−1‖Γ‖∂ne

n+ 1
2

µ ‖Γ+
τ

ε
‖Hn,n−1‖Ω‖R

n+ 1
2

φ ‖Ω.

By applying the trace theorem, we have

‖Hn,n−1‖Γ =‖γHn,n−1‖Γ.‖Hn,n−1‖H1(Ω).‖Hn,n−1‖Ω+‖∇Hn,n−1‖Ω

.‖en
φ‖Ω+‖en−1

φ ‖Ω+‖∇en
φ‖Ω+‖∇en−1

φ ‖Ω,

where we use the assumption that en
φ satisfies the Theorem 4.1. So we obtain

− 1

ε
(Hn,n−1,en+1

φ −en
φ)Ω

≤C6τ(‖en
φ‖Ω+‖en−1

φ ‖Ω+‖∇en
φ‖Ω+‖∇en−1

φ ‖Ω)‖∇e
n+ 1

2
µ ‖Ω

+C7τ(‖en
φ‖Ω+‖en−1

φ ‖Ω+‖∇en
φ‖Ω+‖∇en−1

φ ‖Ω)‖∂ne
n+ 1

2
µ ‖Ω

+C8τ(‖en
φ‖Ω+‖en−1

φ ‖Ω)‖R
n+ 1

2
φ ‖Ω

≤C9τ5+
τ

4
‖∇e

n+ 1
2

µ ‖2
Ω+

Kτ

16
‖∂ne

n+ 1
2

µ ‖2
Γ. (4.21)

Here, Ci(i=6,7,8,9) are constants independent of τ and we use the estimates for Hn,n−1

and Rn+1
φ .

For the second term of M4, we have

−(R
n+ 1

2
µ ,en+1

φ −en
φ)Ω=−τ

(

R
n+ 1

2
µ ,

en+1
φ −en

φ

τ

)

Ω

=−τ(R
n+ 1

2
µ ,∆e

n+ 1
2

µ +R
n+ 1

2
φ )Ω

=τ(∇R
n+ 1

2
µ ,∇e

n+ 1
2

µ )Ω−τ(R
n+ 1

2
µ ,∂ne

n+ 1
2

µ )Γ−τ(R
n+ 1

2
µ ,R

n+ 1
2

φ )Ω

≤2τ‖∇R
n+ 1

2
µ ‖2

Ω+
τ

8
‖∇e

n+ 1
2

µ ‖2
Ω+

8τ

K
‖R

n+ 1
2

µ ‖2
Γ+

Kτ

32
‖∂ne

n+ 1
2

µ ‖2
Γ+

τ

2
‖R

n+ 1
2

µ ‖2
Ω+

τ

2
‖R

n+ 1
2

φ ‖2
Ω

≤C10τ5+
τ

8
‖∇e

n+ 1
2

µ ‖2
Ω+

Kτ

32
‖∂ne

n+ 1
2

µ ‖2
Γ, (4.22)
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where C10 is a constant independent of τ. Here, we apply the trace theorem that

‖R
n+ 1

2
µ ‖Γ =‖γR

n+ 1
2

µ ‖Γ.‖R
n+ 1

2
µ ‖H1(Ω).‖R

n+ 1
2

µ ‖Ω+‖∇R
n+ 1

2
µ ‖Ω.τ2.

and use the estimates for R
n+ 1

2
µ and R

n+ 1
2

φ .

Similarly, for the first term of M5 in (4.15), we obtain

− 1

δ

(

g

(

3

2
ψ(tn)− 1

2
ψ(tn−1)

)

−g

(

3

2
ψn− 1

2
ψn−1

)

,en+1
ψ −en

ψ

)

Γ

≤C11τ5+
τ

4
‖∇Γe

n+ 1
2

Γ ‖2
Γ+

Kτ

32
‖∂ne

n+ 1
2

µ ‖2
Γ, (4.23)

where C11 is a constant independent of τ. For the second term in M5, we have

−(R
n+ 1

2
Γ ,en+1

ψ −en
ψ)Γ≤C12τ5+

τ

8
‖∇Γe

n+ 1
2

Γ ‖2
Γ+

Kτ

32
‖∂ne

n+ 1
2

µ ‖2
Γ, (4.24)

where C12 is a constant independent of τ.

Combining the equations (4.15)-(4.24) leads to

ε

2
(‖∇en+1

φ ‖2
Ω−‖∇en

φ‖2
Ω)+

ε

2
(‖en+1

φ ‖2
Ω−‖en

φ‖2
Ω+‖en+1

φ −en
φ‖2

Ω)

+(Aτ− Aτ2

2
)(‖∇en+1

φ −∇en
φ‖2

Ω+‖∇Γen+1
ψ −∇Γen

ψ‖2
Γ)

+
B1

2
(‖en+1

φ −en
φ‖2

Ω−‖en
φ−en−1

φ ‖2
Ω+‖en+1

φ −2en
φ−en−1

φ ‖2
Ω)

+
δκ

2
(‖∇Γen+1

ψ ‖2
Γ−‖∇Γen

ψ‖2
Γ)+

ε

2
(‖en+1

ψ ‖2
Γ−‖en

ψ‖2
Γ+‖en+1

ψ −en+1
ψ ‖2

Γ)

+
B2

2
(‖en+1

ψ −en
ψ‖2

Γ−‖en
ψ−en−1

ψ ‖2
Γ+‖en+1

ψ −2en
ψ−en−1

ψ ‖2
Γ)

+
τ

2
‖∇e

n+ 1
2

µ ‖2
Ω+

τ

2
‖∇Γe

n+ 1
2

Γ ‖2
Γ+

27Kτ

36
‖∂ne

n+ 1
2

µ ‖2
Γ

≤C13τ5+C14τ(‖∇en+1
φ ‖2

Ω+‖en+1
φ ‖2

Ω+‖en+1
φ −en

φ‖2
Ω

+‖∇Γen+1
ψ ‖2

Γ+‖en+1
ψ ‖2

Γ+‖en+1
ψ −en

ψ‖2
Γ). (4.25)

Here, C13 is a constant independent of τ and the constant C14=max{ ε
4+2ε2, δκ

4 +2ε2, B1
2 , B2

2 },

which is also independent of τ. Due to τ ≤ 1, we have Aτ− Aτ2

2 ≥ 0. By controlling the

coefficients of Cauchy inequality, we can set the coefficient of term ‖∂ne
n+ 1

2
µ ‖2

Γ to be posi-
tive.
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Summing (4.25) together for n=0 to m, we derive

ε

2
‖∇em+1

φ ‖2
Ω+

ε

2
‖em+1

φ ‖2
Ω+

δκ

2
‖∇Γem+1

ψ ‖2
Γ+

ε

2
‖em+1

ψ ‖2
Γ

+
B1

2
‖em+1

φ −em
φ ‖2

Ω+
B2

2
‖em+1

ψ −em
ψ ‖2

Γ

+
m

∑
n=0

(

ε

2
‖en+1

φ −en
φ‖2

Ω+
ε

2
‖en+1

ψ −en
ψ‖2

Γ+
B1

2
‖en+1

φ −2en
φ−en−1

φ ‖2
Ω+

B2

2
‖en+1

ψ −2en
ψ−en−1

ψ ‖2
Γ

+
(

Aτ− Aτ2

2

)

(‖∇en+1
φ −∇en

φ‖2
Ω+‖∇Γen+1

ψ −∇Γen
ψ‖2

Γ)+
τ

2
‖∇e

n+ 1
2

µ ‖2
Ω

+
τ

2
‖∇Γe

n+ 1
2

Γ ‖2
Γ+

27Kτ

36
‖∂ne

n+ 1
2

µ ‖2
Γ

)

≤C13(m+1)τ5+C14τ
m

∑
n=0

(‖∇en+1
φ ‖2

Ω+‖en+1
φ ‖2

Ω

+‖∇Γen+1
ψ ‖2

Γ+‖en+1
ψ ‖2

Γ+‖en+1
φ −en

φ‖2
Ω+‖en+1

ψ −en
ψ‖2

Γ).

Denote

ω=min
{ ε

2
,
δκ

2
,
B1

2
,
B2

2

}

, (4.26)

Im =
ε

2
‖∇em+1

φ ‖2
Ω+

ε

2
‖em+1

φ ‖2
Ω+

δκ

2
‖∇Γen+1

ψ ‖2
Γ+

ε

2
‖em+1

ψ ‖2
Γ

+
B1

2
‖em+1

φ −em
φ ‖2

Ω+
B2

2
‖em+1

ψ −em
ψ ‖2

Γ, (4.27)

Sm =
m

∑
n=0

(

ε

2
‖en+1

φ −en
φ‖2

Ω+
ε

2
‖en+1

ψ −en
ψ‖2

Γ+
B1

2
‖en+1

φ −2en
φ−en−1

φ ‖2
Ω

+
B2

2
‖en+1

ψ −2en
ψ−en−1

ψ ‖2
Γ+
(

Aτ− Aτ2

2

)

(‖∇en+1
φ −∇en

φ‖2
Ω+‖∇Γen+1

ψ −∇Γen
ψ‖2

Γ)

+
τ

2
‖∇e

n+ 1
2

µ ‖2
Ω+

τ

2
‖∇Γe

n+ 1
2

Γ
‖2

Γ+
27Kτ

36
‖∂ne

n+ 1
2

µ ‖2
Γ

)

.

Then we have

Im+Sm ≤C13(m+1)τ5+C14τ
m

∑
n=0

(

‖∇en+1
φ ‖2

Ω+‖en+1
φ ‖2

Ω+‖∇Γen+1
ψ ‖2

Γ+‖en+1
ψ ‖2

Γ

+‖en+1
φ −en

φ‖2
Ω+‖en+1

ψ −en
ψ‖2

Γ

)
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=C13Tτ4+
C14

ω
τ

m

∑
n=0

ω

(

‖∇en+1
φ ‖2

Ω+‖en+1
φ ‖2

Ω+‖∇Γen+1
ψ ‖2

Γ+‖en+1
ψ ‖2

Γ

+‖en+1
φ −en

φ‖2
Ω+‖en+1

ψ −en
ψ‖2

Γ

)

≤C13Tτ4+C15τ
m

∑
n=0

In, (4.28)

where C15 = C14/ω is a constant independent of τ. By using the discrete Gronwall in-
equality, there exists some constants c̃0, which is independent of τ, and τ0 =1/C18, such
that, when τ<τ0,

Im+Sm≤ c̃0τ2. (4.29)

This completes the proof.

Remark 4.1. If we set the parameters as

ε=δ=0.02, κ=1, B1=B2=50,

then C17 =
B1
2 =25, ω= ε

2 =0.01, so we have C18 =2500 and τ0 =4×10−4. Namely, when
τ<4×10−4, the numerical results satisfy the second-order accuracy. Therefore, the error
estimation can be applied in practice.

Remark 4.2. The error analysis of scheme (3.15)-(3.17) of GMS model (1.6) and scheme
(3.18)-(3.21) of Liu-Wu model (1.7) are similar, and the proofs in detail are similar to the
process of KLLM model Theorem 4.1.

Remark 4.3. The convergence analysis of the second-order scheme (3.1)-(3.6) of the KLLM
model is inspired by the analysis of the first-order scheme in [3]. One of the differ-
ences is that we use the explicit extrapolation method for the nonlinear term f and
g when proposing the second-order scheme. So we need the values of two time lay-
ers tn and tn−1 when estimating Hn,n−1 in the proof, while in the first-order scheme,
one only needs one time layer tn. Another difference is that there exist two additional

terms (Aτ− Aτ2

2 )(‖∇en+1
φ −∇en

φ‖2
Ω+‖∇Γen+1

ψ −∇Γen
ψ‖2

Γ) in the proof, since the stabilizers

−Aτ∆
(

φn+1−φn
)

and −Aτ∆Γ

(

ψn+1−ψn
)

are added in the second-order scheme to en-
sure the energy stability. However, we can guarantee that these terms are positive owing
to τ≤1.

5 Numerical experiments

In this section, we present some numerical experiments of the Cahn-Hilliard model with
different dynamic boundary conditions in two dimensions. For time discretization, we
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use the Crank-Nicolson scheme discussed in the previous sections. For spatial opera-
tors, we adopt the second-order central finite difference method to discretize them on a
uniform spatial grid. For such a linear scheme, we use the generalized minimum resid-
ual method as the linear solver. We conduct the experiments on the rectangular domain
[0,1]2.

Example 1: Accuracy test

In this section, we first present the numerical accuracy tests of the scheme. The conver-
gence rates of the proposed schemes (3.15)-(3.17), (3.18)-(3.21) and (3.1)-(3.6) are tested to
support our error analysis, respectively. Let Ω be the unit square, the spatial step size
h=1/128 and set the final time T=4. The time step τ=0.08,0.04,0.025,0.0125,0.01,0.005.
The parameters are set as ε=δ=0.02, κ=0.02, A=35, B1=B2=45 for GMS model, A=68,
B1=B2=120 for Liu-Wu model and K=100, A=110, B1=130, B2=200 for KLLM model.
The initial data is taken as the piecewise constant setting:

φ0(x,y)=

{

0, x∈Ω,

1, x∈Γ.
(5.1)

We choose F and G to be the modified double-well potential as

F(x)=G(x)=











(x−1)2, x>1,
1
4 (x2−1)2, −1≤ x≤1,

(x+1)2, x<−1.

Therefore, the second derivative of F with respect to φ and the second derivative of G
with respect to ψ are bounded

max
φ∈R

|F′′(φ)|=max
ψ∈R

|G′′(ψ)|≤2.

The errors are calculated as the differences between the solution of the coarse time step
and that of the reference time step τ= 2.5×10−4. In Fig. 1, we plot the sum of L2 errors
of φ and ψ between the numerical solution and the reference solution at final time with
different time step sizes. The result shows clearly that the slope of fitting line is 2.131 for
scheme (3.15)-(3.17) of GMS model, 2.044 for scheme (3.18)-(3.21) of Liu-Wu model and
2.157 for scheme (3.1)-(3.6) of KLLM model, which in turn verifies the convergence rates
of the numerical schemes are all asymptotically at least second-order temporally for φ
and ψ, which is consistent with our numerical analysis in Section 4.

Example 2: Shape deformation of a droplet

Here, we consider the shape deformation of a droplet. Initially, as the example in refer-
ence [3], a square droplet is placed in the area [0,1]2 centered at (0.5,0.25) and the length
of each side is 0.5 (as shown in Fig. 2). The internal phase of the droplet is set to 1 and
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Figure 1: The numerical errors ‖eφ‖Ω+‖eψ‖Γ at T = 4 with different boundary conditions. Left: Boundary
conditions of GMS. Middle: Boundary conditions of Liu-Wu. Right: Boundary conditions of KLLM.
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Figure 2: The initial data of the square shaped droplet.

the external phase is set to −1. The forms of F and G are taken as regular double-well
potential functions (1.2). The parameters are set as ε=δ=0.02. The stabilized parameters
are chosen as A = B1 = B2 = 50. We use the time step τ = 4×10−4 and the spacial size
h=0.01 to simulate the deformation of droplets from t=0 to t=0.2.

Fig. 3 shows the evolution process of GMS model (1.6) (K = 0), Liu-Wu model (1.7)
(K=∞) and KLLM model (1.5) (K=0.1,1,10) with κ=1 respectively. The corresponding
evolution of mass is plotted in Fig. 4. It can be seen that the square droplets are smoothed
around the two upper corners of the initial structure of the three models. Then, with
the increase of value of K, they tend to evolve into circular droplets with equal mean
curvature. When K < ∞, the contact area increases and the bulk’s mass of the droplet
decreases. And the smaller K, the more mass exchanges between the interior and the
boundary. In particular, when K = ∞ (for the Liu–Wu model), the bulk mass and the
surface mass are conserved respectively. Under the constraint of mass conservation, the
contact area between the droplet and the boundary almost keeps unchanged with time,
which is consistent with the previous work [3, 29].

The corresponding evolution of energy is plotted in Fig. 5. It is observed that our
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Figure 3: Phase-field at t=0.001,0.01,0.08,0.2. From top to bottom: K=0,0.1,1,10,∞.

numerical schemes are energy stable. For different K, the initial energy decreases rapidly.
We also find the decay rate depends on K largely. That is, the smaller K is, the faster the
energy decreases.

Then, we check the experimental order of convergence (EOC) of φ and ψ for K → 0
and K→∞ by using the droplet in the above as the initial data. The parameters are set
as ε= δ= 0.02, κ = 1, A= B1 = B2 = 50, τ = 2×10−4. We conduct numerical simulations
from t=0 to T=0.2 with the spatial step size h=0.01. The following definitions are the
same as work [3] (the last part of Section 5.3), which provides us with test criteria. Define
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Figure 4: Time evolution of the bulk mass and the surface mass with different K with the initial data shown in
Fig. 2.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
t

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

to
ta

l e
ne

rg
y

K=0
K=0.1
K=1
K=10
K=∞

Figure 5: Time evolution of the total energy with different K with the initial data shown in Fig. 2.

φ∗
0(ψ

∗
0) as the discrete solution under the case of K=0, φ∗

∞(ψ
∗
∞) as the solution under the

case of K=∞ and φKi
(ψKi

) as the solution under the case of Ki. We compare the discrete
solutions φKi

(ψKi
) with φ∗

0(ψ
∗
0) for different Ki. The corresponding error is defined as

Erri,0 =‖φKi
−φ∗

0‖L2(0,T;L2(Ω)) (or ‖ψKi
−ψ∗

0‖L2(0,T;L2(Γ))),

where the time integral is approximated by the trapezoidal rule with time increment
τ̃=10−3. The experimental order is defined as

ErrKi
=

ln
(

Erri+1,0

Erri,0

)

ln
(

Ki+1

Ki

) .
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Table 1: Comparison of φ for different K.

K ‖φKi
−φ∗

0‖L2(0,T;L2(Ω)) EOC K ‖φKi
−φ∗

∞‖L2(0,T;L2(Ω)) EOC

1E-4 3.96E-07 - 1E4 5.19E-04 -

2E-4 8.05E-07 1.0247 5E3 1.01E-02 -0.9999

5E-4 2.02E-06 1.0021 2.5E3 2.11E-03 -0.9996

1E-3 4.07E-06 1.0112 2E3 2.61E-03 -0.9994

0.01 4.58E-05 1.0514 1E3 5.21E-03 -0.9990

0.1 1.41E-03 1.4943 100 5.11E-02 -0.9934

1 1.61E-01 2.0518 10 3.81E-01 -0.8728

Table 2: Comparison of ψ for different K.

K ‖ψKi
−ψ∗

0‖L2(0,T;L2(Γ)) EOC K ‖ψKi
−ψ∗

∞‖L2(0,T;L2(Γ)) EOC

1E-4 1.31E-06 - 1E4 3.09E-04 -

2E-4 2.62E-06 1.0011 5E3 6.17E-04 -0.9998

5E-4 6.58E-06 1.0039 2.5E3 1.21E-03 -0.9995

1E-3 1.32E-05 1.9997 2E3 1.51E-03 -0.9992

0.01 1.29E-04 0.9921 1E3 3.11E-03 -0.9987

0.1 1.31E-03 0.9877 100 3.03E-02 -0.9929

1 9.33E-02 1.8716 10 2.53E-01 -0.9209

Similarly, we can define the corresponding error and the experimental order for the case
of K→∞. The results for the convergence of φ and ψ are shown in Tables 1 and 2, indi-
cating that for K≤10−3 and K≥103, the convergence rate is almost 1. The second-order
scheme also shows the same EOC as the first-order scheme [27], which validates our
second-order scheme.

Example 3: Comparisons of the second-order scheme and the first-order scheme

In this section, we compare the second-order scheme with first-order results in [2]. We
first take the droplet evolution as an example. The parameters are set as the same in
Example 3. We set the time step size τ1 = 1×10−4 for the first-order scheme and τ2 =
2×10−4 for the second-order scheme. And the final time T = 0.2. Note that we choose
twice the time step size for second-order scheme. See Fig. 6 for the evolution of energy
of the two experiments. We can see that the energy dissipation of second-order scheme
is faster than the first-order scheme, but the stable states of the two tend to be consistent.
In addition, the CPU time of the first-order and the second-order scheme at the final time
T=0.05 are shown in Table 3, where we choose time step size τ2 =0.01 for second-order
scheme and τ1 = τ2

2 for first-order scheme to maintain accuracy. The results reveal the
second-order scheme is more efficient than the first-order scheme. That is, the CPU time
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Figure 6: Time evolution of the total energy with first-order and second-order scheme with the initial data
shown in Fig. 2.

Table 3: Comparison of CPU time (second) for first-order and second-order scheme with droplet as initial value.

K 0.1 1 10

1st 2.23E3 3.01E3 5.98E3

2nd 2.97E1 3.94E1 6.39E1

required by the first-order scheme is about 100 times that of the second-order scheme.
In the above experiments, we chose (1.2) as potential functions F and G. Another typ-

ical thermodynamically relevant example is the following logarithmic potential. Namely,
for the bulk and surface potential, we consider the logarithmic Flory–Huggins potential
as follows,

F(φ)=φlnφ+(1−φ)ln(1−φ)+θφln(1−φ),

G(ψ)=ψlnψ+(1−ψ)ln(1−ψ)+θψln(1−ψ),

where the constant θ>0. When the “shallow quenching” happens, the singular potential
is often approximated by a polynomial of degree four like the double-well form (1.2) [44].
In this case, φ and ψ represent the mass concentration of one component in the bulk
and on the boundary, so the corresponding physical correlation interval is (0,1). One
basic strategy is to regularize the singular potential in a suitable manner to ensure the
logarithmic potential smooth enough [51]. Obviously, we don’t need to worry about the
overflow caused by any small fluctuation near the region boundary (0,1) of the numerical
solution.

Here, the time step τ = 1×10−4. The parameters are set as ε = δ = 0.05,κ = 1,θ =
2.5. The artificial parameters A= 10,B1 = B2 = 500 are used to ensure that the scheme is
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Figure 7: Time evolution of the total energy with different K with the initial data shown in Fig. 2.

Table 4: Comparison of CPU time (second) for first-order and second-order scheme with Flory–Huggins potential.

K 0.1 1 10

1st 1.92E3 2.86E3 3.23E3

2nd 4.04E1 1.02E2 6.84E2

stable. The initial data is set as random numbers between 0.4 and 0.6. Fig. 7 indicates
the energy decreasing in steps with a quick decay at early stage and this quick decay
behaviours more slowly with bigger K in second-order scheme but not obviously in first-
order scheme. Besides, the energy of second-order scheme decreases faster than the first-
order scheme. Similar to the previous experiment, we choose time step size τ2 = 0.01
for second-order scheme and τ1 = τ2

2 for first-order scheme to maintain accuracy. We
compared CPU time of the two scheme running to final time T = 0.05 in Table 4. It’s
obvious that the second-order scheme save more CPU time than the first-order scheme.

To sum up, for the droplet model or the random scattering point as the initial value,
with the double-well or the singular energy potential function, we both can obtain the
efficiency of the second-order scheme.

6 Conclusions

We study the numerical algorithms and error analysis for the Cahn-Hilliard equation
with dynamic boundary conditions. The second-order in time, linear and energy stable
Crank-Nicolson scheme is proposed. We also present the corresponding proof of stability
and convergence theoretically. In particular, to the best of our knowledge, we are the first
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to propose the second-order stabilized semi-implicit linear scheme for the KLLM model.
Some numerical experiments are performed to verify the effectiveness and accuracy of
the second-order numerical scheme, including the accuracy test, numerical simulations
of three types of dynamic boundary conditions under various initial conditions and en-
ergy potential functions, the EOC of φ and ψ for K→ 0 and K→∞. By comparing with
the first-order scheme, we can use the second-order scheme to reach the same state in less
CPU time with different initial values and potential functions. Thus the efficiency of the
second-order scheme is further verified.

Acknowledgments

Z.R. Zhang is partially supported by the NSFC Nos. 11871105 and 11231003. X.L. Bao is
partially supported by the NSFC No. 12201050 and China Postdoctoral Science Founda-
tion grant No. 2022M710425.

References

[1] F. Bai, D.Z. Han, X.M. He, and X.F. Yang. Deformation and coalescence of ferrodroplets in
Rosensweig model using the phase field and modified level set approaches under uniform
magnetic fields. Commun. Nonlinear Sci. Numer. Simul., 85:105213, 2020.

[2] X.L. Bao and H. Zhang. Numerical approximations and error analysis of the Cahn-Hilliard
equation with dynamic boundary conditions. Commun. Math. Sci., 19(3):663–685, 2021.

[3] X.L. Bao and H. Zhang. Numerical approximations and error analysis of the Cahn-Hilliard
equation with reaction rate dependent dynamic boundary conditions. J. Sci. Comput.,
87(3):1–32, 2021.

[4] P. Bates and P. Fife. The dynamics of nucleation for the Cahn-Hilliard equation. SIAM J.
Appl. Math., 53(4):990–1008, 1993.

[5] J.W. Cahn and J.E. Hilliard. Free energy of a nonuniform system. III. Nucleation in a two-
component incompressible fluid. J. Chem. Phys., 31(3):688–699, 1959.

[6] L.Q. Chen and J. Shen. Applications of semi-implicit Fourier-spectral method to phase field
equations. Comput. Phys. Commun., 108(2-3):147–158, 1998.

[7] L. Cherfils and M. Petcu. A numerical analysis of the Cahn-Hilliard equation with non-
permeable walls. Numer. Math., 128(3):517–549, 2014.

[8] L. Cherfils, M. Petcu, and M. Pierre. A numerical analysis of the Cahn-Hilliard equation
with dynamic boundary conditions. Discrete Contin. Dyn. Syst., 27(4):1511, 2010.

[9] P. Colli and T. Fukao. Cahn-Hilliard equation with dynamic boundary conditions and mass
constraint on the boundary. J. Math. Anal. Appl., 429(2):1190–1213, 2015.

[10] P. Colli, T. Fukao, and H. Wu. On a transmission problem for equation and dynamic bound-
ary condition of Cahn-Hilliard type with nonsmooth potentials. Math. Nachr., 293(11):2051–
2081, 2020.

[11] P. Colli, G. Gilardi, R. Nakayashiki, and K. Shirakawa. A class of quasi-linear Allen-Cahn
type equations with dynamic boundary conditions. Nonlinear Anal., 158:32–59, 2017.

[12] Q. Du and X.B. Feng. The phase field method for geometric moving interfaces and their
numerical approximations. Handb. Numer. Anal., 21:425–508, 2020.



168 X. Meng, X. Bao and Z. Zhang / Commun. Comput. Phys., 37 (2025), pp. 137-170

[13] X.L. Feng, T. Tang, and J. Yang. Stabilized Crank-Nicolson/Adams-Bashforth schemes for
phase field models. E. Asian. J. Appl. Math., 3(1):59–80, 2013.

[14] H.P. Fischer, P. Maass, and W. Dieterich. Novel surface modes in spinodal decomposition.
Phys. Rev. Lett., 79(5):893, 1997.

[15] T. Fukao, S. Yoshikawa, and S. Wada. Structure-preserving finite difference schemes for the
Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case.
Commun. Pur. Appl. Anal., 16(5):1915, 2017.

[16] C.G. Gal. A Cahn-Hilliard model in bounded domains with permeable walls. Math. Method.
Appl. Sci., 29(17):2009–2036, 2006.

[17] H. Garcke and P. Knopf. Weak solutions of the Cahn-Hilliard system with dynamic bound-
ary conditions: A gradient flow approach. SIAM J. Math. Anal., 52(1):340–369, 2020.

[18] H. Garcke, P. Knopf, and S. Yayla. Long-time dynamics of the Cahn-Hilliard equation with
kinetic rate dependent dynamic boundary conditions. Nonlinear Anal., 215:112619, 2022.

[19] G.R. Goldstein, A. Miranville, and G. Schimperna. A Cahn-Hilliard model in a domain with
non-permeable walls. Phys. D Nonlinear Phenom., 240(8):754–766, 2011.

[20] Y.Z. Gong, J. Zhao, and Q. Wang. Arbitrarily high-order linear energy stable schemes for
gradient flow models. J. Comput. Phys., 419:109610, 2020.

[21] G. Grun. On convergent schemes for diffuse interface models for two-phase flow of incom-
pressible fluids with general mass densities. SIAM J. Numer. Anal., 51(6):3036–3061, 2013.

[22] R. Guo, F. Filbet, and Y. Xu. Efficient high order semi-implicit time discretization and local
discontinuous Galerkin methods for highly nonlinear PDEs. J. Comput. Phys., 68(3):1029–
1054, 2016.

[23] Y.N. He, Y.X. Liu, and T. Tang. On large time-stepping methods for the Cahn-Hilliard equa-
tion. Appl. Numer. Math., 57(5-7):616–628, 2007.

[24] D. Jacqmin. Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech., 402:57–88, 2000.
[25] L.L. Ju, J. Zhang, and Q. Du. Fast and accurate algorithms for simulating coarsening dy-

namics of Cahn-Hilliard equations. Comp. Mater. Sci., 108:272–282, 2015.
[26] P. Knopf and K.F. Lam. Convergence of a Robin boundary approximation for a Cahn-

Hilliard system with dynamic boundary conditions. Nonlinearity, 33(8):4191, 2020.
[27] P. Knopf, K.F. Lam, C. Liu, and S. Metzger. Phase-field dynamics with transfer of materials:

The Cahn-Hilliard equation with reaction rate dependent dynamic boundary conditions.
ESAIM Math. Model. Numer. Anal., 55(1):229–282, 2021.

[28] C. Liu and H. Wu. An energetic variational approach for the Cahn-Hilliard equation with
dynamic boundary condition: Model derivation and mathematical analysis. Arch. Ration.
Mech. An., 233(1):167–247, 2019.

[29] X.J. Meng, X.L. Bao, and Z.R. Zhang. Second order stabilized semi-implicit scheme for the
Cahn-Hilliard model with dynamic boundary conditions. J. Comput. Appl. Math., 428:115145,
2023.

[30] X.J. Meng, Z.H. Qiao, C. Wang, and Z.R. Zhang. Artificial regularization parameter analysis
for the no-slope-selection epitaxial thin film model. CSIAM Trans. Appl. Math., 1(3):441–462,
2020.

[31] X.J. Meng and Z.R. Zhang. An adaptive BDF2 implicit time-stepping method for the no-
slope-selection epitaxial thin film model. Comput. Appl. Math., 42(3):124, 2023.

[32] R.M. Mininni, A. Miranville, and S. Romanelli. Higher-order Cahn-Hilliard equations with
dynamic boundary conditions. J. Math. Anal. Appl., 449(2):1321–1339, 2017.

[33] A. Novick-Cohen. The Cahn–Hilliard equation. In: C. M. Dafermos and M. Pokorny (editors)
Evolutionary Equations. Handb. Differ. Eq., Vol. 4, Elsevier/North-Holland, 2008.



X. Meng, X. Bao and Z. Zhang / Commun. Comput. Phys., 37 (2025), pp. 137-170 169

[34] R. Racke and S.M. Zheng. The Cahn-Hilliard equation with dynamic boundary conditions.
Adv. Differential Equ., 8(1):83–110, 2003.

[35] J. Shen, C. Wang, X.M. Wang, and S.M. Wise. Second-order convex splitting schemes for
gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy. SIAM
J. Numer. Anal., 50(1):105–125, 2012.

[36] J. Shen, J. Xu, and J. Yang. The scalar auxiliary variable (SAV) approach for gradient flows.
J. Comput. Phys., 353:407–416, 2018.

[37] J. Shen and X.F. Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equa-
tions. Discrete Contin. Dyn. Syst., 28(4):1669, 2010.

[38] J. Shen and X.F. Yang. The IEQ and SAV approaches and their extensions for a class of highly
nonlinear gradient flow systems. Contemp. Math, 754:217–245, 2020.

[39] J. Shin, H.G. Lee, and J.Y. Lee. Unconditionally stable methods for gradient flow using
convex splitting Runge-Kutta scheme. J. Comput. Phys., 347:367–381, 2017.

[40] D. Trautwein. Finite-elemente approximation der Cahn-Hilliard-Gleichung mit Neumann-
und dynamischen Randbedingungen. Bachelor thesis, University of Regensburg, 2018.

[41] J.X. Wang, K.J. Pan, and X.F. Yang. Convergence analysis of the fully discrete hybridizable
discontinuous Galerkin method for the Allen-Cahn equation based on the invariant energy
quadratization approach. J. Sci. Comput., 91, 2022.

[42] L. Wang and H.J. Yu. Convergence analysis of an unconditionally energy stable linear Crank-
Nicolson scheme for the Cahn-Hilliard equation. J. Math. Study, 51(1):89–114, 2018.

[43] L. Wang and H.J. Yu. On efficient second order stabilized semi-implicit schemes for the
Cahn-Hilliard phase-field equation. J. Sci. Comput., 77(2):1185–1209, 2018.

[44] H. Wu. A review on the Cahn-Hilliard equation: Classical results and recent advances in
dynamic boundary conditions. Electronic Research Archive, 30(8):2788–2832, 2022.

[45] X. Wu, G.J. Van Zwieten, and K.G. Van der Zee. Stabilized second-order convex splitting
schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth mod-
els. Int. J. Numer. Meth. Bio., 30(2):180–203, 2014.

[46] Z. Xu, X.F. Yang, H. Zhang, and Z.Q. Xie. Efficient and linear schemes for anisotropic Cahn-
Hilliard model using the stabilized-invariant energy quadratization (S-IEQ) approach. Com-
put. Phys. Commun., 238:36–49, 2019.

[47] X.F. Yang. Linear, first and second-order, unconditionally energy stable numerical schemes
for the phase field model of homopolymer blends. J. Comput. Phys., 327:294–316, 2016.

[48] X.F. Yang, Z.L. Cui, M.G. Forest, Q. Wang, and J. Shen. Dimensional robustness and insta-
bility of sheared, semidilute, nanorod dispersions. Multiscale Model. Simul., 7(2):622–654,
2008.

[49] X.F. Yang and H.J. Yu. Efficient second order unconditionally stable schemes for a phase
field moving contact line model using an invariant energy quadratization approach. SIAM
J. Sci. Comput., 40(3):B889–B914, 2018.

[50] X.F. Yang and G.D. Zhang. Convergence analysis for the invariant energy quadratization
(IEQ) schemes for solving the Cahn-Hilliard and Allen-Cahn equations with general nonlin-
ear potential. J. Sci. Comput., 82(3):1–28, 2020.

[51] X.F. Yang and J. Zhao. On linear and unconditionally energy stable algorithms for variable
mobility Cahn-Hilliard type equation with logarithmic Flory-Huggins potential. Commun.
Comput. Phys., 25(3):703–728, 2019.

[52] X.F. Yang, J. Zhao, and X.M. He. Linear, second order and unconditionally energy stable
schemes for the viscous Cahn-Hilliard equation with hyperbolic relaxation using the invari-
ant energy quadratization method. J. Comput. Appl. Math., 343:80–97, 2018.



170 X. Meng, X. Bao and Z. Zhang / Commun. Comput. Phys., 37 (2025), pp. 137-170

[53] J. Zhang and X.F. Yang. A new magnetic-coupled Cahn-Hilliard phase-field model for di-
block copolymers and its numerical approximations. Appl. Math. Lett., 107:106412, 2020.

[54] J. Zhao, X.F. Yang, Y.Z. Gong, X.P. Zhao, X.G. Yang, J. Li, and Q. Wang. A general strategy
for numerical approximations of non-equilibrium models-part I: Thermodynamical systems.
Int. J. Numer. Anal. Mod., 15(6):884–918, 2018.


