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Abstract. The re-splitting δ f method (Ye et. al CPC 2020) has been implemented into 
the global semi-Lagrangian gyrokinetic code NLT (Lei Ye et al. 2016, JCP) for the 
simulations of electromagnetic micro-turbulence in tokamak plasmas. The re-splitting 
method can be incorporated with the numerical Lie transform method, which is an 
essential numerical scheme for NLT code, to mitigate the cancellation problem appears 
in the gyrokinetic p‖-formulation with gyrokinetic ions and drift-kinetic electrons. 
With this method, the ion temperature gradient mode (ITG), the kinetic ballooning 
mode (KBM) and trapped electron mode (TEM) are simulated by NLT and the results 
are well benchmarked with other gyrokinetic simulation codes.
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1 Introduction

Large-scale gyrokinetic simulation has become a powerful tool to study various critical
physical processes in tokamak plasmas, especially the low frequency (ω ≪ ωc) waves
including but not limited to micro-turbulence and energetic particle driven modes. Here,
ω and ωc are the frequency of relevant waves and gyro-motion of particles. In gyrokinetic
theory, the high-frequency gyromotion of charged particles in a magnetic field can be
decoupled from the low-frequency drift motion of the gyrocenter, while essential kinetic
effects are retained, like finite Larmor radius (FLR) effects and wave-particle resonance
effects (through drift motion).
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It is generally accepted that the anomalous transport observed in tokamak
experiments are mainly induced by the electrostatic drift-wave type turbulence, such
as ion temperature gradient (ITG) mode, trapped electron mode (TEM) and electron
temperature gradient (ETG) mode. Therefore, electrostatic gyrokinetic simulations can
be applied to study turbulence transport, especially for low-β plasmas, where β =
p/(B2/2µ0) corresponds to the ratio between plasma kinetic pressure and magnetic
pressure. However, a high-β operating scenario is more appealing for economical
fusion reactors because the fusion power density is roughly proportional to p2. As the
value of β increases, the magnetic component of perturbations also become increasingly
important. The electromagnetic kinetic ballooning modes (KBM) or Alfvénic ion
temperature gradient modes (AITG) are likely to be excited due to the coupling between
drift-wave and shear Alfvén wave. Moreover, global shear Alfvén eigenmodes, which
are essentially electromagnetic waves, can also be driven unstable by the energetic
particles through wave-particle resonances. Therefore, comprehensive investigations
of these important physical processes call for electromagnetic gyrokinetic simulations.
Consequently, development of algorithms for global gyrokinetic simulation, with fully
electromagnetic and kinetic electron effects, has been an active area of research due to its
significance and challenges in studying tokamak physics.

There are two major challenges confronting electromagnetic gyrokinetic simulation
with (gyro/drift)kinetic electrons, which are basically originated from the huge mass
ratio between ion and electron. On the one hand, the fast streaming of passing electrons
along the field line can impose stringent limitation on the time step size of simulation
owing to the Courant-Friedrichs-Lewy (CFL) condition. This restriction can be alleviated
either by implicit electron algorithm for continuum codes [3, 10] and PIC codes [19],
or by the split-weight scheme [4] or the control-variate method [14] for PIC codes.
On the other hand, the well-known ’cancellation problem’ [5] arises in the gyrokinetic
Ampère’s equation with the p‖-formulation [13]. The adiabatic current term carried by
the zeroth electron distribution function (also referred to the electron skin depth term)
can induce numerical accuracy problem in many situations, such as high-β or low-n
cases, and should be treated numerically with special care. Here, n is the toroidal mode
number. Recently, a novel pull-back mitigation (PBM) scheme has been developed and
implemented in the PIC code GYGLES, ORB5 and XGC [7, 16, 20, 23]. Additionally, a re-
splitting scheme has also been proposed incorporated with the split-weight scheme and
implemented in GEM code [31].

In this work, we report the recent developments for electromagnetic simulation
in the semi-Lagrangian gyrokinetic code NLT [34], which is based on the numerical
Lie transform method. The re-splitting scheme has been successfully implemented
into the NLT code. It has been observed that this algorithm is compatible with the
semi-Lagrangian scheme and effectively mitigates the cancellation problem, thereby
enhancing the numerical accuracy for electromagnetic turbulence simulations.

The rest of the paper is structured as follows: in Section 2, we present the fundamental
gyrokinetic equations, with special attention to the additional field equations resulting
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from the split-weight scheme. Section 3 describes the details of the numerical
implementation. In Section 4, we conduct linear simulations of various modes,
considering the effects of electromagnetic perturbation. In addition, we also provided
a comparison between electromagnetic simulations and electrostatic simulations of the
nonlinear evolution of ITG-dominated turbulence at low β in Section 4. Lastly, in
Section 5, we summarize the main results of this work and conduct some discussions.

2 Theory model

In this section, we first present the basic gyrokinetic equations used for NLT
electromagnetic simulation.

For the standard nonlinear gyrokinetic theory, the following ordering is considered

ω

ωci
∼ δ f

f
∼ eδφ

T
∼ |δB|

B
∼ k‖ρi ∼ ε≪1, k⊥ρi ∼1,

where ω is the characteristic fluctuation frequency. δ f , δφ and δB are the fluctuation part
of particle distribution function, electrostatic potential and magnetic field, respectively.
ωci denotes the ion cyclotron frequency. T is the equilibrium temperature. k‖ and k⊥ are

the parallel and the vertical wave vector respectively. ρi=
√

Ti/mi/ωci is the ion thermal
gyro-radius while ε denotes a small parameter.

Following Ref. [1] the general gyrocenter phase space Lagrangian (or the one-form)
up to O(ε) can be written as

Γs=
(

es A+esδAgy+msv‖b
)

·dX+
µB

ωcs
dξ−Hdt. (2.1)

Here A is the equilibrium magnetic potential and the equilibrium magnetic field B =
∇×A. b = B/B denotes the unit vector of magnetic field. The subscript s stands for
particle species. Z =

(

X ,v‖,µ,ξ
)

are gyrocenter coordinates in phase space, with X the

gyrocenter position, v‖=b·Ẋ the gyrocenter parallel velocity, µ=msv2
⊥/2B the gyrocenter

magnetic moment and ξ the gyro-angle. In this work, only shear-Alfvén perturbations,
δA‖b and δB⊥∼=∇⊥δA‖×b, are considered. Thus the symplectic-perturbation magnetic
potential is

δAgy=αδA‖b,

where (···) denotes the gyro-average operator defined by

(···)= 1

2π

˛

(···)(X+ρs (X ,µ,ξ))dξ, (2.2)

and α is a parameter between 0 and 1. The gyrocenter Hamiltonian is composted of the
zeroth order part H0=µB+msv

2
‖/2 and the perturbed part H1, which is given by

H1= esδφ−esv‖(1−α)δA‖. (2.3)
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The gyrocenter motion equations can be obtained from the Euler-Lagrangian equation

Ẋ =
b

esB∗
‖
×
(

∇H+es
∂δAgy

∂t

)

+
B∗

msB∗
‖

∂H

∂v‖

=
b

esB∗
‖
×
[

µ∇B+∇
(

esδφ−es(1−α)v‖δA‖
)]

+
B∗

B∗
‖

(

v‖−
es

ms
(1−α)δA‖

)

, (2.4)

v̇‖=− B∗

msB∗
‖
·
(

∇H+es
∂δAgy

∂t

)

=− B∗

msB∗
‖
·
[

µ∇B+∇
(

esδφ−es(1−α)v‖δA‖
)

+es

∂αδA‖
∂t

b

]

. (2.5)

Here, the effective potential and effective magnetic field is defined by A∗= A+δAgy+
ms
es

v‖b and B∗=∇×A∗, respectively. B∗
‖=B∗ ·b is related to the phase space Jacobian of

the gyrocenter transformation as J =B∗
‖/ms. The gyrocenter motion equations can also

be put with the Poisson bracket as

Żi ={Zi,H}+{Zi,Zj}∂Γj

∂t
, (2.6)

with the gyrocenter Poisson bracket defined by

{F,G}= es

ms

(

∂F

∂ξ

∂G

∂µ
− ∂G

∂ξ

∂F

∂µ

)

+
B∗

msB∗
‖
·
(

∇F
∂G

∂v‖
−∇G

∂F

∂v‖

)

− b

esB∗
‖
·∇F×∇G. (2.7)

Here, F and G represent two arbitrary scalars in the gyro-center coordinates.
The gyrokinetic Vlasov equation, which describes the evolution of particle

distribution function in gyrocenter coordinates F
(

X ,v‖,µ
)

is given by

∂F

∂t
+{F,H}=0, (2.8)

or
d

dt
F=

∂F

∂t
+Ẋ ·∇F+ v̇‖∂‖F=0, (2.9)

equivalently. In δ f simulations, the distribution function is decomposed into a perturbed
part and a zeroth order part as

F
(

X ,v‖,µ,ξ,t
)

=δ f
(

X ,v‖,µ,ξ,t
)

+FM

(

X ,v‖,µ,ξ
)

. (2.10)

Here FM usually takes a local Maxwellian form

FM =
( m

2πT

)
3
2

Nexp

(

−
mv2

‖/2+µB

T

)

(2.11)
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with N the equilibrium density of particle. And the evolution equation for δ f is given by

d

dt
δ f =− d

dt1
F, (2.12)

with
d

dt1
= Ẋ1 ·∇+ v̇‖1∂‖ (2.13)

indicates the derivative along the perturbed part of the orbit induced by the turbulence
field.

The perturbed electromagnetic fields are governed self-consistently by the
gyrokinetic Maxwell’s equations, including the quasi-neutrality equation

∑
s

es

(

δn
g
s +δn

p
s

)

=0, (2.14)

and the parallel Ampère’s law

−∇2
⊥δA‖+∑

s

(1−α)
ω2

ps

c2

〈

δA‖
〉

ξ
=µ0∑

s

δj‖s. (2.15)

Here, δn
g
s =

´

d6Zδ(X+ρs−x)δ fs denotes the perturbed gyrocenter density and δn
p
s is the

well-known polarization density [18], which is written as

δn
p
s =

ˆ

d6Zδ(X+ρs−x)
es

B

∂FMs

∂µ

[

δφ(X+ρs)−δφ(X ,µ)
]

, (2.16)

where d6Z = J dXdv‖dµξ with J is the Jacobian of gyrocenter phase space and x is

the particle position. δj‖s =
´

d6ZJsv‖δ fsδ(X+ρ−x) denotes the perturbed gyrocenter

parallel current density. The second term in Eq. (2.15), ∑s
ω2

ps

c2 (1−α)
〈

δA‖
〉

ξ
, is the

adiabatic current (or skin depth) [11] term, where ωps =
√

e2
s ns/(msε0) is the plasma

oscillation frequency and

〈

δA‖
〉

ξ
=− 1

ns

ˆ

d6Zδ(X+ρs−x)
v2
‖

B

∂FMs

∂µ
δA‖(X ,µ)

=
1

ns

ˆ

d6Zδ(X+ρs−x)δA‖FMS. (2.17)

There are generally two kinds of formulation of gyrocenter variables depending on
the choice of parameter α, namely the v‖-formulation (or symplectic-formulation)
corresponding to α = 1 and the p‖-formulation (or Hamiltonian-formulation)

corresponding to α = 0, respectively. Here p‖ = mv‖+esδA‖ is a canonical momentum
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for gyrocenter model with α=0 [2]. These two coordinate systems satisfy the following
transformation relationship,

X
∣

∣

α=0
=X

∣

∣

α=1
, (2.18a)

v‖
∣

∣

α=0
=v‖

∣

∣

α=1
+

es

ms
δA‖. (2.18b)

Although these two sets of coordinates are equivalent theoretically, the numerical
properties for numerical practice can be much different. The main difficulty faced by the
v‖-formulation is the appearance of the inductive component of the parallel electric field,
∂A‖/∂t, which can induce numerical instabilities with an explicit time integration scheme
[8]. On the other hand, the p‖-formulation dose not suffer form the numerical problem of
the inductive parallel electric field thus has been employed by many gyrokinetic codes,
including both PIC code and Eulerian code [11, 13]. However, the adiabatic current,
the second term on the left-hand-side of Eq. (2.15), is introduced through the transform
from the p‖-gyrocenter coordinates back to the particle coordinates. Unfortunately, this
term can cause another numerical accuracy problem, named the cancellation problem,
which will be discussed in Section 3.1. In addition, the Poisson bracket with p‖-
formulation is time-independent and is consistent with that of the unperturbed guiding-
center coordinates.

NLT [34] (Numerical Lie Transform) is a semi-Lagrangian δ f gyrokinetic code based
on the I-transform method. The electrostatic versions of NLT have been developed
for adiabatic [34] and kinetic [35] electrons, respectively. Here, a brief review of
the electromagnetic gyrokinetic equations with I-transform will be given. For more
detailed information about I-transform, one can refer to Refs. [25–27] and Ref. [29].
It should be noted that for the electromagnetic I-transform proposed in Ref. [29], the
δA transform is performed at first so that all the perturbed quantities (δφ and δA)
in the gyrocenter one-form are moved into the Hamiltonian part. Hence the starting
point for the electromagnetic I-transform is the p‖-formulation. The basic idea of I-
transform perturbation method is to transform the gyrocenter coordinate variables Z to
a set of new variables ZI , so that the perturbed particle motion can be decoupled from
the unperturbed part. That is to say, the one-form of gyrocenter Lagrangian and the
gyrocenter motion equations will be formally identical to the unperturbed ones

ΓIs =
(

es A+msv‖b
)

·dX+
µB

ωcs
dξ−H0dt (2.19)

and
Żi

I =
{

Zi
I ,H0

}

0
, (2.20)

where

{K,G}0=
es

ms

(

∂K

∂ξ

∂G

∂µ
− ∂G

∂ξ

∂K

∂µ

)

+
B∗

0

msB∗
‖0

·
(

∇K
G

v‖
−∇G

K

v‖

)

− b

esB∗
‖0

∇K×∇G
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denotes the unperturbed Poisson bracket with B∗
0=B+

msv‖
es

∇×b. In comparison, Eq. (2.7)
represents a more generalized guiding center Poisson bracket. When α 6=0, as both B∗ and
B∗
‖ include perturbations, the corresponding guiding center Poisson bracket, i.e., Eq. (2.7),

also includes perturbations. Therefore the gyrokinetic equation can be expressed in the
new coordinates as

d0

dt
δ f I (ZI),

(

∂

∂t
+ŻI0 ·

∂

∂ZI

)

δ f I =0. (2.21)

Here, d0
dt denotes the time derivatives along the unperturbed guiding center orbit and ŻI0

is the unperturbed guiding center velocity in phase space.
The contributions of the perturbed motion (field) to the gyrocenter distribution

function can be recovered through the pull-back I-transform as

δ f p‖ (Z,t)=δ f I (ZI ,t)+Gi
1∂i (δ f I+FM)+

1

2
G

j
1∂j

(

Gi
1∂i

)

(δ f I+FM). (2.22)

Here, the superscript p‖ and v‖ denotes the p‖-formation and v‖-formation gyrokinetic,
respectively.

G
j
1={ZI ,S1}0 , (2.23)

are the 1st-order generating vector fields and S1 is the gauge function of I-transform,
which is governed by the time evolution equation

∂S

∂t
+{S,H0}=H1, (2.24)

with H1 = es

(

δφ−v‖δA‖
)

the perturbed Hamiltonian of I-transform. Finally, the time
evolution of the particle-field system in I-transform can be obtained by solving the self-
consistent Eq. (2.14), Eq. (2.15) and Eqs. (2.20)-(2.24), with α=1.

3 Numerical scheme

The numerical scheme for the time dependent electromagnetic gyrokinetic Vlasov
equations, Eqs. (2.21) and (2.24), are generally the same with that used in the electrostatic
version, which are described in Ref. [34]. The semi-Lagrangian method is applied with
a four dimensional (or three dimension for gauge function) tensor-product B-spline
interpolation scheme [28]. Due to the application of the I-transform, the characteristics
now become the unperturbed gyrocenter orbit instead of the perturbed orbits. This
property can be exploited to significantly improve the computational efficiency of the
Vlasov solver, which is usually the most computational consuming ingredient in a semi-
Lagrangian gyrokinetic code. On the one hand, an unperturbed orbit is determinate
for given mesh grid point in phase space and time interval, so that it can be computed
once in advance and saved as numerical table in the initialization stage. Thus all the
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computational overhead in particle pushing can be saved for the real time computations.
On the other hand, a fixed-point interpolation algorithm has also been devised and
implemented in NLT to greatly accelerate the high-dimensional interpolation with
tensor-product B-splines [28]. In this section, the focus should be put on the numerical
schemes related to the electromagnetic simulation, i.e., the re-splitting scheme and the
algorithm of parallel Ampere’s solver. For the details of other algorithms employed in
NLT, one can refer to Refs. [32, 34, 35].

3.1 The re-splitting method in NLT

The parallel Ampere’s equation (2.15) in p‖-formulation mentioned in Section 2 can be
simplified in the drift-kinetic electrons limit as

−∇2
⊥δA‖+

βe

ρ2
e

δA‖=µ0∑
s

δj
p‖
‖s

. (3.1)

Here

δj
p‖
‖s
=

ˆ

J v‖sδ f p‖δ(X+ρs−x)d6Z (3.2)

is the perturbed parallel current in p‖-formulation and βe = µ0neTe/B2. The adiabatic

current of ions,
βi

ρ2
i

δA‖ (with βi =µ0niTi/B2), has been dropped due to mi ≫me. The ratio

between the physical current and the adiabatic current, −∇2
⊥δA‖, can be evaluated as

∇2
⊥δA‖

βe

ρ2
e
δA‖

=
(k⊥ρi)

2

βe

me

mi
, (3.3)

by assuming Ti =Te. It can be seen that for low-n (toroidal mode number) perturbations
with small value of k⊥ or high-β plasma, e. g. k⊥ρe = 0.1 and βe = 0.01, the electron
adiabatic current is much larger than the physical current due to the small electron-ion
mass ratio.

Basically, the adiabatic current is originated from the choice of the equilibrium
distribution function in p‖-formulation,

F
p‖
M =

( m

2πT

)
3
2

N
−

1
2m p‖

2+µB

T
e . (3.4)

The total distribution can be split with two equivalent approach as

f =F
v‖
M +δ f v‖

=F
p‖
M +δ f p‖ . (3.5)
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In the v‖-formulation is, the physical current is carried exclusively by δ f v‖ due to the

velocity symmetry of F
v‖
M . However, in the p‖-formulation F

p‖
M does carry a parallel

current dependent on δA‖

J
p‖
ad =q

ˆ

J v‖F
p‖
M dξdµdp‖

=−q

ˆ

δA‖v‖
T

F
v‖
M dξdµdp‖

=−q2

m
NδA‖. (3.6)

Therefore, the perturbed distribution function δ f p‖ must provide an opposite term to
compensate the non-physical adiabatic current. Thus the real physical current carried by
the charged particles can be expressed explicitly by

δjv‖ =δjp‖−δj
p‖
ad , (3.7)

with δj
p‖
ad = J

p‖
ad exactly. However, the adiabatic current can not be known before the

parallel Ampere’s equation is solved to give δA‖. So δj
p‖
ad has to be contained implicitly in

δj
p‖
‖ , which is calculated out by numerical integration of distribution function or particle

deposition in continuum or PIC code, respectively. If J
p‖
ad on the L.H.S of Ampere’s law.

Eq. (3.1) is taken the analytical form, the discretization errors of two adiabatic current,

δjerr
ad = J

p‖
ad −δj

p‖
ad , will be introduced due to the inexact cancellation of the numerical term

and the analytical one. In the case of low-n or high-β simulations, δjerr
ad can be even

greater than the physical current δj
p‖
‖ and cause the numerical accuracy problem, which

is usually named the ’cancellation problem’. For Eulerian gyrokinetic code with fixed

phase space grid, the most immediate solution is to replace the analytical form of J
p‖
ad

with its numerical form Eq. (3.6) and apply the same numerical quadrature scheme of

δj
p‖
ad in Eq. (3.2). For the PIC code, however, the particle deposition position changes with

the motion of markers so that an iterative Ampere’s solver has been proposed to address
the cancellation problem therein. Another remedy is the ’re-splitting’ scheme [31], which
has been implemented in the gyrokinetic PIC code GEM with the local flux-tube model
and successfully benchmarked against the split-weight scheme and pull-back mitigation
(PBM) scheme [17, 20, 22, 23]. Here we apply this scheme in the semi-Lagrangian code
NLT for the global electromagnetic gyrokinetic simulation. The basic idea of the re-
splitting method is to find an reasonable prediction for δA‖, named δAD, at first and
then take coordinate transform to make the adiabatic current as small as possible. δA‖
can be split into two parts

δA‖=δAD
‖ +δAR

‖ . (3.8)

Hence the distribution function can be transformed accordingly to the pR-formulation as

δ f pR =δ f p‖−
qδAD

‖ v‖
T

F
v‖
M . (3.9)
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With this transform, the parallel Ampere’s equation can be cast into

−∇2
⊥δA‖+

βe

ρ2
e

δAR=µ0∑
s

δj
pR

‖s
. (3.10)

Here,

δj
pR

‖ =

ˆ

J pRδ f pR δ(X+ρ−x)d6Z. (3.11)

It can be seen that as long as δAD
‖ is close enough to δA‖ so that δAR

‖ ≪ δA‖, the

adiabatic current can be greatly reduced and the cancellation problem can be mitigated
consequently. Specifically, if the prediction A‖D happens to be A‖, the Ampere’s equation
in v‖-formulation is recovered and there is no cancellation errors anymore. An advisable

choice for numerical practice in each time interval t∈[tn ,tn+1] can be the known perturbed
magnetic vector in the last time step,

δAD
‖ =δA‖(t

n). (3.12)

It can be evaluated that the typical time step in electromagnetic gyrokinetic simulation,
∆t∼1/ωci, is much smaller than the time scale of perturbations. Therefore,

∣

∣

∣

∣

∣

δA‖(t
n+1)−δAD

‖
δA‖(tn+1)

∣

∣

∣

∣

∣

∼ ω

ωci
≪1 (3.13)

is satisfied with ω the frequency of perturbations.

3.2 The discretization of the parallel Ampere’s equation

NLT employs the field-aligned coordinates for the simulation of tokamak plasma to
minimize the number of grid points. The field-aligned coordinates are defined by

x= r, (3.14)

y=qθ−ζ, (3.15)

z= θ. (3.16)

Here, r is the minor radius. θ and ζ are poloidal and toroidal angle. q(r) is the safety
factor. The parallel gradient operator can be expressed as

b·∇=∇‖=
1

JB

∂

∂z
, (3.17)

with J = |∇x×∇y·∇z|−1 the Jacobian of the coordinates. The perpendicular Laplacian
operator can be simplified in the field-aligned coordinates as

∇·∇⊥= c1
∂2

∂x
+c2

∂2

∂y
+c3

∂2

∂x∂y
+c4

∂

∂x
+c5

∂

∂y
, (3.18)
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with

c1= gxx, (3.19)

c2= gyy, (3.20)

c3=2gxy, (3.21)

c4=
1

J
[∂x(Jgxx)+∂z(Jgzx)], (3.22)

c5=
1

J
[∂x(Jgxy)+∂z(Jgzy)]. (3.23)

Here, gαβ(x,z)=∇α·∇β are the metric coefficients. Note that all the partial derivatives,
∂zδA‖, has been dropped with the high-n approximation and k‖ ≪ k⊥. In tokamak
configurations, The Fourier transform can be applied for any perturbation quantity
owing to the toroidal symmetry of the equilibrium magnetic field,

Q(x,y,z)=∑
n

Q̂n(x,z)einy. (3.24)

Therefore, for given toroidal mode n and z-grid zi, the parallel Ampere’s equation can be
transformed into a set of complex ODEs as

c1
∂2

∂x
+(inc3+c4)

∂2

∂x
−n2c2+inc5. (3.25)

4 Simulation results

In this section, we conduct a series of both linear and nonlinear simulations to validate the
code implementation. The linear simulations encompass ion temperature gradient (ITG),
trapped electron mode (TEM), and kinetic ballooning mode (KBM), while the nonlinear
simulations focus on electromagnetic ITG turbulence under low β condition. To enable
meaningful comparisons, we utilize the well-established Cyclone Base Case parameters
outlined in Ref. 12. Our study centers on a concentric circular tokamak configuration
characterized by a major radius of R0=1.67m, a minor radius of a=0.60m, and an inverse
aspect ratio of ǫ=0.36. The equilibrium magnetic field on the magnetic axis is B0=2.0T,
and the safety factor profile is analytically expressed as

q=2.52(r/a)2−0.16(r/a)+0.86, (4.1)

where r represents the small radius. Additionally, the radial profiles of plasma are
defined by

A(r)

A(r0)
=exp

[

−κA
a

R0
∆Atanh

(

(r−r0)/a

∆A

)]

, (4.2)

where A denotes the plasma temperature T or the density N. The specific values for
Ti,e(r0) and Ni,e(r0) are 2.14keV and 4.66×1019/m3, respectively, with r0 = 0.5a. We set
the characteristic width ∆A= 0.3 and choose κT = 6.96 and κN = 2.23. Consequently, we
obtain peaked gradient profiles of A centered at r0.
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4.1 Linear simulation

In order to maintain consistency with the work by Ref. 12, all simulations in this
subsection employ a proton-electron mass ratio of mp/me =918. The simulation box size
is defined as lz×lv‖×lµ = 2π×4vt×16T/B0, with grid resolutions set to nz×nv‖×nµ =
32×64×16. The radial size of the box and the corresponding resolution are adjusted
for different toroidal mode numbers n to accurately handle the kinetic effects of passing
electrons around the rational surface. For simplicity, we vary lx vary from 80ρi to 20ρi

with nx = 512 as the toroidal mode number n varies from 5 to 65. The simulation time
step for linear simulations is set to ∆t=2/ωci.

Fig. 1 illustrates the β scanning of the mode with a fixed toroidal mode number of
n = 19. The NLT results exhibit good agreement with those obtained from GENE [12],
in terms of growth rate, frequency, and the ITG-KBM transition threshold. It is widely
recognized that finite β has a stabilizing influence on the ITG mode and a destabilizing
effect on the KBM mode. As shown in Fig. 1(a), with an increase in normalized plasma
pressure β, the most unstable ion mode undergoes a transition from ITG to KBM. The
fact that the frequency of KBM is much larger than that of ITG is a distinguishing feature,
as presented in Fig. 1(b).

Following this, we perform a set of kyρi scans with fixed β=1%, where ky=nq/r. Fig. 2
shows the frequency and linear growth rate versus kyρi. The results of NLT and GENE are
in good agreement, indicating a transition from ITG to TEM as kyρi increases. Figs. 3(a)
and 3(b) show the two-dimensional mode structures of the electrostatic potential and
parallel vector potential of the ITG mode for n=25. While Figs. 4(a) and 4(b), as well as
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Figure 1: Linear ITG-KBM simulation results from NLT and GENE for (a) growth rate and (b) real frequency
with fixed toroidal mode number n=19. The simulation data of GENE code are taken from Ref. [12].
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Figure 2: Linear ITG-TEM simulation results from NLT and GENE for (a) growth rate and (b) real frequency
for the β=1% case. GENE’s data are from Ref. [12].

(a) (b)

Figure 3: 2D mode structure of the electrostatic potential (a) and parallel vector potential (b) in the (R,Z)
plane for the case of n=25 with β=1%.

Figs. 4(c) and 4(d), respectively, demonstrate the corresponding one-dimensional radial
and polar mode structures. The mode structures given by NLT and GENE are in well
agreement by comparing the above 1d and 2d mode structures with Figures 11 and 12 in
Ref. [12]. Moreover, the fine structures formed by the non-adiabatic response of electrons
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Figure 4: The structure of electrostatic potential (left) and vector potential (right) for n=25, with (a), (b) as
a function of the poloidal angle at r/a= 0.5 and (c), (d) as radial profile of the poloidally averaged squared
fluctuations. The maximum amplitudes are normalized to 1.

in the vicinity of the rational surfaces [9, 15] are also observed. Similarly, we can also
observe consistency between the 2D mode structures of the electrostatic potential and
magnetic vector potential at n=50 of TEM in both NLT (Fig. 5) and GENE (Fig. 13 shown
in Ref. [12]). In contrast to the structure shown in Fig. 3(a), the mode structure of the
vector potential of TEM mode is ballooning-like, and the eddy structures of both the
electrostatic potential and parallel vector potential are more localized. These results are
consistent with those given in Ref. [12], reflecting the accuracy of NLT in solving linear
electromagnetic drift wave instabilities.
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(a) (b)

Figure 5: 2D mode structure of the rescaled electrostatic potential (a) and parallel vector potential (b) in the
(R,Z) plane for the case of n=50 with β=1%.

4.2 Nonlinear simulation

NLT has been validated by the electrostatic nonlinear simulation of ITG dominated
turbulence with adiabatic electron model [30, 33] and TEM dominated turbulence with
gyrokinetic electron model [35]. In this section, we aim to further verify the reliability
of the NLT code in simulating the nonlinear evolution of electromagnetic turbulence.
Specifically, we compare the simulation results of nonlinear ITG turbulence under
low-β conditions using the electromagnetic model with re-splitting technique and the
electrostatic model with time diffusion method proposed in Ref. [35]. We expect that
in this low-β limit, the magnetic perturbation on turbulence is small, and thus the two
models should yield similar results.

In the context of these two cases, the reference temperature and simulation density are
established at T=1.97keV and N=1.0×1019m−3, respectively, which correspond to β(r=
r0)=0.2%. The radial simulation box spans from 0.2a to 0.8a, where a is the minor radius.
For both cases, simulations are performed only in a 1/3 wedge, and a total of 32 modes
are retained, corresponding to 0≤ kyρi ≤ 1.39, with ky = nq(r0)/r0. The grid resolutions
for

(

nx×ny×nz×nv‖×nµ

)

are fixed at (256×96×16×64×16), and the time step is set

at ∆t= 1.5ω−1
ci . The total simulation duration extends to approximately 100R0/cs, with

the sound speed cs =
√

Te/mi. Additionally, we assume a mass ratio between ions and
electrons of mi/me =400 to expedite the simulation process.

Fig. 6(a) compares the time evolution of the radial heat diffusivity of ions and
electrons in the electromagnetic and electrostatic simulations. Here, χi(e)=Qi(e)/|∇Ti(e)|,
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Figure 6: Evolution of radial heat diffusivity of ions and electrons over time. (a), comparison between
electromagnetic (EM) case and electrostatic (ES) case; (b), comparison between "E×B" component and
"fluttering" component of the electron heat diffusivity in EM case.

where Qi(e) represents the particle heat flux of ions (electrons) averaged between the
flux surfaces r = 0.4a and r = 0.6a. χ is normalized by the gyro-Bohm unit χGB =
ρ2

i vti/a. As anticipated, under low-β conditions approaching the electrostatic limit, the
electromagnetic and electrostatic simulations yield similar results. This is attributed
to the lower magnetic perturbation in the electromagnetic simulation. As depicted in
Fig. 6(b), the fluttering component of heat diffusivity due to the magnetic perturbation
is significantly smaller than the E×B component caused by the disturbed electrostatic
potential.
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Figure 7: Toroidal mode number spectrum of the electrostatic potential 〈φ〉≡ 1
V

´
|φ| for (a) ES case and (b)

EM case at three different time points.

From Fig. 6(a), it can be observed that before t = 18.41R0/cs, the heat transport
level of electrons is much greater than that of ions due to the higher growth rates of
the electron drift wave instability. The electron heat transport reaches saturation first
at t = 15.25R0/cs. After that, the level of electron heat transport gradually decreases,
while the level of ion heat transport surpasses that of electrons and reaches saturation at
t=20.72R0/cs. Correspondingly, the toroidal mode number spectrum of the electrostatic
potential 〈φ〉≡ 1

V

´

|φ|dX at three different moments, t= 15.25R0/cs, t= 20.72R0/cs, and
t= 74.52R0/cs, are shown in Fig. 7. Fig. 7(a) corresponds to the electrostatic case, while
Fig. 7(b) corresponds to the electromagnetic case. A good agreement can be observed
between the two cases under low-β conditions. In the quasi-linear stage, such as at
t=15.25R0/cs in the process, the spectral distribution of the electric potential is consistent
with the growth rate spectral distribution shown in Fig. 2. The lowest mode values occur
near the transition point of ITG-TEM. As turbulence evolves gradually, the process of
inverse energy cascade becomes evident. The magnitude of high-n modes gradually
decreases, while the energy of the modes near the transition point gradually increases.
Ultimately, aside from the n = 0 mode, the amplitude of the modes near n = 15 is the
highest, and as the value of n increases beyond 15, the amplitude of the modes gradually
decreases.

Additionally, the mode structures of the turbulent component of the electrostatic
potential in the (R,Z) plane for both the electrostatic (Fig. 8(a), Fig. 8(b) and Fig. 8(c)) and
electromagnetic (Fig. 8(d), Fig. 8(e) and Fig. 8(f)) cases at different moments are shown
in Fig. 8. With the evolution of turbulence, the non-n=0 components of the electrostatic
potential transition from the "elongated" structure of electron drift waves with high n to
the "short and thick" structure of ion drift waves, eventually being broken up by zonal
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Figure 8: Mode structures of turbulent component of the electrostatic potential in the (R,Z) plane at three
different time points, t= 15.25R0/cs, t= 20.72R0/cs and t= 74.52R0/cs. (a), (b) and (c) corresponds to ES
case, (d), (e) and (f) corresponds to EM case.

flows. This process aligns with the previously discussed evolution in terms of radial heat
diffusivity and the amplitude of the electrostatic potential.

To further assess the reliability of the electromagnetic model in calculating the
zonal flow, the comparison between the time evolution of the E×B shear rates of the
electrostatic case (Fig. 9(a)) and the electromagnetic case (Fig. 9(b)) is shown in Fig. 9. A
well agreement is evident between the two cases. In both scenarios, the inward radial
propagation of the electrostatic field and the fine scaled structures caused by the kinetic
effects of the passing electrons around the rational surface can be observed.

5 Summary and discussion

In this study, we incorporated the re-splitting δ f method [31] into the NLT code [34],
which is a global semi-Lagrangian gyrokinetic code used for simulating electromagnetic
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(a)

(b)

Figure 9: the time evolution of the E×B shear rates of (a) the electrostatic case and (b) the electromagnetic
case.

micro-turbulence in tokamak plasmas. By combining the re-splitting δ f method with
the I-transform method [25–27], we have successfully mitigated the cancellation problem
in the electromagnetic simulation of NLT. An additional advantage of this approach is
that it does not necessitate significant modifications to the original model, specifically the
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numerical Lie transform method of NLT [29,34]. Comparing the results obtained from the
NLT and GENE codes, we found reasonable agreement in terms of frequencies, growth
rates, and mode structures of the linear instabilities (such as ITG, TEM, and KBM).

We also compared the electromagnetic simulation with the electrostatic simulation of
ITG-dominated turbulence under low β conditions in NLT. The results from both models
were well aligned at low β. Furthermore, we observed a transition from electron energy
channels to ion energy channels in the nonlinear simulation. This is because the high-n
TEM/ETG modes exhibit higher growth rates and reach saturation earlier compared to
the ITG modes, as shown in Fig. 2 and Fig. 6. With this process, there is an inverse energy
cascade from shorter-wavelength modes to longer-wavelength modes, depicted in Fig. 7.

It should be pointed out that for current the re-splitting method implemented in NLT
code, it is often difficult to get a initial saturation in high-β or KBM regime with CBC
parameters. This phenomena has also been reported in Ref. [24] as "high-β runaway".
Recently, the nonlinear KBM simulation results have been reported [21] by using the
ORB5 and EUTERPE codes with the mixed-variable scheme [22, 23]. Note that although
the re-splitting method can effectively solve the cancellation problem for p‖-formulation,
it can not resolve the CFL limitation caused by the fast parallel streaming of electrons.
This requires other numerical methods to further enhance the numerical stability and
accuracy, such as the split-weight scheme [6] and the mixed-variable and pull-back
method [22, 23]. And we would leave this work in the future.
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