
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2024-0088

Vol. 37, No. 1, pp. 193-219
January 2025

Application of MUSIC Algorithm for Object

Localization Without Diagonal Elements of

Multi-Static Response Matrix

Won-Kwang Park*

Department of Information Security, Cryptology, and Mathematics,
Kookmin University, Seoul, 02707, Korea

Received 15 April 2024; Accepted (in revised version) 23 August 2024

Abstract. Generally, to apply the MUltiple SIgnal Classification (MUSIC) algorithm
for the rapid imaging of small objects, complete elements of the multi-static response
(MSR) matrix must be collected. However, in some real-world applications in mi-
crowave imaging, diagonal elements of the MSR matrix are unknown. Nevertheless, it
is possible to obtain imaging results using a traditional approach but theoretical reason
of the applicability has not been investigated yet. In this paper, we consider the appli-
cation of MUSIC for a fast identification of small objects from collected MSR matrix
in both transverse magnetic (TM) and transverse electric (TE) polarizations. In order
to examine the applicability, fundamental limitation, and various properties of MU-
SIC, we establish mathematical structure of the three imaging functions and explore
that the main factors of the imaging functions are Bessel function of order zero, one,
and two. The established structures demonstrate why the existence and location of
small objects can be retrieved via MUSIC without the diagonal elements of the MSR
matrix. Results of numerical simulations with noise-corrupted synthetic data are also
provided to support the identified structures.

AMS subject classifications: 78A46

Key words: MUltiple SIgnal Classification (MUSIC), multi-static response (MSR) matrix, Bessel
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1 Introduction

Time-harmonic inverse scattering problems for the retrieval of a two-dimensional small
objects in transverse magnetic (TM) polarization (or permittivity contrast case) and trans-
verse electric (TE) polarization (or permeability contrast case) have been considered in
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various researches [3,9,12,15,19,35]. The principle of retrieving unknown targets is based
on the Newton iteration method (i.e., determining the shape of the objects), which min-
imizes the discrepancy function between the measured far-field patterns in the presence
of true and man-made targets. Various techniques for reconstructing the shape of targets
have also been developed, including the Newton or Gauss-Newton methods [33, 54],
level-set strategy [21,48], bifocusing method [27,51], factorization method [31,34], poten-
tial drop method [25], inverse Fourier transform [2], migration techniques [6, 42], topo-
logical derivative [4, 37], direct sampling method [26, 41], and linear sampling method
[16, 32].

The MUltiple SIgnal Classification (MUSIC) algorithm has been successfully used
for imaging arbitrary shaped targets. For example, identification of two- and three-
dimensional small targets [8,17], retrieving small targets completely embedded in a half-
space [7, 24], detecting internal corrosion [10], damage diagnosis on complex aircraft
structures [13], reconstruction of thin objects [38], perfectly conducting cracks [11], and
extended targets [5], radar imaging [36], and biomedical imaging [50]. Throughout vari-
ous researches, it has been confirmed that MUSIC is a fast, stable, and effective imaging
technique. Furthermore, MUSIC can be extended in a straightforward fashion to the case
of multiple non-overlapping objects. Recently, by establishing relationships with Bessel
functions of integer order, various intrinsic properties of MUSIC in full- and limited-view,
and limited-aperture inverse scattering problems have been revealed [1, 28, 30, 44, 46].

In several studies, the MUSIC algorithm has been applied when one can use the com-
plete elements of a multi-static response (MSR) matrix whose elements are measured
scattered field or far-field pattern. However, under certain configurations, the diagonal
elements of an MSR matrix cannot be handled. For example, it is very hard to simultane-
ously transmit and receive the signal in microwave imaging (see [14, 43, 52] for instance)
so that the assumption that all elements of the MSR matrix are available cannot be used.
This is the reason of the development of bistatic imaging technique to overcome intrinsic
limitation of monostatic imaging, refer to [18, 20, 29]. Fortunately, the shape of objects
can still be obtained via MUSIC without diagonal elements of MSR matrix. This fact can
be examined through various numerical simulation; however, the theoretical reasons for
its applicability have not been investigated. This provides a stimulus for analyzing the
MUSIC algorithm without the diagonal elements of an MSR matrix.

In this study, we consider the MUSIC algorithm for imaging two-dimensional small
object in TM and TE polarization from MSR matrix when the diagonal elements cannot
be handled. In order to show the feasibility, we carefully investigate the mathematical
structure of a MUSIC-type imaging function by identifying a connection with the Bessel
function of integer order of the first kind. This is based on the asymptotic expansion
formula in the presence of small object in TM and TE polarizations, refer to [9]. The
investigated structure explains why the location of objects can be obtained via MUSIC in
both TM and TE polarizations, and it reveals the undiscovered properties of MUSIC. In
order to support the theoretical results, simulation results with synthetic data polluted
by random noise are exhibited.



W.-K. Park / Commun. Comput. Phys., 37 (2025), pp. 193-219 195

S1

θ1 ϑ1

ϑ2

ϑ3
ϑ4

ϑN−1

ϑNO

D

S1

θ1

ϑ2

ϑ3
ϑ4

ϑN−1

ϑNO

D

Figure 1: Illustrations of traditional (left) and current (right) simulation configurations corresponding the inci-
dent direction θ1.

The paper is organized as follows. In Section 2, we describe the two-dimensional di-
rect scattering problem and introduce the far-field pattern in the presence of small objects.
In Section 3, we introduce the traditional MUSIC algorithm. In Section 4, we introduce
the MUSIC algorithm, analyze the structure of the imaging functions from the MSR ma-
trix without diagonal elements, and discuss their properties. In Section 5, we present the
results of numerical simulations to support the analyzed structure of MUSIC. Finally, in
Section 6, we present a short conclusion including future work.

2 Direct scattering problem and far-field pattern

In this section, we introduce two-dimensional electromagnetic scattering in the presence
of small object in TM and TE polarizations. For a detailed description, we recommend
[9, 49, 53] for a more detailed discussion. We assume that there exists a circle-like small
object D with radius α and center z, and every materials are characterized by the value of
dielectric permittivity and magnetic permeability at the given angular frequency ω=2π f .
Here, f denotes the ordinary frequency measured in hertz.

Let εa and µa denote the value of dielectric permittivity and magnetic permeability of
D, respectively, and we denote εb and µb be those of R2\D. With this, the following piece-
wise constants of dielectric permittivity and magnetic permeability can be introduced;

ε(x)=

{

εa for x∈D,

εb for x∈R2\D,
and µ(x)=

{

µa for x∈D,

µb for x∈R2\D.
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With this, we denote kb be the background wavenumber that satisfies k2
b=ω2εbµb.

In this paper, we consider the illumination of plane waves with the direction of prop-
agation θ∈S1:

uinc(x,θ)= eikbθ·x,

where S1 is a two-dimensional unit circle centered at the origin. Then, the scattering of
uinc(x,θ) by D leads to the following direct scattering problem for the Helmholtz equa-
tion; let u(x,θ) be the time-harmonic total field; then, it satisfies

∇·
(

1

µ(x)
∇u(x,θ)

)

+ω2ε(x)u(x,θ)=0 for x∈R2

with transmission conditions at the boundaries of D. We denote uscat(x,θ) = u(x,θ)−
uinc(x,θ) as the scattered field, which is required to satisfy the Sommerfeld radiation
condition

lim
|x|→∞

|x|1/2

(

∂uscat(x,θ)

∂|x| −ikbuscat(x,θ)

)

=0

uniformly in all directions ϑ=x/|x| ∈S1.
Let u∞(ϑ,θ) be the far-field pattern of the scattered field uscat(x,θ) with observation

direction ϑ∈S1 that satisfies

uscat(x,θ)=
eikb |x|
√

|x|
u∞(ϑ,θ)+o

(

1
√

|x|

)

uniformly in all directions ϑ=
x

|x| , |x|−→∞.

Then, by virtue of [9], the far-field pattern u∞(ϑ,θ) can be represented as an asymptotic
expansion formula, which plays a key role in designing the MUSIC algorithm.

Lemma 2.1 (Asymptotic Expansion Formula). For sufficiently large ω, u∞(ϑ,θ) can be rep-
resented as

u∞(ϑ,θ)=α2π
k2

b(1+i)

4
√

kbπ

(

εa−εb√
εbµb

− 2µb

µa+µb
(ϑ ·θ))

)

e−ikb(ϑ−θ)·z+o(α2). (2.1)

3 Traditional MUSIC algorithm

In this section, we introduce the traditional MUSIC algorithm for imaging D in dielectric
permittivity (or TM polarization) and magnetic permeability (or TE polarization) cases.
For the sake of simplicity, suppose that we have N−different number of incident and
observation directions θn and ϑm, respectively, for n,m=1,2,··· ,N, and that the incident
and observation directions are the same (i.e., ϑn =−θn). In this paper, we consider the
full-view inverse problem. Therefore, we assume that θn is uniformly distributed in S1

such that

θn =

[

cos
2πn

N
,sin

2πn

N

]

. (3.1)
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Traditionally, the following MSR matrix is used in the MUSIC algorithm:

M=











u∞(ϑ1,θ1) u∞(ϑ1,θ2) ··· u∞(ϑ1,θN−1) u∞(ϑ1,θN)
u∞(ϑ2,θ1) u∞(ϑ2,θ2) ··· u∞(ϑ2,θN−1) u∞(ϑ2,θN)

...
...

. . .
...

...
u∞(ϑN ,θ1) u∞(ϑN ,θ2) ··· u∞(ϑN ,θN−1) u∞(ϑN ,θN)











.

First, let us assume that ε(x) 6= εb and µ(x)=µb. Based on (2.1), since u∞(ϑm,θn) can be
approximated as

u∞(ϑm,θn)≈α2π
k2

b(1+i)

4
√

kbπ

(

εa−εb√
εbµb

)

e−ikb(ϑm−θn)·z,

MSR matrix M can be written as

M≈α2π
k2

b(1+i)

4
√

kbπ

(

εa−εb√
εbµb

)

E(z)TE(z), (3.2)

where

E(z)=
[

e−ikbϑ1·z,e−ikbϑ2·z,··· ,e−ikbϑN ·z
]
∣

∣

∣

ϑm=−θm

=
[

eikbθ1·z,eikbθ2·z,··· ,eikbθN ·z
]

. (3.3)

Based on the factorization of the MSR matrix, the range of M is determined by the span of
E(z) corresponding to D; that is, we can define a signal subspace using a set of singular
vectors corresponding to the nonzero singular values of M.

Now, to introduce the imaging function of MUSIC, let us perform the singular value
decomposition (SVD) of the MSR matrix M:

M=
N

∑
n=1

σnEnF∗
n ≈σ1E1F∗

1,

where superscript ∗ is the mark of Hermitian, En and Fn ∈CN×1 are respectively the left-
and right-singular vectors of M, and σn denotes singular values that satisfy

σ1>0 and σn ≈0 for n≥2.

Then, {E1} and {E2,E3,··· ,EN} are the (orthonormal) basis of the signal and null (or
noise) space of M, respectively. Therefore, one can define the projection operator onto
the noise subspace. This projection is given explicitly by

Pnoise=IN−E1E∗
1,

where IN denotes the N×N identity matrix. By regarding the structure of E(z) of (3.3),
we introduce the following unit test vector fε(x,N): for x∈Ω⊂R2,

fε(x,N)=
1√
N

[

eikbθ1·x,eikbθ2·x,. . .,eikbθN ·x
]T

, (3.4)
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where Ω denotes the region of interests (ROI). Then, there exists N0∈N such that for any
N≥N0, the following statement holds:

fε(x,N)∈Range(M) if and only if x=z∈D.

This signifies that Pnoise(fε(x,N)) = 0 when z ∈ D. Thus, we can design a MUSIC-type
imaging function such that

FTM(x,N)=
1

|Pnoise(fε(x,N))| .

Then, the map of FTM(x,N) will have peaks of large (+∞ in theory) and small amplitude
at x∈D and x∈Ω\D, respectively.

Next, we assume that ε(x)= εb and µ(x) 6=µb. Based on (2.1), since u∞(ϑm,θn) can be
approximated as

u∞(ϑm,θn)≈−α2π
k2

b(1+i)

4
√

kbπ

2µb

µa+µb
(ϑ ·θ)e−ikb(ϑ−θ)·z

=−α2π
k2

b(1+i)

4
√

kbπ

2µb

µa+µb

(

2

∑
s=1

(ϑ ·es)(θ·es)

)

e−ikb(ϑ−θ)·z,

MSR matrix M can be written as

M≈α2π
k2

b(1+i)

4
√

kbπ

2µb

µa+µb

2

∑
s=1

Fs(z)
TFs(z), (3.5)

where

Fs(z)=
[

(−ϑ1 ·es)e
−ikbϑ1·z,(−ϑ2 ·es)e

−ikbϑ2·z,. . .,(−ϑN ·es)e
−ikbϑN ·z

]
∣

∣

∣

ϑm=−θm

=
[

(θ1 ·es)e
ikbθ1·z,(θ2 ·es)e

ikbθ2·z,. . .,(θN ·es)e
ikbθN ·z

]

. (3.6)

Based on the factorization of the MSR matrix, the range of M is determined by the span of
{F1(z),F2(z)} corresponding to D. Thus, to introduce the imaging function of MUSIC,
let us perform the singular value decomposition (SVD) of the MSR matrix M:

M=
N

∑
n=1

σnEnF∗
n ≈

2

∑
n=1

σnEnF∗
n.

Then, {E1,E2} and {E3,E4,··· ,EN} are the (orthonormal) basis of the signal and null (or
noise) space of M, respectively. Therefore, one can define the projection operator onto
the noise subspace. This projection is given explicitly by

Pnoise =IN−
2

∑
n=1

EnE∗
n.
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By regarding the structure of Fs(z) of (3.6), we introduce the following unit test vector
fµ(x,N): for x∈Ω and ξ∈S1,

fµ(x,N)=

√

2

N

[

(θ1 ·ξ)eikbθ1·x,(θ2 ·ξ)eikbθ2·x,··· ,(θN ·ξ)eikbθN ·x
]T

, (3.7)

where Ω denotes the region of interests (ROI). Then, there exists N0∈N such that for any
N≥N0, the following statement holds:

fµ(x,N)∈Range(M) if and only if x=z∈D.

This signifies that Pnoise(fµ(x,N)) = 0 when z∈ D. Thus, we can design a MUSIC-type
imaging function such that

F
(µ)
TE (x,N)=

1

|Pnoise(fµ(x,N))| .

Then, the map of F
(µ)
TE (x,N) will have peaks of large (+∞ in theory) and small amplitude

at x∈D and x∈Ω\D, respectively. A more detailed description is provided in [9].

Remark 3.1. Based on several studies [22,38,39,47], the selection of ζ in (3.7) significantly
depends on the shape of the unknown object. Unfortunately, since one has no a priori
information about the shape of the object, a large number of directions ζl, l = 1,2,··· ,L,

were applied at each search point and took the maximum value of F
(µ)
TE (x,N) among

these directions. This process guarantees good imaging result but requires tremendous
computational costs. Due to this reason, we set θn ·ζ = 1 for all n, i.e., we apply the test
vector fε(x,N) from (3.4) instead of (3.7) to introduce another imaging function for the
MUSIC algorithm in the TE case such that

F
(ε)
TE(x,N)=

1

|Pnoise(fε(x,N))| .

4 MUSIC algorithm without diagonal elements of MSR matrix:

Analysis and discussion

Hereinafter, we assume that we have no information of u∞(ϑn,θn) for n=1,2,··· ,N. That
is, the obtained MSR matrix must be of the following form:

K=











unknown u∞(ϑ1,θ2) ··· u∞(ϑ1,θN−1) u∞(ϑ1,θN)
u∞(ϑ2,θ1) unknown ··· u∞(ϑ2,θN−1) u∞(ϑ2,θN)

...
...

. . .
...

...
u∞(ϑN ,θ1) u∞(ϑN ,θ2) ··· u∞(ϑN ,θN−1) unknown











.
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It should be noted that we have no any a priori information of the crack, and it is thus
difficult to approximate the diagonal terms of the MSR matrix. Throughout this paper,
we set the diagonal terms to be zero and consider the following MSR matrix:

K=











0 u∞(ϑ1,θ2) ··· u∞(ϑ1,θN−1) u∞(ϑ1,θN)
u∞(ϑ2,θ1) 0 ··· u∞(ϑ2,θN−1) u∞(ϑ2,θN)

...
...

. . .
...

...
u∞(ϑN ,θ1) u∞(ϑN ,θ2) ··· u∞(ϑN,θN−1) 0











. (4.1)

The remaining part of the algorithm is identical to the traditional one. For TM case, since
the SVD of K can be written as

K=
N

∑
n=1

σnUnV∗
n ≈σ1U1V∗

1, (4.2)

we can define the projection operator onto the noise subspace

Pnoise =IN−U1U∗
1 ,

and introduce the MUSIC-type imaging function FDM,

FDM(x,N)=
1

|Pnoise(fε(x,N))| , (4.3)

where fε(x,N) is defined in (3.4). Then surprisingly, the location of z∈D can be identified
through the map of FDM(x,N) when the total number of incident/observation directions
N is sufficiently large.

Remark 4.1. Although, the diagonal elements of the K are missing, total number of
nonzero singular values is same as the total number of cracks but structure of singu-
lar values is quiet different from the ones of M. This fact has been examined heuristically
in [42].

For TE case, since the SVD of K can be written as

K=
N

∑
n=1

σnUnV∗
n ≈

2

∑
n=1

σnUnV∗
n, (4.4)

we can define the projection operator onto the noise subspace

Pnoise =IN−
2

∑
n=1

UnU∗
n.

With this and based on the Remark 3.1, corresponding imaging functions of the MUSIC
can be introduced

F
(ε)
DE(x,N)=

1

|Pnoise(fε(x))|
and F

(µ)
DE(x,N)=

1

|Pnoise(fµ(x))|
. (4.5)

To confirm the applicability of MUSIC in both TM and TE cases, we establish mathemat-
ical structures of (4.3) and (4.5) by identifying a relationship with Bessel functions.
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4.1 Structure of the imaging function: TM case

For proper analysis, we introduce a result derived in [39] that plays an important role in
our analysis.

Lemma 4.1. For sufficiently large N, θn ∈S1 in (3.1), and x∈R2,

1

N

N

∑
n=1

eikbθn·x≈ J0(kb|x|), (4.6)

where Jn denotes the Bessel function of order n of the first kind.

Now, we derive the following result about the structure of FDM(x,N).

Theorem 4.1 (TM polarization case). For sufficiently large N and kb, FDM(x,N) can be rep-
resented as follows:

FDM(x,N)≈
(

N2−2N+1

N2−2N

)

(

1− J0(kb|x−z|)2
)−1/2

. (4.7)

Proof. Based on (3.2), (4.1), and (4.2), K can be written

K≈ α2k2
b(1+i)(εa−εb)π

4
√

kbπεbµb















0 eikb(θ1+θ2)·z ··· eikb(θ1+θN)·z

eikb(θ2+θ1)·z 0 ··· eikb(θ2+θN)·z
...

...
. . .

...

eikb(θN+θ1)·z eikb(θN+θ2)·z ··· 0















.

Then, performing an elementary calculus yields

1

(σ1)2
KK∗≈Cε











N−1 (N−2)eikb(θ1−θ2)·z ··· (N−2)eikb(θ1−θN)·z

(N−2)eikb(θ2−θ1)·z N−1 ··· (N−2)eikb(θ2−θN)·z
...

...
. . .

...

(N−2)eikb(θN−θ1)·z (N−2)eikb (θN−θ2)·z ··· N−1











,

where

Cε=

(

α2k2
b(εa−εb)π

2σ1

√

kbπεbµb

)2

.

Then, we have

I−U1U∗
1 =I− 1

(σ1)2
KK∗

≈ (1−Cε)I−Cε(N−2)











eikb(θ1−θ1)·z eikb(θ1−θ2)·z ··· eikb(θ1−θN)·z

eikb(θ2−θ1)·z eikb(θ2−θ2)·z ··· eikb(θ2−θN)·z
...

...
. . .

...

eikb(θN−θ1)·z eikb(θN−θ2)·z ··· eikb(θN−θN)·z











.
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Based on (4.6), since

eikbθp·z
N

∑
n=1

eikbθn·(x−z)≈Neikb θp·z J0(kb|x−z|) (4.8)

for p=1,2,··· ,N, we have











eikb(θ1−θ1)·z eikb(θ1−θ2)·z ··· eikb(θ1−θN)·z

eikb(θ2−θ1)·z eikb(θ2−θ2)·z ··· eikb(θ2−θN)·z
...

...
. . .

...

eikb(θN−θ1)·z eikb(θN−θ2)·z ··· eikb(θN−θN)·z





















eikbθ1·x

eikbθ2·x
...

eikbθN ·x











≈











Neikb θ1·z J0(kb|x−z|)
Neikb θ2·z J0(kb|x−z|)

...

Neikb θN ·z J0(kb|x−z|)











and correspondingly,

Pnoise(fε(x,N))=(I−U1U∗
1)fε(x,N)

≈ 1−Cε√
N















eikbθ1·x

eikbθ2·x
...

eikbθN ·x















−Cε(N−2)
√

N















eikbθ1·z J0(kb|x−z|)
eikbθ2·z J0(kb|x−z|)

...

eikbθN ·z J0(kb|x−z|)















.

Now, let us write

|Pnoise(fε(x,N))|=
(

Pnoise(fε(x,N))·Pnoise(fε(x,N))
)1/2

=

(

N

∑
n=1

(

(1−Cε)2

N
−(Ψ1(x,n)+Ψ1(x,n)

)

+Ψ2(x,n)Ψ2(x,n)

)

)1/2

,

where

Ψ1(x,n)=(1−Cε)Cε(N−2)eikb θn·(x−z) J0(kb|x−z|),
Ψ2(x,n)=Cε(N−2)

√
Neikbθn·z J0(kb|x−z|).

Applying (4.8) again, we can obtain

N

∑
n=1

(

Ψ1(x,n)+Ψ1(x,n)
)

=2Cε(1−Cε)(N−2)NJ0(kb|x−z|)2

and
N

∑
n=1

Ψ2(x,n)Ψ2(x,n)=C2
ε (N−2)2N2 J0(kb|x−z|)2.
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Hence, |Pnoise(fε(x,N))| becomes

|Pnoise(fε(x,N))|

=
(

(1−Cε)
2−2(1−Cε)Cε(N−2)NJ0(kb|x−z|)2+C2

ε (N−2)2N2 J0(kb|x−z|)2
)1/2

.

Since |Pnoise(fε(z))|=0 and J0(0)=1,

(1−Cε)
2−2(1−Cε)Cε(N−2)N+C2

ε (N−2)2N2=
(

(1−Cε)−CεN(N−2)
)2

=0.

This implies that Cε=(N−1)−2 and correspondingly,

|Pnoise(fε(x,N))|≈ (1−Cε)
(

1− J0(kb|x−z|)2
)1/2

=

(

N2−2N

N2−2N+1

)

(

1− J0(kb|x−z|)2
)1/2

.

Hence, we can derive the (4.7).

Based on the identified structure (4.7), we can observe several properties of MUSIC.

Remark 4.2 (Applicability of MUSIC). Since J0(0)=1, the map of FDM(x,N) will contain
peak of large magnitude (theoretically +∞) at x = z ∈ D. This explains why MUSIC is
applicable for imaging or identifying cracks without diagonal elements of an MSR matrix.

Remark 4.3 (Resolution of imaging results). As in traditional MUSIC-type imaging, the
resolution of the imaging result is highly dependent on the values of kb and N. This
signifies that because FDM(x,N) is related to J0, a result of poor resolution will obtained
if kb is small. In contrast, if kb is sufficiently large (as we assume in Theorem 4.1), a result
of high resolution can be obtained even in the presence of various artifacts.

Remark 4.4 (Influence of total number of incident/observation directions). Based on re-
cent work [38, Section 3.5], FTM(x,N) satisfies

lim
N→∞

FTM(x,N)=
(

1− J0(kb|x−z|)2
)−1/2

.

Since

lim
N→∞

FDM(x,N)= lim
N→∞

(

N2−2N+1

N2−2N

)

(

1− J0(kb|x−z|)2
)−1/2

=
(

1− J0(kb|x−z|)2
)−1/2

= lim
N→∞

FTM(x,N),

we can examine that sufficiently large number of incident/observation directions should
be applied to increase the resolution of the imaging results, i.e, a result of poor resolution
will appear if N is small.

Based on the Remark 4.2, we can also examine the unique determination.

Corollary 4.1 (Unique determination of object). For sufficiently large N and kb, the location
of small object can be identified uniquely via the map of FDM(x,N).
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4.2 Structure of the imaging function: TE case

Now, we analyze the imaging function in TE polarization. We first recall a useful result
derived in [39, 40].

Lemma 4.2. For sufficiently large N, θn ∈S1 in (3.1), ξ∈S1, and x∈R2\{0},

1

N

N

∑
n=1

(ξ ·θn)e
ikbθn·x≈i

(

x

|x| ·ξ
)

J1(kb|x|),

1

N

N

∑
n=1

(ξ ·θn)
2eikbθn·x≈1

2

(

J0(kb|x|)+ J2(kb|x|)
)

−
(

x

|x| ·ξ
)2

J2(kb|x|),

1

N

N

∑
n=1

(θm ·θn)(ξ ·θn)e
ikbθn·x≈1

2
(θm ·ξ)

(

J0(kb|x|)+ J2(kb|x|)
)

−
(

x

|x| ·θm

)(

x

|x| ·ξ
)

J2(kb|x|).

(4.9)

If x=0 then

1

N

N

∑
n=1

(ξ ·θn)≈0,
1

N

N

∑
n=1

(ξ ·θn)
2≈ 1

2
, and

1

N

N

∑
n=1

(θm ·θn)(ξ ·θn)≈
1

2
(θm ·ξ).

Now, we derive the following result about the structures of F
(ε)
DE(x,N) and F

(ε)
DE(x,N).

Theorem 4.2 (TE polarization case). Let ξ =(cosξ,sinξ). Then, for sufficiently large N and

kb, F
(ε)
DE(x,N) and F

(µ)
DE(x,N) can be represented as follows:

F
(ε)
DE(x,N)≈

(

(1−Cµ)
2−2Cµ(1−Cµ)N

(

N

2
−2

)

J1(kb|x−z|)2

+C2
µ

N2

2

(

N

2
−2

)2

J1(kb|x−z|)2

)−1/2

(4.10)

and

F
(µ)
DE(x,N)≈

(

(1−Cµ)
2−2(1−Cµ)CµN

(

N

2
−2

)

Ψ(x,z)

+C2
µN2

(

N

2
−2

)2

Ψ(x,z)

)−1/2

, (4.11)

where σ1≈σ2=σ,

Cµ=

(

α2k2
bµbπ

σ(µa+µb)
√

kbπ

)2

,
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and

Ψ(x,z)=
1

4

(

J0(kb|x−z|)+ J2(kb|x−z|)
)2

−
(

x−z

|x−z| ·ξ
)2
(

J0(kb|x−z|)+ J2(kb|x−z|)
)

J2(kb|x−z|)

+

(

x−z

|x−z| ·ξ
)2

J2(kb|x−z|)2.

Proof. Based on (3.5), (4.1), and (4.4), K can be written

K≈ α2k2
b(1+i)µbπ

2(µa+µb)
√

kbπ















0 (θ1 ·θ2)eikb(θ1+θ2)·z ··· (θ1 ·θN)e
ikb(θ1+θN)·z

(θ2 ·θ1)e
ikb(θ2+θ1)·z 0 ··· (θ2 ·θN)e

ikb(θ2+θN)·z
...

...
. . .

...

(θN ·θ1)e
ikb(θN+θ1)·z (θN ·θ2)eikb(θN+θ2)·z ··· 0















.

Since σ1≈σ2=σ, by letting N (n,m)=(N/2−2)(θn ·θm), we have

1

σ2
KK∗≈Cµ













N/2−1 N (1,2)eikb(θ1−θ2)·z ··· N (1,N)eikb(θ1−θN)·z

N (2,1)eikb(θ2−θ1)·z N/2−1 ··· N (2,N)eikb(θ2−θN)·z
...

...
. . .

...

N (N,1)eikb(θN−θ1)·z N (N,2)eikb(θN−θ2)·z ··· N/2−1













and correspondingly,

I−
2

∑
m=1

UmU∗
m=I− 1

σ2
KK∗≈ (1−Cµ)I

−Cµ

(

N

2
−2

)











(θ1 ·θ1)e
ikb(θ1−θ1)·z (θ1 ·θ2)eikb(θ1−θ2)·z ··· (θ1 ·θN)e

ikb(θ1−θN)·z

(θ2 ·θ1)e
ikb(θ2−θ1)·z (θ2 ·θ2)eikb(θ2−θ2)·z ··· (θ2 ·θN)e

ikb(θ2−θN)·z
...

...
. . .

...

(θN ·θ1)e
ikb(θN−θ1)·z (θN ·θ2)eikb(θN−θ2)·z ··· (θN ·θN)e

ikb(θN−θN)·z











.
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First, we consider the structure of Pnoise(fε(x,N)). Based on (4.9), since











(θ1 ·θ1)e
ikb(θ1−θ1)·z (θ1 ·θ2)eikb(θ1−θ2)·z ··· (θ1 ·θN)e

ikb(θ1−θN)·z

(θ2 ·θ1)e
ikb(θ2−θ1)·z (θ2 ·θ2)eikb(θ2−θ2)·z ··· (θ2 ·θN)e

ikb(θ2−θN)·z
...

...
. . .

...

(θN ·θ1)e
ikb(θN−θ1)·z (θN ·θ2)eikb(θN−θ2)·z ··· (θN ·θN)e

ikb(θN−θN)·z





















eikbθ1·x

eikbθ2·x
...

eikbθN ·x











=





























eikbθ1·z
N

∑
n=1

(θ1 ·θn)e
ikbθn·(x−z)

eikbθ2·z
N

∑
n=1

(θ2 ·θn)e
ikbθn·(x−z)

...

eikbθN ·z
N

∑
n=1

(θN ·θn)e
ikbθn ·(x−z)





























≈

























iNeikb θ1·z
(

x−z

|x−z| ·θ1

)

J1(kb|x−z|)

iNeikb θ2·z
(

x−z

|x−z| ·θ2

)

J1(kb|x−z|)
...

iNeikb θN ·z
(

x−z

|x−z| ·θN

)

J1(kb|x−z|)

























,

we can examine that

Pnoise(fε(x,N))=

(

I−
2

∑
m=1

UmU∗
m

)

fε(x)

≈ 1−Cµ√
N











eikbθ1·x

eikbθ2·x
...

eikbθN ·x











−iCµ

(

N

2
−2

)√
N

























eikbθ1·z
(

x−z

|x−z| ·θ1

)

J1(kb|x−z|)

eikbθ2·z
(

x−z

|x−z| ·θ2

)

J1(kb|x−z|)
...

eikbθN ·z
(

x−z

|x−z| ·θN

)

J1(kb|x−z|)

























.

Now, let us write

|Pnoise(fε(x,N))|=
(

Pnoise(fε(x,N))·Pnoise(fε(x,N))
)1/2

=

(

N

∑
n=1

(

(1−Cµ)2

N
+(Ψ3(x,n)+Ψ3(x,n))+Ψ4(x,n)Ψ4(x,n)

)

)1/2

,

where

Ψ3(x,n)= i(1−Cµ)Cµ

(

N

2
−2

)

eikbθn·(x−z)

(

x−z

|x−z| ·θn

)

J1(kb|x−z|),

Ψ4(x,n)=−iCµ

(

N

2
−2

)√
Neikbθn ·z

(

x−z

|x−z| ·θn

)

J1(kb|x−z|).
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Applying (4.9), we can examine that

N

∑
n=1

(

x−z

|x−z| ·θn

)

eikbθn·(x−z)≈ iN

(

x−z

|x−z| ·
x−z

|x−z|

)

J1(kb|x−z|)= J1(kb|x−z|).

Hence,

N

∑
n=1

(Ψ3(x,n)+Ψ3(x,n))≈−2N(1−Cµ)Cµ

(

N

2
−2

)

J1(kb|x−z|)2.

Now, applying (4.9) again, we can examine that

N

∑
n=1

Ψ4(x,n)Ψ4(x,n)≈C2
µ

(

N

2
−2

)2

NJ1(kb|x−z|)2
N

∑
n=1

(

x−z

|x−z| ·θn

)2

=
N2

2
C2

µ

(

N

2
−2

)2

J1(kb|x−z|)2.

Therefore,

|Pnoise(fε(x,N))|

≈
(

(1−Cµ)
2−2N(1−Cµ)Cµ

(

N

2
−2

)

J1(kb|x−z|)2+
N2

2
C2

µ

(

N

2
−2

)2

J1(kb|x−z|)2

)1/2

.

Next, we consider the structure of Pnoise(fµ(x,N)). For the sake, let us denote

Λ(x,z)= J0(kb|x−z|)+ J2(kb|x−z|) and Γ(θ,ξ)=

(

x−z

|x−z| ·θ
)(

x−z

|x−z| ·ξ
)

.

Then based on (4.9),











(θ1 ·θ1)e
ikb(θ1−θ1)·z (θ1 ·θ2)eikb(θ1−θ2)·z ··· (θ1 ·θN)e

ikb(θ1−θN)·z

(θ2 ·θ1)e
ikb(θ2−θ1)·z (θ2 ·θ2)eikb(θ2−θ2)·z ··· (θ2 ·θN)e

ikb(θ2−θN)·z
...

...
. . .

...

(θN ·θ1)e
ikb(θN−θ1)·z (θN ·θ2)eikb(θN−θ2)·z ··· (θN ·θN)e

ikb(θN−θN)·z





















(θ1 ·ξ)eikbθ1·x

(θ2 ·ξ)eikbθ2·x
...

(θN ·ξ)eikbθN ·x










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=





























eikbθ1·z
N

∑
n=1

(θ1 ·θn)(ξ ·θn)e
ikbθn·(x−z)

eikbθ2·z
N

∑
n=1

(θ2 ·θn)(ξ ·θn)e
ikbθn·(x−z)

...

eikbθN ·z
N

∑
n=1

(θN ·θn)(ξ ·θn)e
ikbθn·(x−z)





























≈

























eikbθ1·z
(

N

2
(θ1 ·ξ)Λ(x,z)−NΓ(θ1,ξ)J2(kb|x−z|)

)

eikbθ2·z
(

N

2
(θ2 ·ξ)Λ(x,z)−NΓ(θ2,ξ)J2(kb|x−z|)

)

...

eikbθN ·z
(

N

2
(θN ·ξ)Λ(x,z)−NΓ(θN ,ξ)J2(kb|x−z|)

)

























.

Thus, we can examine that

Pnoise(fµ(x,N))=

(

I−
2

∑
m=1

UmU∗
m

)

fµ(x,N)≈
√

2

N
(1−Cµ)











(θ1 ·ξ)eikbθ1·x

(θ2 ·ξ)eikbθ2·x
...

(θN ·ξ)eikbθN ·x











−
√

2N

(

N

2
−2

)

Cµ

























eikbθ1·z
(

(θ1 ·ξ)
2

Λ(x,z)−Γ(θ1,ξ)J2(kb|x−z|)
)

eikbθ2·z
(

(θ2 ·ξ)
2

Λ(x,z)−Γ(θ2,ξ)J2(kb|x−z|)
)

...

eikbθN ·z
(

(θN ·ξ)
2

Λ(x,z)−Γ(θN ,ξ)J2(kb|x−z|)
)

























.

Now, let us write

|Pnoise(fµ(x,N))|=
(

Pnoise(fµ(x,N))·Pnoise(fµ(x,N))
)1/2

=

(

N

∑
n=1

(

(1−Cµ)2

N
+(Ψ5(x,n)+Ψ5(x,n))+Ψ6(x,n)Ψ6(x,n)

)

)1/2

,
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where

Ψ5(x,n)≈−2(1−Cµ)Cµ

(

N

2
−2

)

(θn ·ξ)eikbθn·(x−z)

(

(θn ·ξ)
2

Λ(x,z)−Γ(θn,ξ)J2(kb|x−z|)
)

,

Ψ6(x,n)≈
√

2N

(

N

2
−2

)

Cµeikbθn·z
(

(θn ·ξ)
2

Λ(x,z)−Γ(θn,ξ)J2(kb|x−z|)
)

.

Now, applying (4.9), we can evaluate

N

∑
n=1

(Ψ5(x,n)+Ψ5(x,n))

≈−2N(1−Cµ)Cµ

(

N

2
−2

)

×
(

1

4
Λ(x,z)2−Γ(ξ,ξ)Λ(x,z)J2(kb|x−z|)+Γ(ξ ,ξ)J2(kb|x−z|)2

)

and

N

∑
n=1

(Ψ6(x,n)Ψ6(x,n))

≈2N

(

N

2
−2

)2

C2
µ

N

∑
n=1

(

(θn ·ξ)2

4
Λ(x,z)2−(θn ·ξ)Γ(θn,ξ)Λ(x,z)J2(kb|x−z|)

+Γ(ξ,ξ)2 J2(kb|x−z|)2
)

=N2

(

N

2
−2

)2

C2
µ

(

1

4
Λ(x,z)2−Γ(ξ,ξ)Λ(x,z)J2(kb|x−z|)+Γ(ξ ,ξ)J2(kb|x−z|)2

)

.

Therefore,

|Pnoise(fµ(x,N))|

≈
(

(1−Cµ)
2−2N(1−Cµ)Cµ

(

N

2
−2

)

Ψ(x,z)+N2

(

N

2
−2

)2

C2
µΨ(x,z)

)1/2

.

With this, we can derive the structure (4.11).

Based on the identified structures (4.10) and (4.11), we can observe several properties
of the imaging functions.

Remark 4.5 (Applicability of MUSIC). The imaging function F
(ε)
DE(x,N) consists of J1(kb|x−

z|). Therefore, as in traditional MUSIC-type imaging, the map of F
(ε)
DE(x,N) will con-

tain two peaks of large large magnitude in the neighborhood of D and many artifacts

with small magnitude. In contrast, since F
(µ)
DE(x,N) consists of both J0(kb|x−z|) and

J2(kb|x−z|), the map of F
(µ)
DE (x,N) will contain peak of large magnitude at z=x∈D.
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Remark 4.6 (Influence of total number of incident/observation directions). Following

[38, Section 3.5], F
(µ)
TE (x,N) satisfies

lim
N→∞

F
(µ)
TE (x,N)=

(

1− J1(kb|x−z|)2
)−1/2

.

Therefore, similar to TM polarization, the obtained result should be poorer than the result

obtained via F
(µ)
TE (x,N) i.e., a result of poor resolution will be obtained if N is small.

Remark 4.7. Unlike Theorem 4.1, the complete form of Cµ in (4.10) is unknown. To ex-
amine an approximate form of Cµ, we follow a process similar to that in Remark 4.4.
Since

lim
N→∞

F
(ε)
DE(x,N)= lim

N→∞
F
(µ)
TE (x,N),

it can be said that

lim
N→∞

[

(1−Cµ)
2−2N(1−Cµ)Cµ

(

N

2
−2

)

J1(kb|x−z|)2+
N2

2
C2

µ

(

N

2
−2

)2

J1(kb|x−z|)2

]

=1− J1(kb|x−z|)2.

Hence, similar to the TM polarization case, we can examine that Cµ =O(N−2). Notice
that if Cµ satisfies

N

(

N

2
−2

)

Cµ=(2+
√

2)(1−Cµ) or equivalently Cµ=
4+2

√
2

N2−4N+4+2
√

2
=O

(

1

N2

)

,

then similar to the TM polarization case, F
(ε)
DE(x,N) can be written as

F
(ε)
DE(x,N)=

1

1−Cµ

(

1− J1(kb|x−z|)2
)−1/2

=

(

N2−4N+4+2
√

2

N2−4N

)

(

1− J1(kb|x−z|)2
)−1/2

.

Remark 4.8. Same as the Remark 4.7, if Cµ of (4.11) satisfies

N

(

N

2
−2

)

Cµ=(1−Cµ) or equivalently Cµ=
2

N2−4N+2
=O

(

1

N2

)

,

then F
(µ)
DE (x,N) can be written as

F
(µ)
DE(x,N)=

1

1−Cµ

(

1−Ψ(x,z)
)−1/2

=

(

N2−4N+2

N2−4N

)

(

1−Ψ(x,z)
)−1/2

.

Remark 4.9. Opposite to the Corollary 4.1, the unique determination in TE polarization

cannot be guaranteed via the maps of F
(ε)
DE(x,N) and F

(µ)
DE(x,N). Fortunately, throughout

simulation results in Section 5, small objects can be uniquely identified through the map

of F
(µ)
DE(x,N) for sufficiently large N and a proper selection of ζ in (3.7).
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5 Simulation results with synthetic and experimental data

In order to validate the results in Theorems 4.1 and 4.2, some results of numerical sim-
ulation are exhibited. Motivated by the simulation configuration [14], we set the far-
field pattern data were obtained in the anechoic chamber with vacuum permittivity εb=
8.854×10−12 F/m and permeability µb = 1.257×10−6 H/m. The ROI Ω was selected as
a square region (−0.1m,0.1m)×(−0.1m,0.1m) and three circular objects Dm ⊂ Ω, m =
1,2,3, with same radii αm = 0.01m, permittivities εm, permeabilities µm, and locations
z1 =(0.07m,0.05m), z2 =(−0.07m,0.00m), and z3 =(0.02m,−0.05m) were chosen. With
this configuration, the far-field pattern data u∞(ϑ j,θl) of K were generated by solving the
Folly-Lax formulation (see [23] for instance). After the generation of the far-field pattern,
20dB white Gaussian random noise was added to the unperturbed data.

Example 5.1 (Dielectric permittivity contrast case). Fig. 2 shows the maps of FTM(x,N)
and FDM(x,N) with f =1GHz for N=12 and N=36 directions when εm=5εb and µm≡µb.
Based on this result, the existence of three objects Dm can be recognized through the maps
of FTM(x,N) and FDM(x,N) but retrieved location of D3 through the map of FDM(x,N) is
not accurate.

Fig. 3 shows the maps of FTM(x,N) and FDM(x,N) with f = 2GHz for N = 12 and
N = 36 directions. Opposite to the imaging result at f = 1GHz, it is possible to retrieve
the location of every objects very accurately through the map of FDM(x,N). However,
although retrieved location of D3 with N=36 is more accurate than the one with N=12,

X 3
Y 0.446472

(a) with diagonal elements and N=12

X 3
Y 0.513266

(b) without diagonal elements and N=12

X 3
Y 0.489249

(c) with diagonal elements and N=36

X 3
Y 0.498082

(d) without diagonal elements and N=36

Figure 2: (Example 5.1) Distribution of normalized singular values and maps of FTM(x,N) and FDM(x,N) at
f =1GHz.
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X 3
Y 0.368942

(a) with diagonal elements and N=12

X 3
Y 0.400119

(b) without diagonal elements and N=12

X 3
Y 0.389091

(c) with diagonal elements and N=36

X 3
Y 0.402781

(d) without diagonal elements and N=36

Figure 3: (Example 5.1) Distribution of normalized singular values and maps of FTM(x,N) and FDM(x,N) at
f =2GHz.

exact location of D3 cannot be retrieved still.
Based on the simulation results, we can conclude that it will be very difficult to iden-

tify exact location of objects without diagonal elements of MSR matrix when total num-
ber of directions N is small. This is the reason why the condition of sufficiently large N
is needed in Theorem 4.1.

Example 5.2 (Magnetic permeability contrast case). Fig. 4 shows the maps of F
(ε)
TE(x,N)

and F
(ε)
DE(x,N) with f =2GHz for N=12 and N=36 directions when εm≡εb and µm=5µb.

Opposite to the Example 5.1, it is impossible to recognize the existence of objects with
and without diagonal elements of the MSR matrix.

Based on the simulation result with f = 4GHz with N = 12 directions, it is still im-

possible to retrieve the objects through the maps of F
(ε)
TE(x,N) and F

(ε)
DE(x,N). Moreover,

it is very difficult to discriminate nonzero singular values of the MSR matrix without
diagonal elements, refer to Fig. 5. Fortunately, by increasing total number of directions
N=36, it is very easy to discriminate nonzero singular values and possible to identify the
existence of objects by regarding the rings in the neighborhood of all zm∈Dm. This result
supports the Remark 4.5 and we conclude that not only large number of directions N but
also high frequency f must be applied to guarantee good imaging results.

Example 5.3 (Magnetic permeability contrast case). Fig. 5 shows the maps of F
(µ)
TE (x,N)

and F
(µ)
DE(x,N) with ξ=(0,1) and f =2GHz for N=12 and N=36 directions when εm≡ εb
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X 5
Y 0.27387

(a) with diagonal elements and N=12

X 3
Y 0.601087

(b) without diagonal elements and N=12

X 6
Y 0.134579

(c) with diagonal elements and N=36

X 6
Y 0.172987

(d) without diagonal elements and N=36

Figure 4: (Example 5.2) Distribution of normalized singular values and maps of F
(ε)
TE(x,N) and F

(ε)
DE(x,N) at

f =2GHz.

X 6
Y 0.296984

(a) with diagonal elements and N=12

X 9
Y 0.136783

(b) without diagonal elements and N=12

X 6
Y 0.351663

(c) with diagonal elements and N=36

X 6
Y 0.365364

(d) without diagonal elements and N=36

Figure 5: (Example 5.2) Distribution of normalized singular values and maps of F
(ε)
TE(x,N) and F

(ε)
DE(x,N) at

f =4GHz.
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X 5
Y 0.288522

(a) with diagonal elements and N=12

X 3
Y 0.611069

(b) without diagonal elements and N=12

X 6
Y 0.130458

(c) with diagonal elements and N=36

X 6
Y 0.16959

(d) without diagonal elements and N=36

Figure 6: (Example 5.3) Distribution of normalized singular values and maps of F
(µ)
TE (x,N) and F

(µ)
DE (x,N) at

f =2GHz.

and µm = 5µb. Opposite to the Example 5.2, it is impossible to recognize the existence
and location of objects with and without diagonal elements of the MSR matrix for N=36.
Unfortunately, if N=12 and the diagonal elements of the MSR matrix was missing, some
objects cannot be recognized because the magnitude at the such objects is very small.

Based on the simulation result with ξ =(0,1) and f = 4GHz for N= 12 and 36 direc-
tions, unlike to the Example 5.2, it is impossible to recognize the objects through the maps

of F
(µ)
TE (x,N) and F

(µ)
DE(x,N). It is interesting to examine that unlike to the case N=12, it

is very difficult to discriminate nonzero singular values of the MSR matrix without di-

agonal elements and imaging result of F
(µ)
DE(x,N) is very poor. Fortunately, by adopting

N=36 directions, it is very easy to select nonzero singular values and possible to retrieve
all objects.

Example 5.4 (Simulation results with experimental data). Here, we let us consider the
simulation results with experimental data [14]. Following to the simulation configura-
tion in the presence of two dielectric objects (twodielTM 8f.exp), the range of receivers
is restricted from 60◦ to 300◦, with a step size of 5◦ based on each direction of the trans-
mitters. The transmitters are evenly distributed with step sizes of 10◦ from 0◦ to 350◦. As
a result, many elements (totally, 36×23 measurement data) including the diagonal of the
matrix K∈C36×72 cannot be measured, We refer to Fig. 8.

Although, the range of the K is unknown, we consider the application of the MUSIC.
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X 6
Y 0.285263

(a) with diagonal elements and N=12

X 5
Y 0.411709

(b) without diagonal elements and N=12

X 6
Y 0.343605

(c) with diagonal elements and N=36

X 6
Y 0.358346

(d) without diagonal elements and N=36

Figure 7: (Example 5.3) Distribution of normalized singular values and maps of F
(µ)
TE (x,N) and F

(µ)
DE (x,N) at

f =4GHz.

(a) f =1GHz (b) f =2GHz (c) f =4GHz (d) f =6GHz

Figure 8: (Example 5.4) Visualization of the absolute value of MSR matrix.

To this end, let us perform the SVD

K=
N

∑
n=1

σnUnV∗
n ≈

N ′

∑
n=1

σnUnV∗
n.

Since K is non-symmetric, we cannot use the test vector fε(x,N) of (3.4) directly. Instead,
based on the recent studies [44, 45], we generate projection operators onto the noise sub-
spaces

Pnoise =I36−
N ′

∑
n=1

UnU∗
n and Qnoise=I72−

N ′

∑
n=1

VnV∗
n,
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X 3
Y 0.345259

(a) f =1GHz

X 6
Y 0.200452

(b) f =2GHz

X 6
Y 0.501464

(c) f =4GHz

X 12
Y 0.241178

(d) f =6GHz

Figure 9: (Example 5.4) Distribution of normalized singular values and maps of FDM(x,N).

and unit test vectors

f(x)=
1√
36

(

eikbθ1·x,eikbθ2·x,. . .,eikbθ36·x
)T

and g(x)=
1√
72

(

e−ikbϑ1·x,e−ikbϑ2·x,. . .,e−ikbϑ72·x
)T

.

Then, the imaging function can be introduced as

FDM(x,N)=
1

2

(

1

|Pnoise(f(x))|
+

1

|Qnoise(g(x))|

)

.

Based on the imaging results in Fig. 9, although exact shape of objects cannot be retrieved,
the existence and outline shape of objects can be retrieved at f =4GHz and 6GHz. How-
ever, if one applies low frequency, it will be impossible to recognize the existence of ob-
jects (at f =1GHz) or very difficult to retrieve the outline shape of objects (at f =2GHz).

6 Conclusion

In this study, we considered the MUSIC algorithm for localizing two-dimensional small
object modeled via TM and TE polarization when the diagonal elements of MSR matrix
cannot be determined. We investigated a mathematical structure of the imaging functions
by establishing a relationship with the Bessel function of order 0 (TM polarization), 1 (TE
polarization), and both 0 and 2 (TE polarization). Based on the investigated structures,
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we confirmed that MUSIC can be applied to retrieve location of small object without the
diagonal elements of the MSR matrix in both TM and TE polarizations when total number
of incident and observation directions is sufficiently large.

Unfortunately, exact expression of Cµ in Theorem 4.2 is still unknown. Derivation
of exact structure of the imaging function in TE polarization will be an interesting re-
search subject. In this study, the structures were derived in the presence of single object
but MUSIC can be applied to the identification of multiple, small objects on the basis
of simulation results. Extension to the multiple, small objects will be the forthcoming
work. Finally, extension to the three-dimensional inverse scattering problem will be an
interesting research topic.
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