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Abstract. In this paper, the model reduction method based on k-nearest-neighbors is
provided for the parametrized nonlocal partial differential equations (PDEs). In com-
parison to standard local PDEs, the stiffness matrix of the corresponding nonlocal
model loses sparsity due to the nonlocal interaction parameter J. Specially the non-
local model contains uncertain parameters, enhancing the complexity of computation.
In order to improve the computation efficiency, we combine the k-nearest-neighbors
with the model reduction method to construct the efficient surrogate models of the
parametrized nonlocal problems. This method is an offline-online mechanism. In the
offline phase, we develop the full-order model by using the quadratic finite element
method (FEM) to generate snapshots and employ the model reduction method to pro-
cess the snapshots and extract their key characters. In the online phase, we utilize
k-nearest-neighbors regression to construct the surrogate model. In the numerical ex-
periments, we first verify the convergence rate when applying quadratic FEM to the
nonlocal problems. Subsequently, for the linear and nonlinear nonlocal problems with
random inputs, the numerical results illustrate the efficiency and accuracy of the sur-
rogate models.
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1 Introduction

Nonlocal phenomena, which have appeared observed in various fields such as physics,
materials, biology, and social sciences, are ubiquitous in nature [11]. It is well-known

*Corresponding author. Email addresses: caixia.nan@polyu.edu.hk (C. Nan), q1i28@hnu.edu.cn (Q. Li),
shling@hnu.edu.cn (H. Song)

http:/ /www.global-sci.com/cicp 220 ©2025 Global-Science Press



C. Nan, Q. Li and H. Song / Commun. Comput. Phys., 37 (2025), pp. 220-249 221

that the nonlocal parabolic model is a generalization of the classic local parabolic model,
incorporating the horizon parameter ¢ to measure the range of nonlocal interactions. The
specific nonlocal parabolic equation is given by:

aai: = ,C(su —l—f.

As 6 — 0, the nonlocal model converges to the corresponding classic local model. Essen-
tially, the discretization of the local Laplacian operator only requires computation of the
discrete node values, while the discretization of the nonlocal diffusion operator necessi-
tates information on feature interactions occurring between spatial points separated by a
finite distance when ¢ >0 [14]. Consequently, the nonlocal model has significant advan-
tages in exploring defects, for example, the nucleation and propagation of cracks [2].

In recent years, the exploration of theoretical and numerical analysis of nonlocal mod-
els has received much attention. Tian and Du [38] conducted a comprehensive study of
piecewise constant finite element method (FEM) and piecewise linear FEM schemes for
nonlocal diffusion and linear peridynamic equations, providing detailed discussions of
singular kernels and analyzing fundamental theoretical and numerical scheme issues.
Additionally, Li et al. [12,15] investigated the exponential time differencing method for
semilinear parabolic equations, such as the nonlocal Allen-Cahn equation, to explore its
maximum bound principle. They also considered the nonlocal Cahn-Hilliard equation,
rigorously establishing energy stability and convergence analysis [10,25]. In [13], the au-
thors adopted the implicit Runge-Kutta method and discontinuous Galerkin method for
nonlocal diffusion problems, where the stability and error estimates of the fully discrete
numerical schemes were presented. Furthermore, Nan and Song [31] applied integrat-
ing factor Runge-Kutta method and finite difference method (FDM) to solve the nonlocal
Allen-Cahn equation, successfully demonstrating the maximum bound principle.

It is well known that nonlocal interactions lead to a denser discrete system com-
pared to standard local models due to the horizon §, whether applying the FEM or the
FDM. This increased density poses a significant challenge for the computation of the
nonlocal model, and the inclusion of stochastic input further effects computational ef-
ficiency [24,40]. Consequently, constructing a cheaper and simplified surrogate model
for parametrized nonlocal model has become a significant subject of research. Surrogate
model is an approximate model in the low dimensional subspace of the solution space.
The success of these model reduction methods relies on the assumption that the solu-
tion manifold can be embedded in a low dimensional space [3]. But, the important class
of problems arising from parametric dynamical systems typically induce a rough solu-
tion manifold with slowly decaying Kolmogorov n-widths. This suggests that traditional
model-order reduction (MOR) methods [5,22,26,28] are generally ineffective. In recent
years, there has been a growing interest in the development of MOR techniques for para-
metric dynamical systems to overcome the limitations of linear global approximations.
A large class of methods consider the dynamical low approximation, enabling both the
deterministic and stochastic basis functions to evolve in time [30,32,45]. Other strategies,
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based on deep learning algorithms, were proposed in [16, 29, 33, 46] to construct effi-
cient surrogate models for time-dependent parametrized PDEs. In this context, we aim
to employ classical methods to construct an efficient and reliable approximation of the
input-output relationship for parametric dynamical systems to efficiently construct sur-
rogate models. This includes the proper orthogonal decomposition (POD) method, the
dynamic mode decomposition method (DMD), the k-nearest-neighbors (KNN) method,
and the discrete empirical interpolation method (DEIM). These MOR methods are capa-
ble of handling problems of any spatial dimension.

Currently, there is limited discussion regarding the reduction for the nonlocal prob-
lems, and we present prior relevant research on this subject. The first research to explore
the MOR for nonlocal model is presented in [42]. The authors considered MOR for non-
local diffusion problems with uncertain parameters, where the piecewise FEM was used
for spatial discretization and POD was used to generate the simplified surrogate mod-
els. Guan et al. [19] developed the reduced-basis approximations for nonlocal diffusion
equations with affine random coefficients and illustrated the efficiency of the proposed
model through numerical results. Lu and Nie [27] focused on the implementations of the
meshfree-based ROMs for time-dependent nonlocal models with inhomogeneous vol-
ume constraints. They introduced a mixed reproducing approximation with nodal inter-
polation property to develop a meshfree collocation method, with results confirming the
efficiency of their approach.

The KNN method is known for its ease of implementation and excellent performance
in modeling physical systems with a large number of parameters [21]. Typically, it clas-
sifies training points based on the Euclidean metric from the observation x, defining it
as the neighborhood of x. The size of the neighborhood is usually determined by the
predefined k. Ghosh [18] introduced an adaptive choice nearest neighbor classification
technique to select k, and the numerical examples illustrated the utility of the proposed
method. Belkin et al. [1] provided theoretical foundations for interpolated classifiers by
analyzing local interpolating schemes. Xing et al. [44] explored a class of interpolation
weighting schemes in the nearest neighbors algorithm to enforce zero training error and
discussed the universality of their results. Gao et al. [17] proposed a new surrogate model
based on KNN regression and DMD to solve various nonlinear parameterized PDEs,
demonstrating the strong predictive ability of KNN-DMD within the training time re-
gion.

POD is a widely-used dimensionality reduction method that extracts dominant fea-
tures of a system to form a reduced basis, with Galerkin method projecting dynamic
equations onto this reduced basis for reduced-order modeling of high-dimensional sys-
tems. It has been successfully applied to optimization involving PDEs or feedback control
laws. Many studies have explored its applications, such as Rathinam and Petzold [34] in-
vestigated the basic properties of POD, and provided error analysis for reduced-order
models, establishing the POD basis based on data ensembles with small perturbations.
Sachs and Volkwein [35] applied POD to optimization problems with PDEs and stud-
ied posteriori error estimates. Schmidt et al. [36] applied POD for parabolic PDEs with
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parameters and provided posteriori error estimate.

The DMD is a data-driven method used for analyzing and extracting dynamic in-
formation from time-series data, which decomposes a dynamical system into a set of
spatiotemporal coherent structures represented as the DMD modes from a set of time
series data, i.e., snapshots. This method can generate a low-dimensional eigenfunction-
based approximation of the underlying Koopman operator. Initially developed in the
field of fluid dynamics, then has been applied in various domain, including engineering,
physics, and biology. Numerous studies have been devoted to this method. Drmac et
al. [7] provided a robust numerical linear algebra framework to solve structured least
squares problems based on DMD, with potential extensions to various computational
tasks, such as multistatic antenna array processing. Colbrook [6] investigated a measure-
preserving extended DMD (mpDMD), which is flexible and easy to use with any preex-
isting DMD-type method, and with different type of data. Their work also demonstrated
the robustness of the mpDMD to the noise compared to other DMD-type methods. Li et
al. [23] developed an adaptive method based on DMD, employing the Taylor expansion
at each step, to construct an efficient and reliable surrogate model.

In this paper, we focus on the exploration of MOR for parametrized nonlocal PDEs.
There are two main difficulties: firstly, due to the horizon J, the matrix generated by
the nonlocal model is more complex than the corresponding local model. Secondly,
the model inputs to the parametrized PDEs often contain uncertainties. Estimating the
amount of uncertain parameters and quantifying their effects usually requires a large
number of repetitive work [20]. To overcome these difficulties, we introduce the MOR
methods to generate surrogate models of the parametrized nonlocal PDEs. The process
of generating surrogate model requires an offline-online computational decomposition
to improve efficiency. In the offline phase, we calculate the parametrized nonlocal PDEs
based on the full-order models to produce the snapshots and obtain the data matrices.
Singular value decomposition (SVD) is used to obtain the reduced operator matrices. In
the online phase, we utilize the KNN method to select the k nearest neighbor samples
and calculate the weights of the samples to construct the surrogate models. The com-
putation cost of the online phase is completely independent of the spatial discretization,
which leads to high computational efficiency. In the numerical examples, we first demon-
strate the convergence rate of the quadratic FEM for the nonlocal linear PDEs. Then, we
consider the nonlocal PDEs with stochastic inputs, including linear and nonlinear cases.
We compare the predicted solution produced by the proposed surrogate models and the
reference solution based on the full-order equation. We calculate the relative error (RE)
and mean error over the parameter sets at time ¢t (MTE), which indicate the potential of
these MOR methods in predicting the parametrized nonlocal model solutions.

The rest of the paper is organized as follows. In Section 2, we introduce the
parametrized nonlocal model. In Section 3, the piecewise quadrature FEM is proposed
for spatial discretization and the weak formulation is derived. Section 4 and Section 5
correspond to the online phase and offline phase of the MOR methods for the surrogate
models. Several numerical examples are presented in Section 6 to demonstrate the per-
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formance and effectiveness of the introduced MOR methods. We make some conclusions
in the last Section.

2 Preliminaries of the parametrized model and nonlocal
operator

In this section, we begin by describing the parametrized PDEs, then we introduce the
nonlocal operator to the model. Following that, we provide some notations for the model.

Let us consider the following general parametrized time-dependent PDEs with the
initial condition,

d
{£+N[u(x,t;y)] = f(xtp), (xtu)COXT P, 2.1)

u(x,0;m) = u’ (x;1),

where P € RY and v is the dimension of parameter vector, 7 represents the time domain
(T=(0, T], T>0), and Q €R is the space domain. The notation N [u(x,t;u)] represents the
linear or nonlinear operator associated with the spatial x, time ¢, and kernel (in nonlocal
case), characterized by the parameter vector p. The function u(x,t;u) denotes the solution
field that we aim to approximate, while f(x, ;) is the linear or nonlinear term.

2.1 Nonlocal operator

Considering the general parametrized PDEs (2.1), we present the nonlocal operator in
one dimension,

Nu(x, ;)] =—Lsu(x,t;p), (2.2)

where L; is a nonlocal operator. The value of Lsu at point x requires information about
u at points y # x, in addition to x. Define the nonlocal operator £; by

Lou()= [ (uly)=u(x)psluy)dy, Vel 3)

where [ = (a,8) CQER. Bs(x)={ye€Q:|y—x| <J} denotes a neighborhood centered
at x with radius ¢, and ps(x,y): IxI— R is a nonnegative symmetric kernel function,
i.e., ps(x,y) =ps(y,x) >0. We consider kernel as the radial type, i.e., ps(x,y) =ps(|x—y]|).
The kernel function ps(x,y) contains a parameter z, which belongs to parameter vector
u, and its specific expression in difference problem is given in Section 6. In addition, the
second-order moment of p;(s) (s=|x—y|) is defined to be positive and finite,

s
0<C5:/ s205(s)ds < co. (2.4)
0
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Eq. (2.4) allows for more general kernels, which may or may not be locally integrable.
Substituting the nonlocal operator (2.2) into the general parametrized Eq. (2.1), it can
be transformed into:

Z—Cw(x,t:ﬂ)zf(x,f;ﬂ), (xtp) CIXT xP. @5)

Subsequently, we provide some notations for the spatial definition, boundary condition,
and bilinear formulation of the nonlocal Eq. (2.5).
2.2 Notations

Let I be a bounded line segment in the space (), and let N, denote the number of grid
points on I except the endpoints, which are uniformly distributed. Here, h = ﬁ rep-
resents the mesh size, and I, = [x,,x,,1], where x, =nh for n=0,1,---,N,. The value of
Lsu at point x interacts with the point y in the interval (x—4,x+¢), which has a nonzeros
length. Consequently, the domain I is imposed the interval § due to the nonlocality of in-
teractions, where 6 denotes the volume constraint, and we refer to the extended domain
as I'. To clarify this, the domain is represented as follows,

I=(a,B), I'=(a—6,+6), T=I\I=[a—5a]U[B,B+7].
The boundary condition of Eq. (2.5) is set as,
flx,u)=g(x,t;m), Y(x,t;u) CTXTXP,

where g is the given function. In most cases, we define g =u, except in special circum-
stances.

Next, we give the definition for the energy space and the constrained energy space
according to [8],

S ={oelP Wl [ | @) =0()ps(lx—yDdudx <o},

and So(I') ={weS(I')Jw=0onT}. In order to compute Eq. (2.5) on I', we define the
affine space [42],

Se(I')={weS(I'):w=g on T}
The bilinear form of the nonlocal linear operator on L?(I) x L?(I) is defined as
1 0
(Lon0)i=35 [ [ () =u() (0()=o(x))ps(x—yDdydx,

which can be referred to [39]. The inner product on L?(I) can be represented as

(u,v);::/lu(x)v(x)dx.
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Multiplying the test function v(x) by (2.5) and integrating over I yields

(2L o)) — (Lt 0(x)), = (P ) o) 26)

It is important to note that the test function v(x) must be zero on the boundary domain
I.

Applying the nonlocal Green’s first identity established in [9], we can derive the spa-
tial discretization equation of (2.6), that is

/au(;tt,ﬂ de// w(y,tp) —u(x, ) (0(y) —o(x))ps(|x—y| ) dydx

_/f X, tp)v (2.7)

where u€S(I') and v€ Sy(I’). The detailed expression of the discrete scheme for Eq. (2.7)
will be discussed in the following section.

3 Quadratic FEM for parameterized nonlocal model

In this section, we use the quadratic FEM for the parametrized nonlocal PDEs. The de-
tailed explanation of quadratic FEM for the nonlocal model is provided, considering the
complexity of the matrix caused by the horizon é.

We begin by uniformly dividing the domain I’ into intervals,
zx—ézx,p X1 < <X <X <+ <XN, <XN 41 <""" <XNX+1+p:‘B+(5, (3.1)

where xo=a, xn, 11=p, and p is a positive integer. The spaces are defined as S"(I')CS(I"),
SE(I")CSo(I') (ie., Sh(w)={w"€S(I'):w"=00nT}), and ng {whes"(I'):w"=¢" onT}.
S"(I') is the space of continuous piecewise quadrature polynomials.

For any t € T, we find the numerical solution u;(x,t) € S"(I') and present the weak
spatial discretization formula for (2.7) as follows,

/ a’“‘“’gf’*é)vhmm / /O " un () — s (0, E12)) (00 () — 00 () Yo (| —y )y
:/If(x,t;yg)vh(x)dx, Y oy, (x) C SE(T). 3.2)

Here, jiz represents the fixed parameter for the deterministic problem. In Eq. (3.2), we
employ piecewise quadratic polynomials from S"(I’) for the space discretization, with
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the specific formats of the basis functions given by

¢n/1(x):2<x—hxn>2_3x—hxn 41,
4)n,2(x):2<x—hxn)2_x—hxn’
o) =450 4T

It is easy to see that the nodes with respect to quadratic FEM basis functions on the
domain I are
/ / / / / / /
(xfzp/ x—2p+]/ Tty xO/ xl/ Tty x2Nx+1/ xZNx-i-Z/ Yy x2NX+2+2p)’ (33)

with x’,, =a—d and x5y 15,5, =p+J. The relationships between x, and xj, are

xh,=x,, for n=—p,-- ,Ny+1+p,

and

pe pe
xén+1:%’ for n:_p’...’Nx_i_p‘

In other words, based on original partition results (3.1), we add nodes in the center of
each I, forn=—p,--- ,Ny+p.
To provide a clearer understanding of the basis function, we present the relationship

between {%}?ﬁﬁ;ﬁ”p and {gb]-}]l-v:"f;w on each node.

For n=—p, we have
Yon=¢Pn1, Xn<xX<Xp41.
Forn=—p,---,Ny+p—1, there are
Yont1=0n3, Xn <X <Xpi1,
and

Pn2, Xp <X <Xyy1,

Pnr1)1, X1 <X <Xpi2.

Ya(nt1) = {
For n= Ny+p, we obtain

Yon1=Pn3, Xn<X<Xp41 and Yoni2=Pn2, Xn <X <Xp41.

Clearly, the basis function {¢j}Nx+1+P

im—p is defined at node X, while the basis function
{w;}

s !/
jmrop 18 defined at node Xj.
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Then, we partition the given time T €T as

0=0<t << .. <tV =T,

with At = Nl The finite element approximation uy(x,t;z) approximately equals to
u(x,tug), w which can be expressed in the form of
2Ny +2+2p
un(x,tpe) =}, cfgi(x).
j==2p

By applying the backward Euler method to the time discretization, we obtain the fully
discrete formulation of (2.5),

ZNx+2+2p
n+1
()i (x)dx
]_*ZP / ]
2Nx+2+2p
vy 1L @) =9 i)~ lx—y g
J——ZP
2Ny +2+2p
=t [ Fx g i)+ Pt / P ()i(x
for i=1,2,--- 2N, +1. (3.4)

Based on the initial condition and the volume constraints, more specific fully discrete
equation can be provided. Before presenting it, we give the following three notations to
clarify Eq. (3.4).

First, since the test function vy, is zero on I', we have

Pi(x)=0, on i={-2p,---,0}U{2Ny+2,---,2N,+2+2p}.
Second, for the node on I', we represent it as
of =g"(x,t"%pg), for n=0,---,N;, and j={—2p,---,0}U{2Ny+2,--+, 2Ny +2+2p}.
Third, for the value of cjat 19, there exists

c?:uo(x};yg), for j=1,---,2N,+1.

Taking into account the above notations, the unknown coefficients Cj (j=1,---,2Ny+1) are
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determined by solving the following linear system,

n+1 /% ) i(x

2Nx+l

ZNX—H

+AL Y / (910 =i (<)) @iy) ~pi(x))ps(|x—y )y

2Ny +2

—At/f X, t”“,y,; Vi (x)dx+ Z /lpj(x)lpi(x)dx

AT ) [ [ ) 90 (i) — i) sy )y
jeEN
—g" (") /lPo X)ihi(x)dx —g" (xon 42 t" /lPZNXJrz x)i(x)dx (3.5)

fori=1,---,2Ny+1and N={-2p,---,0} U{2N;+2,---,2N,+2+2p}. In the case of local
PDEs, the stiffness matrix is sparse when using the quadrature FEM to space discretiza-
tion. However, for the nonlocal model, the stiffness matrix loses its sparsity. More specif-
ically, compared to the local PDEs setting, this results in a denser stiffness matrix and
increased assembly for obtaining the results of the nonlocal parametrized PDEs.

Given the full-order discrete scheme (3.5) of the nonlocal model, we present the equiv-
alent matrix formulation as

M CI 4 AtB CI = AtF 1 Mo CY — AtBy (gh) "
—AtB(85)" ! = Mg (xo t") = Mag" (xyn, 2, t"),  (3.6)

where fori=1,---,2N, +1, there are
Ml(i,j):/le(x)gbi(x)dx, i=1,-- 2Ny +1,
Mz(i,j):/llpj(x)wi(x)dx, j=0,--, 2Ny 42,

:/Itpo(x)gbi(x)dx, M4(i):/11P2Nx+2(x)¢i(x)dx

and
(i) // 4]] x))(i(y) —i(x))ps(|x—y|)dydx, j=1,---,2Ny+1,
@)= / ($j() =) ($i ) 9 (s (lx—ydydz, j=—-2p,-0,
(i) // %y X)) (Wi (y) —i(x))ps(|x —y|)dydx,

j=2Ny+2,---, 2N +2+2p,
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gi=¢"(xpt), j=-2p,-,0, §=g"(x},t), j=2Ny+2,---2Nx+2+2p,

and
F(i)Z/If(X,t;Vg)l/Ji(X)dX, Ci=|[c1,62,-++ ,canp+1]’,  Ca=lco,c1,++,Can,+2]-

The detailed procedure of employing the quadratic FEM for parametrized nonlocal prob-
lems is provided. Following that, we present the surrogate model for the full-order
model.

4 Surrogate model based on KNN regression

As previously mentioned, it is typically computationally expensive when dealing with
the multi-parameter inputs, multi-physics and time-dependent problems of standard
PDEs, whether using the FDM or the FEM. Not to mention nonlocal problems, which
involve the nonlocal parameter §. To overcome these challenges, researchers have fo-
cused on constructing the inexpensive and simplified surrogate model to reduce com-
putational complexity and improves efficiency. In this section, we introduce the KNN
method, which is employed in the online phase for generating surrogate model.

Assume that the solution u (u is a matrix for space x and time t) is a random field,
possessing enough regularity [47]. Using a group of random samples { ‘ui}ﬂ 1, 1.e., train-
ing set &= { ‘ui}f\ﬁ 1, we construct the surrogate model using the KNN regression based
on MOR methods, where M is the number of training parameter sets. The offline-online
computational decomposition is obtained to enhance efficiency. The main idea of the of-
fline is to solve the full-order PDEs and subsequently utilize MOR methods to process
the snapshots and extract their main features. While the online phase is to apply the
KNN method to determine the surrogate model by searching the k nearest samples in
training parameter set based on the test parameters features. Here, we provide a detailed
introduction to the KNN method for the sake of completeness.

The KNN method is efficient for stochastic input problems due to its simplicity and
popularity. The principle is to select the predefined k nearest neighbors (from the training
cases) of the sample points based on the defined metric measure. Then, the weights of
the k selected points are calculated using the weighted average. The predicted solution is
obtained as a linear combination of the weights and the corresponding vectors. In other
words, the predicted solution u(z) with the new parameter s can be expressed as

Zj'czle”(ﬂj)

, 4.1
™, (4.1)

u(pg) =
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where w; denotes the weight assigned to the corresponding u(y;), defined by

aJ] = # ’ (42)
e =l

and || represents the Euclidean distance. The selection of an value for k is crucial in the
KNN method. Generally, a small k implies that the training domain is small around the
object parameter used for prediction, which increases the sensitivity of prediction with re-
spect to the selected parameter (overfitting). Conversely, a large k means that the training
instances are located in a big domain around the parameter values, which may overlook
small but critical relationships between the parameter and the prediction, resulting in
reduced similarity for the training instances and biased prediction (underfitting) [18].

5 Model reduction methods for the offline stage

In this section, we provide some MOR methods employed in the offline phase to con-
struct the surrogate model based on the training set E. Specifically, the POD method, a
well-known approach for reducing the system’s complexity, has been extensively utilized
for dimensional reduction. The DMD method, a data-driven technique for model reduc-
tion, is also becoming increasingly popular. In the following, we provide a brief review
of the POD method and DMD method separately.

5.1 POD method

Let V be a Hilbert space equipped with the inner product (+,-)y and the norm || - ||y. The
snapshots are defined as the solutions of (3.5) at a selected time t, denoted as wlu?,- e
V (u" =u(t") is a vector for rth time). The purpose of the POD method is to find a set of
orthogonal basis functions {7;}]_, that optimally approximate the snapshots {#'}"_,. The
basis set {7;}7_, solves the following optimal problem,

.
min Y [lu' =27, () 9)vill7, (5.1)
itz

s.t. (lYil’Y]')VISij/ Z/] = 11"'/?/

where ¢ is a kronecker function. To get the solution of (5.1), one use the snapshots method
[37] to calculate the correlation matrix K corresponding to the snapshots,

Ki,j:<ul/u]>Vl Z/] = 1,"‘,7’,

where K is positive semi-definite. We define A=diag(cy,---,07), where o3 >0p>--->0,>0
are the eigenvalues of matrix K and ¢1,¢>,---,@; are the associate eigenvectors. The POD
basis can be derived by

1

Vi= \ﬁz?ﬂ ((Pj)i”lr
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where (¢;); is the ith element of ¢; with j=1,---,7. Naturally, the number of the POD
basis functions (i.e., 7) is fewer than the rank number of K (i.e., ), which can be chosen
based on the decay speed of the eigenvalues of the correlation matrix [43]. The related
reduced basis model is located in Appendix A.

5.2 DMD method

In order to further improve the computational efficiency and achieve the prediction at
any time, we introduce the DMD method, which is a more recent numerical technique
and a powerful and versatile technique for analyzing time series data. To begin with
it, we obtain the field data, i.e., temporal snapshots, from the experiments or numerical
simulations, and use the sampling time step to separate the original temporal snapshots
into two subsequent snapshot sequences,

wl = [uol ulr : "/uqil] and WZ = [ull u2/ : "/uq]l (52)

where u' € R denotes the ith snapshot, g is the number of snapshots and I represents the
number of measurement nodes per snapshots. W; and W, are assumed to be connected
using the following linear dynamics,

W, =AW,

where A is a matrix, and a best-fit linear operator relating W, to Wy with A =W,(W;)".

“1” represents the Moore-Penrose pseudoinverse. When applying the DMD to solve a

nonlinear PDEs, A is a global linear approximation to the nonlinear dynamics.
Calculating the SVD of W, we obtain

Wl %XAY*,

where X e C!*¢, A e €8¢, Y € C7%¢, “x” denotes the transpose of a matrix or vector, and
{ denotes the rank of A.
Then, we compute the { x { projection of A on X, yields

A=X*AX=X"W,YA"!,

where A is a low rank matrix approximating to A. Compute the eigendecomposition of
A, we have

AP=PII,

where IT1=diag(ay,---,a;) is eigenvalue matrix, and the columns of P are the correspond-
ing eigenvectors.

Following that, the DMD mode corresponding to a particular DMD eigenvalue in I1
is given, represented as

Y—=—W,YA"'P.
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Figure 1: Flow chart of the online-offline for ROMs.

Finally, we employ the above approximated eigenvalues and corresponding eigen-
vectors of A to get the solutions for all time in the future,

n+1 o, n+1 __ n+1 _wt,,0
' ~upyp=YI""b, n>q, and b=Y'u".

More details about DMD please see [7,17,41].

More importantly, it is necessary to note that the accuracy of the proposed surrogate
models may be influenced by the rank of reduced SVD in the offline phase. In all numer-
ical examples, we will explicitly specify the values of these numbers.

Fig. 1 illustrates the flow chart outlining the offline and online phases of surrogate
models. In the offline phase, a set of training parameters {y]}]Ai , is initially provided,
distributed randomly over the parameter range, and full-order models are calculated to
generate snapshots. Subsequently, employing the POD or DMD method, the main fea-
ture are extracted using the SVD algorithm. In the online phase, for any given parameter
Hy within the parameter range, we use the KNN regression to construct an appropriate
surrogate model. This surrogate model is then used to predict a solution that approxi-
mates u(py).
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6 Numerical experiments

In this section, we first verify the spatial accuracy of the quadratic FEM for the nonlocal
PDEs with a smooth solution, as shown in Section 6.1. Two kernel functions are intro-
duced. The first kernel is a constant [38], denoted as

ps(s) =352, 6.1)
The second kernel function is defined by

2—-2z _4_
p5(5>:(52_225 ! 22/ ZE[—O.S,l), (62)

which is parametrized by z, as presented in [39]. These two kernels satisfy Eq. (2.4) with
Cs =1 in one dimension.

Next, we present a few numerical examples to verify the accuracy and efficiency of
the surrogate models for the parametrized nonlocal PDE with the parametrized kernel
function (6.2). The domain I =[0,1] and the horizon é =4h are used for the parametrized
nonlocal PDEs. The result of full-order equation is taken as the reference solution. In Sec-
tion 6.2, we apply the proposed POD-KNN method to solve the nonlocal linear equation,
considering two parameters located in the kernel function and the coefficient of the non-
local operator. Within this subsection, we present the Gaussian process regression (GPR)
approach with POD method for nonlocal problems to make the comparison. In Section
6.3, we consider the nonlocal PDEs with parametrized boundaries to demonstrate effi-
ciency and accuracy of the DMD-KNN and POD-KNN methods. Finally, in Section 6.4,
we adopt the nonlocal Allen-Cahn equation as an example of the nonlinear PDE, where
the parameters lie in the coefficients of the nonlocal operator term and the nonlinear
term, and we adopt POD-DEIM-KNN method to generate the surrogate model. More
importantly, we calculate the RE values between the reference solution and the predicted
solution by fixing parameters, as well as MTE values, which are important metrics for
evaluating surrogate models.

For the given parameter jiz, RE at time ¢; is defined as follows,

. Wprod (X, 0z) — 1, (X, 8 .
SRE<X,t];]/l,'§) _ H pred( .”C) : ref( ﬂC)HLZI t]ET,
[4re (2,83 pe) || 2

where 1,4 (x,/;11¢) and yref(x,tf ;i) represent the predicted solution and reference so-
lution. The MTE at time # is defined by

1 N .
emre(t') = N Y ere (),
Wizl

with N, representing the size of the testing parameter sets.
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6.1 Convergence test

Let us begin with the following simple nonlocal linear time-dependent PDEs and its spe-
cific expression is

u—Lsu=f, (63)
with the smooth solution
u(x,t) =x*(1—x%)sin(t).

Setting the final time as T =1, we use the quadratic FEM for the spatial discretization.
To compute the errors, we fix the spacial mesh size as h=1/ 241/25,1/2%,1/27 and the
time step size as At =h%. The L®-norm and L?-norm of the errors, along with their cor-
responding convergence rates, are shown in Table 1 and Table 2, where the expected
spatial convergence rates are observed. It is clear that the numerical solutions are almost
independent of § and z.

For the constant kernel (6.1), the source term of Eq. (6.3) is represented by

fs(x,t) =x%(1—x%)cos(t) + (123{2 -2+ g§2> sin(t).

By setting the horizon parameter as § =h,4h,6h, we test the convergence of Eq. (6.3), and
the corresponding results are presented in Table 1.

Table 1: Convergence test of the full-order nonlocal problem (6.3) with é="h,4h,6h.

h |lu—uylr~ Rate | |[u—uyl;2 Rate
1/2% | 7.2344e—06 — 7.1715e—06 —
5=h | 1/2° | 5.0879¢—07 3.8297 | 5.7173¢—07 3.6489
1/2° | 4.1539e—08 3.6145 | 5.1244¢—08 3.4799
1/27 | 42111e—09 3.3022 | 5.1448¢—09 3.1362
1/2% | 7.4167e—05 — 6.9081e —05 —
S=4h | 1/2° | 4.7971e—06 3.9505 | 4.4353¢—06 3.9612
1/2° | 3.0824e—07 3.9600 | 2.9250e—07 3.9225
1/27 | 2.0067e—08 3.9412 | 2.0210e—08 3.8553
1/2% | 1.6406e—04 - 1.5281e—04 —
§=6h | 1/2° | 1.0573e—05 3.9558 | 9.6711e—06 3.9819
1/2° | 6.7370e—07 3.9721 | 6.1945¢—07 3.9646
1/27 | 4.2965e—08 3.9709 | 4.0661e—08 3.9293
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Table 2: Convergence test of the full-order nonlocal parameterized problem (6.3) with z= f%,f%,f%.
h lu—uyllr= Rate | |[u—uy|;2  Rate
1/2* | 8.8749¢—06 — 8.4355e — 06 —

z=—111/25|5.6991e—07 3.9609 | 5.2506e—07 4.0037
1/2° | 3.6362e—08 3.9702 | 3.3854¢—08 3.9551
1/27 | 2.8174e—09 3.6900 | 3.2712¢e—09 3.3714
1/2*% | 6.1480e—06 — 5.8210e —06 -
z=—1|1/25|3.9366e—07 3.9651 | 3.6261e—07 4.0048
1/2° | 2.5189¢—08 3.9661 | 2.3724¢—08 3.9340
1/27 | 2.1896e—09 3.5241 | 2.6387¢—09 3.1684
1/2* | 4.8079¢—06 — 4.5422¢ —06 —
z=—% | 1/25 | 3.0729¢—07 3.9677 | 2.8313e—07 4.0039
1/2° | 1.9721e—08 3.9618 | 1.8769¢—08 3.9150
1/27 | 1.9031e—09 3.3733 | 2.3305¢—09 3.0096

For the parametrized kernel function (6.2), the source term of Eq. (6.3) is

fs(x,t) =x*(1—x%)cos(t) + (12x2 -2+ %(52) sin(t).

By fixing horizon §=4, and taking the parameter in the kernel functionasz=—1,—1,— 1,

respectively, we calculate the errors and convergence rates of Eq. (6.3). The results are
presented in Table 2.

From Table 1 and Table 2, we observe that the errors of L®-norm and L2-norm decay
and the convergence rate approximates to third-order as the spatial grid grows exponen-
tially. Generally, the expected order is observed using the quadratic FEM for the nonlocal
model.

6.2 Linear parametrized nonlocal models

In this part, we focus on the parametrized nonlocal linear PDEs with the parametrized
kernel function (6.2),

ur—pLsu=f. (6.4)

There have two parameters in (6.4), one exists in the kernel function (6.2) with z, and
another is iy, i.e., p=(z,4+). The value of the parameter is produced by “rand” and the
range of parameter is set as P(z,u.) =[—0.5,1) x (0.5,1.5). Fixing 6 =4h, we calculate the
problem with h=1/27, At = 1E-4 and T=1.
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(a) Random parameters (b) Samples of random parameters

Figure 2: Left: Training sample with ‘rand’; Right: Training samples (red), selected samples (green) by KNN,
and the target parameter (purple).

In Fig. 2, we generate a size of M =100 samples for z and y. as the training sets. The
left figure presents the training samples, and the right side figure contains the training
samples (red), k selected samples (green) by KNN, and the chosen sample (purple). Here,
the chosen parameter is (z,u,) = (0.5,1.3318).

Fig. 3 gives the surrogate model solutions using the POD-KNN and POD-GPR
methods with 100 training parameters (M = 100) and the reference solutions using the
quadratic FEM to the full-order PDEs with parameters z=0.5 and y. =1.3318. Specially,
#=6 and k=5 are adopted in the POD-KNN method. From these figures, we see that the
reference solutions and the predicted solutions change along with time. The predicted
solutions and reference solutions have no clear difference with respect to time. It illus-
trates that both the POD-KNN method and POD-GPR method can generate a parameter-
independent surrogate model with respected to z and p..

To provide a clear comparison between the different prediction solutions and the ref-
erence solutions, we plot the RE between them and select solutions in several time layers,
please see Fig. 4. Fig. 4(a) illustrates the RE between the reference solutions and the pre-
dictions from the POD-KNN and POD-GPR models. The RE for the reference solutions
and POD-KNN predicted solutions ranges from 0 to 2E-3, while the RE for the reference
solutions and POD-GPR predicted solutions ranges from 0 to 7E-3. Fig. 4(b) and Fig. 4(c)
plot the reference solutions and the predicted solutions at time ¢t =0.04,0.2,0.6. We zoom
in on the solutions at t =0.04 and t = 0.2, and place them in corresponding figures, re-
spectively. Although POD-GPR method can approximate the reference solutions well as
time increases, the POD-KNN approach exhibits more stability, and its RE value remains
within an acceptable range.

Given the computationally-intensive nature of GPR for nonlocal problems, which can
generate dense matrices, the simpler and more efficient KNN approach may be preferred
for these types of computations. KNN is a flexible and computationally-lightweight
method, making it a suitable choice when the problem size or density of the matrix poses
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Figure 3. (a): Reference solutions (Ref.) at (z,p.)=1(0.5,1.3318); (b) and (c): Predicted solutions (Pre.) at
(z,1+)=1(0.5,1.3318) using POD-KNN and POD-GPR, respectively.

challenges for more complex regression techniques like GPR. Furthermore, we combine
the KNN and DMD methods to provide accurate predictions for any time layer.

Then, we plot the MTE values using the POD-KNN method with 450 group test pa-
rameters (N, =450), and results are shown in Fig. 5. It can be observed that the results
of MTE are ranging from 0 to 2E —3 along with time during the time interval (0,1]. This
implies that the POD-KNN method has the potential to generate an accurate surrogate
model of the parametrized nonlocal PDEs.

Furthermore, based on the reference and the POD-KNN methods, fixing the final
time, Fig. 6 presents the probability density estimate of u(x,t;u) at the single measure-
ment location, where the variances of u(%,Eu) is maximal (left) or minimal (right) for all
x € I. These figures illustrate that the POD-KNN method renders the same probability
density as the reference solution.

6.3 Linear nonlocal PDEs with the parametrized boundary

In this example, we consider the nonlocal equation with parametrized boundary using
the DMD-KNN and POD-KNN methods. The special expression of the nonlocal model
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Figure 6: Probability density of u(x,f;u) for reference and the POD-KNN methods, where the variance of
u(x,Ep) is maximal (left) and minimal (right) for all x€I.

is
u—Lsu=f, (6.5)
with

u+mui, (x,m1)€(—6,01x(09,1.1),
u=9q u, x€(0,1),
u+uy, (x,p2)€[1,146)x(—0.2,0).

It is clear from the boundary condition that the parameter is = (j11,442). By selecting z=
0.51in the kernel function (6.2) and setting h=1/27, T=1, and At=1E—4, we solve Eq. (6.5).
Here, a set of 60 parameters (M = 60) is randomly generated as the training samples to
product the surrogate models using both the DMD-KNN and POD-KNN methods. We
first present the reference solution with the chosen parameter (p1,42)=(1.0375,—0.1011)
until T=1, as shown in Fig. 7(a). Subsequently, we select the solutions at time ¢ € (0,0.6]
to generate snapshots, and apply DMD-KNN to produce the predicted solution in t €
(0,1) with A =7 (A denotes the rank of SVD algorithm in DMD) and k =5, as depicted
in Fig. 7(b). Comparing Fig. 7(a) and Fig. 7(b), there is no clear difference, indicating
the predicted potential of the DMD method outside the time interval. When POD-KNN
method is adopted, the snapshots are uniformly distributed in the time domain (0,1),
and we obtain the predicted solution with 7 =7 and k=5, as seen in Fig. 7(c). The same
variation over time are observed in Fig. 7(a) and Fig. 7(c).

To make the figures in Fig. 7 more clear, we calculate the corresponding RE values,
and plot the reference solutions and predicted solutions at several time levels, as shown
in Fig. 8. Fig. 8(a) presents the RE values between the reference solutions and the DMD-
KNN solutions. Initially, the values increase along with time, then decrease, and finally,
it increase again after t =0.6. Fig. 8(b) plots the reference solutions and DMD-KNN so-
lutions for several selected time layers from Fig. 7, and it is obvious that the predicted
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Figure 7: (a): Reference solutions (Ref.) at (p1,12)=(1.0375,—0.1011); (b) and (c): Predicted solutions (Pre.)
at (i1, p2) = (1.0375,—0.1011).

solution by DMD-KNN closely matches the reference solution. Fig. 8(c) depicts the RE
values between the reference solution and the POD-KNN solution, and the values first in-
crease, and decrease soon. Fig. 8(d) displays the reference and predicted solutions using
POD-KNN for selected time layers from Fig. 7, and it is clear that the predicted solutions
using the POD-KNN method also matches well to the reference solutions.

Then, the CPU times are provided for the following two cases: firstly, we present
the time costs for the full-order quadratic FEM, and surrogate models produced by the
DMD-KNN and POD-KNN MOR methods; secondly, we provide the online phase costs
for a single sample in the surrogate model, and the results are displayed in Table 3. In
the first case, adding the online phase and offline phase time, then dividing by the total
training parameters to derive the average CPU costs. The average CPU costs decrease
along with the increase number of the parameters. In the second case, the online phase
costs are separately extracted to highlight the surrogate model’s efficiency. It is evident
that both two surrogate models produce nearly instantaneous predicted solutions.

Additionally, we compute the MTE values by full-order equation and surrogate mod-
els with same 300 test samples (N, =300) during the temporal range (0,1), as shown in
Fig. 9. The MTE values produced by surrogate model using DMD-KNN and full-order
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Figure 8: (a) and (c): RE between the predicted solutions and the reference solutions at (puy,p2) =
(1.0375,—0.1011); (b) and (d): The predicted solutions and the reference solutions at +=0.02, 0.2, 0.4, 1.

Table 3: CPU time costs (s) for solving the parametrized nonlocal problem (6.5).

Methods Full-order Quadratic FEM | DMD-KNN | POD-KNN
Average CPU costs 5.534 4.087 4.536
Online CPU costs — 0.078 0.082

equation range from 0.0095 to 0.0135. Meanwhile, the MTE values generated by surro-
gate model using POD-KNN and full-order equation range from 0.069 to 0.076. These
two figures demonstrate that both the DMD-KNN and POD-KNN methods can produce
the good surrogate models of the parametrized nonlocal PDEs.

In the end of this example, we use the DMD-KNN method and reference method to
generate the probability density estimates of u(x,f;u) at the single measurement location,
as shown in Fig. 10, where the variance of u(%,Fpu) is maximal (left) or minimal (right)
for all x € I and fixed final time. These figures demonstrate that the DMD-KNN method
raises the same probability density as the reference solution.
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Figure 9: Left: MTE of the parameters jiq, pp using the DMD-KNN; Right: MTE of the parameters pq, o

using the POD-KNN.

Reference

« DMD-KNN

The probability of u

The solution: u

e © o o o
w » o o N

o

The probability of u
N

°
o

Reference

* DMD-KNN

, 0
N

-1 1] 1 2
The solution: u

Figure 10: Probability density of u(%,Epu) for reference and the DMD-KNN methods with parameter y; and
Hp, where the variance of u(X,Eu) is maximal (left) and minimal (right) for all x € I.

6.4 Test for the parametrized nonlocal Allen-Cahn equation

In this subsection, we aim to develop a surrogate model for a nonlocal nonlinear
parametrized PDE, using the Allen-Cahn equation as an example, with the following
specific expression:

up=puszLsu+f(u), (6.6)

where parameter y3 is usually a very small constant, and we set yz € [IE—4,1E—1]. f(u)
is the nonlinear term, expressed by the cubic function,

fu)=pa(u—1°),

where j14 is another parameter, varying in the range [9.5,10.5]. The parameter set is y =
(p3,t4). Fixing the horizon as 6 =4h, h= 1/27, At=1E—4, T=0.8, and z=—0.5 in kernel
function (6.2), we obtain the reference solution for the full-order Allen-Cahn equation
(6.6).

6.7)
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Figure 12: Left: RE between the reference solution and the predicted solution at (p3,14)=(0.01,10); Right:
The predicted solutions and the reference solutions at t+=0.02, 0.1, 0.3, 0.5.

Using a set of 80 parameters (M =80) as the training samples to generate the surrogate
model. The predicted solution is obtained employing the POD-DEIM-KNN method with
?#=6, m=>5 and k=>5. The specific surrogate model produced by POD-DEIM is presented
in Appendix B. The parameter range is P (3, 1t4)=[1E—4,1E—1]x[9.5,10.5]. In Fig. 11, the
reference solution and predicted solution at T< (0,0.8] are shown with the fixed parameter
(p3,m4)=(0.01,10). It is evident from the figures in Fig. 11 that the reference and predicted
solutions vary over time.

Following this, we analyze the RE values between the reference solutions and pre-
dicted solutions of Fig. 11 and choose several time levels to plot, as shown in Fig. 12.
Clearly, the predicted solution closely approximates the reference solution.

Finally, choosing the training samples as N, =200, fixing the final time and consider-
ing the reference and POD-DEIM-KNN methods, Fig. 13 shows the probability density
estimates of u(x,t;u) at the single measurement, where the variance of u(%,f;u) is maxi-
mal (left) or minimal (right) for all x € I. It illustrates that the POD-DEIM-KNN method
yields the same probability density as the reference solution.
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Figure 13: Probability density of u(%,;u) for reference and the POD-DEIM-KNN methods with parameter 3
and py, where the variance of u(%,Epu) is maximal (left) and minimal (right) for all x€1.

7 Conclusions

In this paper, we explored the parametrized nonlocal PDEs using the quadratic FEM
for spatial discretization in one dimension. More importantly, we developed surrogate
models for different parametrized nonlocal model, aiming to achieve the efficient and
reliable approximations of the full-order model. The entire calculation process of the
surrogate model follows the offline-online decomposition. During the offline phase, we
computed the full-order PDEs to generate the snapshots, and used MOR methods to
extract the main features of the snapshots. In the online phase, the KNN regression was
used to select k nearest samples, and the surrogate models were produced.

Some numerical examples were carried out to test the accuracy of the full-order
scheme and the efficiency of the surrogate models. Firstly, we verified that the quadratic
FEM achieves a third-order accuracy for the nonlocal model. Subsequently, we focused
on the construction of the surrogate models for the parametrized nonlocal PDEs. Three
cases are considered based on the location of the parameters, including (1) the param-
eters were appeared in the kernel function and the linear operator; (2) the parameters
existed in the boundaries; (3) the parameters located in the linear and nonlinear terms.
We compared the predicted solution and reference solution, and found no significant
difference. More specially, we calculated the RE and the MTE values, and the results
demonstrated that the surrogate models maintain a high level of accuracy. Furthermore,
probability density estimates were provided, and it can be observed that the surrogate
model offers a same maximal and minimal variances with the full-order model at the
single measurement location. The numerical examples demonstrated the accuracy of our
proposed surrogate models.

Despite the sparse loss caused by the quadratic FEM used in the nonlocal model with
stochastic parameters, the proposed MOR methods perform well and show the potential
for predictions. Naturally, the horizon ¢ also can be seen as a parameter in the nonlocal
model, which is expected to make no affected for the corresponding surrogate model, and
this surrogate model produce predicted solutions approximating the reference solution
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very well. Moreover, we intend to explore new approaches for high-order dimensional
parametrized nonlocal models to alleviate computational costs.
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Appendix A: Using the POD-Galerkin method to generate ROMs

After obtaining the POD basis {v; ]’7:1, we denote U} ((2Ny+1) x?) as the POD basis

matrix of the model without boundary, and U? ((2Ny+3) x #) as the POD basis matrix of
the model with boundary. This yields the reduced system of Eq. (3.6), represented as
My Gl 4+ AtB CyH =AtF™ T 4+ Mo C) — AtBo (g4 )" — AtBs (gh) ™!
—Mig" (xp ") — Mag" (12" ), (A.1)
with

M, =UHTMUL, M,=UHTMUZ, v Mz=(UH)TM;, My=(U})"M,,
Bi=(U})"B1vj, By=(U;})"By, B3=(U})"Bs,
Cl=whHrc, C?=U?'c, F=UH'F.

Comparing Egs. (3.6) and (A.1), the matrix is reduced from (2N, +1) x (2N, +1) dimen-
sions to 7 x 7 dimensions, where 7 << 2N, +1.

Appendix B: Using POD-DEIM-Galerkin to solve the nonlinear
term

The main idea of DEIM is to deal with the nonlinear term of PDEs to construct the sur-
rogate models. Specifically, DEIM is used to approximate a nonlinear function by pro-
jecting it onto a low dimensional subspace, where the subspace approximates the space
produced by the nonlinear function and is spanned by a basis of dimension m < 2N, +1.
In this context, the function f(x, t;yg) in (2.5) is considered as the nonlinear term with the
fixed parameter jiz for Eq. (2.5), represented by F(g) with ¢=x,t or jiz. By projecting F(g)
onto a subspace spanned by {u!,---,u™} CR?N:*1, we obtain

E(g)=~Uc(g),
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where U=[u!,---,u"] € RN«+1)>" and ¢({) represents the corresponding coefficient vec-
tor. The vector ¢({) can be uniquely determined by

PTF(¢)=(P"U)c(g),

where P=e,,,,,,] € R@Ne+1)xm and the vector ep,=10,---,0,1,0,- ,0]T e R2NxH1 is the
pith column of the identity matrix for i=1,---,m. The final approximation of the nonlinear
term is presented by

F(g)~Uc(c)=U(P"U)"'P'F(g).

For more information about DEIM, please refer to [4]. The detailed process of reducing
the order of the nonlinear parametrized nonlocal PDEs is omitted, and the surrogate
model produced by the POD-DEIM-Galerkin method is presented as follows,

Ml C’lH_l —|—At1§1 CS—H
=At- " ML O — AtBy (g4)" ! — AtBs (gh)" !
— Mig" (x,t" 1) — Mug" (xh, o t" ).
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