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Abstract. Wave propagation problems are typically formulated as partial differential
equations (PDEs) on unbounded domains to be solved. The classical approach to solv-
ing such problems involves truncating them to problems on bounded domains by de-
signing the artificial boundary conditions or perfectly matched layers, which typically
require significant effort, and the presence of nonlinearity in the equation makes such
designs even more challenging. Emerging deep learning-based methods for solving
PDEs, with the physics-informed neural networks (PINNs) method as a representa-
tive, still face significant challenges when directly used to solve PDEs on unbounded
domains. Calculations performed in a bounded domain of interest without imposing
boundary constraints can lead to a lack of unique solutions thus causing the failure
of PINNSs. In light of this, this paper proposes a novel and effective data generation-
based operator learning method for solving PDEs on unbounded domains. The key
idea behind this method is to generate high-quality training data. Specifically, we con-
struct a family of approximate analytical solutions to the target PDE based on its initial
condition and source term. Then, using these constructed data comprising exact solu-
tions, initial conditions, and source terms, we train an operator learning model called
MIONet, which is capable of handling multiple inputs, to learn the mapping from the
initial condition and source term to the PDE solution on a bounded domain of inter-
est. Finally, we utilize the generalization ability of this model to predict the solution
of the target PDE. The effectiveness of this method is exemplified by solving the wave
equation and the Schrodinger equation defined on unbounded domains. More im-
portantly, the proposed method can deal with nonlinear problems, which has been
demonstrated by solving Burgers” equation and Korteweg-de Vries (KdV) equation.
The code is available at https://github. com/ZJLAB-AMMI/DGOL.
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1 Introduction

Real-world wave propagation problems in various fields, such as acoustics, aerodynam-
ics, solid geophysics, oceanography, meteorology, and electromagnetics, are commonly
described by partial differential equations (PDEs) on unbounded (or very large) domains.
However, solving these PDEs numerically poses challenges due to the infinite domains
involved. Standard domain-based numerical methods like finite difference and finite el-
ement methods are not directly applicable to solving such unbounded PDEs. The main
reason is that these methods rely on discretizing the domain into a finite set of points or
elements, leading to a reduced algebraic system with a finite number of degrees of free-
dom. However, when dealing with unbounded domains, these approaches lead to an
algebraic system with an infinite number of degrees of freedom that cannot be effectively
solved.

Two popular techniques to deal with the problems on unbounded domains are the
artificial boundary method (ABM) [1,[10}11] and perfectly matched layer (PML) [4,23]].
The ABM involves designing suitable absorbing/artificial boundary conditions (ABCs)
that are satisfied by the solution of the original problem on the artificial boundaries. This
approach reduces the original unbounded problem to a well-posed boundary value prob-
lem on the bounded computational domains of interest. The key ingredient of ABM is
the construction of the ABCs. Based on the Fourier series expansion, Laplace transform,
z-transform, Padé approximation, continued fraction expansion, and other techniques,
exact or approximated ABCs are designed for various linear PDEs. However, it remains
challenging to construct suitable ABCs for many nonlinear equations, even for some fun-
damental equations like the nonlinear Schrodinger equation [11,34]. The PML method is
used as absorbing layers that effectively eliminate reflections for all incident waves, re-
gardless of their frequency and angle. PMLs have gained widespread usage due to their
computational efficiency, ease of implementation, applicability to complex geometries,
and high absorption accuracy. However, a major drawback of the PML method is its nu-
merical instabilities in time-domain simulations for some wave propagation problems in
anisotropic and/or dispersive media [2,3,/18,33]. Several methods have been proposed
to avoid and remove growing waves and to improve the stability and accuracy of PML
formulations. Nevertheless, for some specific situations, such as linear elastodynamic
equations in arbitrary anisotropic elastic media, developing a stable PML formulation
remains an open problem [23].

Recently, the rapid progress in deep learning has driven the development of solution
techniques for PDEs. Learning-based PDE approaches can fall into two categories in
terms of the objects approximated by neural networks (NN), i.e., the solution and the



