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Abstract. Many interesting physical problems described by systems of hyperbolic
conservation laws are stiff, and thus impose a very small time-step because of the
restrictive CFL stability condition. In this case, one can exploit the superior stability
properties of implicit time integration which allows to choose the time-step only from
accuracy requirements, and thus avoid the use of small time-steps. We discuss an ef-
ficient framework to devise high order implicit schemes for stiff hyperbolic systems
without tailoring it to a specific problem. The nonlinearity of high order schemes, due
to space- and time-limiting procedures which control nonphysical oscillations, makes
the implicit time integration difficult, e.g. because the discrete system is nonlinear also
on linear problems. This nonlinearity of the scheme is circumvented as proposed in
(Puppo et al., Comm. Appl. Math. & Comput., 2023) for scalar conservation laws,
where a first order implicit predictor is computed to freeze the nonlinear coefficients of
the essentially non-oscillatory space reconstruction, and also to assist limiting in time.
In addition, we propose a novel conservative flux-centered a-posteriori time-limiting
procedure using numerical entropy indicators to detect troubled cells. The numerical
tests involve classical and artificially devised stiff problems using the Euler’s system
of gas-dynamics.
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1 Introduction

Mathematical models for the description of fluids, plasmas, and many other physical
phenomena, are typically given in terms of systems of hyperbolic conservation laws.
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These systems are characterized by a set of multi-dimensional partial differential equa-
tions (PDEs) that express the conservation of various physical quantities in terms of their
respective fluxes. A prototypical example is provided by the Euler’s equations for gas-
dynamics describing the conservation of mass, momentum, and energy of a gas.

In this work we focus on one-dimensional systems of m > 1 hyperbolic conservation
laws:

au(x,t)—l——xf(u(x,t)) =0, (1.1)
where, u: R xIRj — R™ is the quantity of interest, and f: R" — R™ is the vector of the
flux functions. System (1.1) is hyperbolic when the eigenvalues {)\j(u(x,t))}}”:1 of the
associated Jacobian matrix are real and determine a complete set of eigenvectors. The
eigenvalues of (1.1) provide the characteristic velocities, which describe the propagation
speed of waves in the system. These waves can be either acoustic waves (shocks and
rarefactions) or material waves (contact discontinuities). Requiring that the eigenvalues
are real implies that the propagation speed of information through the system is finite.

Solving hyperbolic systems of conservation laws is a challenging task, both analyt-
ically and numerically, e.g. due to the occurrence of singularities or the need of devis-
ing high order accurate non-oscillatory methods to avoid low-resolution approximations.
Another source of numerical difficulty is represented by stiff problems that occur when
the system is characterized by speeds spanning different orders of magnitude, namely
wh mjaszl,-««,m \Aj(u)\

minj_1,... i |)\j(u)
speed is much less than the speed of the acoustic waves. In many applications the phe-
nomenon of interest travels with a low speed. An example is provided by low-Mach
number problems occurring when the equations governing the flow become stiff due
to the very low fluid velocity compared to the speed of sound in the fluid. In these
situations, the compressibility effects of the fluid can be neglected, and the fluid is al-
most incompressible. Then, if the interest is on the movement of the fluid, accuracy in
the propagation of sound waves becomes irrelevant. For low-Mach problems we refer
to[1,11,21-23,49].

Numerical schemes used to solve hyperbolic problems need to be carefully designed
to handle the stiff regime. In fact, it is well-known that explicit schemes are subject to
the Courant-Friedrichs-Levy (CFL) stability condition that specifies a constraint on the
numerical speed in relation to the maximum speed of information propagating in the
system. More precisely, let At and / be the time-step and the mesh width of a numeri-
cal scheme, respectively. We define the numerical speed as s, ="/at which approximates
the speed with which the numerical data propagate in the discretized system. Then, the
CFL condition imposes that s, must be faster than the maximum speed of propagation to
ensure that information does not travel too far between adjacent space cells during one
time-step. For this reason, the stability request on the time-step of explicit schemes be-
comes very restrictive for stiff problems due to the presence of fast waves, thus limiting
the computational efficiency of the scheme. In contrast, implicit schemes can have supe-

> 1. This happens, for instance, in gas-dynamics when the fluid



