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Abstract. The success of deep learning in various applications has generated a grow-
ing interest in understanding its theoretical foundations. This paper presents a theo-
retical framework that explains why over-parameterized neural networks can perform
well. Our analysis begins from the perspective of approximation theory and argues
that over-parameterized deep neural networks with bounded norms can effectively
approximate the target. Additionally, we demonstrate that the metric entropy of such
networks is independent of the number of network parameters. We utilize these find-
ings to derive consistency results for over-parameterized deep regression and the deep
Ritz method, respectively. Furthermore, we prove convergence rates when the target
has higher regularity, which, to our knowledge, represents the first convergence rate
for over-parameterized deep learning.
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1 Introduction

The success of deep learning in various applications has spurred a growing interest in un-
derstanding its theoretical foundations. One of the most crucial questions is why over-
parameterized neural networks can perform well. The current literature [40] suggests
that the generalization error of neural networks generally increases with the increas-
ing complexity of the network function space, making it theoretically difficult for over-
parameterized neural networks to converge in terms of generalization error. However, in
practice, training over-parameterized deep neural networks is widely used since it makes
model training more computationally convenient. Moreover, recent studies have shown
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that (stochastic) gradient descent with randomized initialization and small step-size con-
verges linearly in over-parameterized regimes, even though the optimization problem in
deep learning is highly non-convex, see [2,12,13,25,34,55] and the references therein. All
of these indicate a conflict between existing theory and practice, and a new perspective
is urgently needed to resolve this dilemma.

To address this dilemma, significant effort has been devoted to developing over-
parameterized deep learning theory [4, 6, 10]. Belkin et al. proposed the double descent
curve in [6] to describe the limitations of classical analysis, but did not provide expla-
nations. Currently, the main perspective on understanding over-parameterization for
linear and kernel models is benign overfitting due to the double descent phenomenon
for estimators interpolating data with minimum norm [3,4,6–9, 33,43,50]. However, [29]
provides a negative result that the empirical risk minimization estimator can be incon-
sistent in nonparametric least squares regression with over-parameterized deep neural
networks. In this work, we introduce a new theoretical framework based on function
space theory and establish the consistency of norm-bounded over-parameterized deep
learning. We demonstrate that the complexity of a neural network can be controlled by
the metric entropy of the balls in certain metric space, which is independent of the num-
ber of parameters. This provides a novel perspective for understanding the good gener-
alization ability of over-parameterized neural networks. We illustrate our approach with
two representative examples: the regression model and the deep Ritz method. The main
contributions of this work are summarized as follows.

• We establish a new bound for the approximation error of ReLU deep neural net-
works in the Sobolev space, which may be of independent interest.

• We provide a unified consistency analysis of over-parameterized regression models
and deep Ritz methods, which offers a novel perspective for understanding over-
parameterized deep learning.

• Our framework is applicable to various activation functions, including ReLU and
Sigmoidal functions. By exploring the smoothness of the target and network, we
drive improved convergence rate.

The paper is organized as follows. In Section 2, we give some notations and mathematical
background used in this paper. Section 3 provides a brief overview of our main results.
In Section 4, we present our proof framework. In Section 5, we summarize our findings
and conclude the paper. Some technical detailed proofs are given in Section A.

2 Notations and background

In this section, we provide all the notations we need in this paper. For k∈R, we define
R>k :={x∈R|x> k} and N0 :={x∈N|x≥0}. If x∈R, ⌊x⌋ :=max{k∈Z : k≤ x} denotes
the largest integer strictly smaller than x. C∈R is a positive constant number, and C(d)
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is a polynomial that depends on d. For two function spaces A and B, A⟲B means A is
embedded into B. We use the usual multiindex notation, i.e. for α∈Nd

0 we write ∥α∥1 :=
α1+···+αd and α! :=α1!·····αd!.

Let Ω⊂Rd be some open set. For a function f : Ω→R, we denote by

Dα f :=
∂∥α∥1 f

∂x1
α1 ∂x2

α2 ···∂xd
αd

its (weak or classical) derivative of order α. For s∈N0∪{∞}, we denote by Cs(Ω) the set
of s times continuously differentiable functions on Ω. Additionally, if Ω is compact, we
set, for f ∈Cs(Ω)

∥ f ∥Cs(Ω) := max
0≤∥α∥1≤s

sup
x∈Ω

|Dα f (x)|.

2.1 Sobolev space

For any s∈N0 and 1≤ p<∞, we define the Sobolev space Ws,p(Ω) by

Ws,p(Ω) :=
{

f ∈Lp(Ω) : Dα f ∈Lp(Ω), ∀α∈Nd
0 with ∥α∥1≤ s

}
.

In particular, when p=2, we define Hs(Ω) :=Ws,2(Ω) for any s∈N0. Moreover, for any
f ∈Ws,p(Ω) with 1≤ p<∞, we define the Sobolev norm by

∥ f ∥Ws,p(Ω) :=

(
∑

0≤∥α∥1≤s
∥Dα f ∥p

Lp(Ω)

) 1
p

.

When p=∞, we have
∥ f ∥Ws,∞(Ω) := max

0≤∥α∥1≤s
∥Dα f ∥L∞(Ω).

2.2 Hölder space

Let β= s+r>0, r∈ (0,1] and s=⌊β⌋∈N0. For a finite constant B>0, the bounded Hölder
class of functions Hβ (Ω,B) is defined as

Hβ (Ω,B)=
{

f : Ω→R, max
∥α∥1≤s

∥Dα f ∥L∞ ≤B, max
∥α∥1=s

sup
x ̸=y

|Dα f (x)−Dα f (y)|
∥x−y∥r

2
≤B

}
, (2.1)

where the norm ∥ f ∥Hβ(Ω) is defined as

∑
∥α∥1≤s

∥ f ∥Cs(Ω)+ ∑
∥α∥1=s

sup
x ̸=y

|Dα f (x)−Dα f (y)|
∥x−y∥r

2
.

For any f ∈Hβ (Ω,B), all partial derivatives of f up to the ⌊β⌋-th order exist.
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2.3 Neural network

Let W,L,d,nθ∈N, M∈R and M>0, d>2. We consider the function f :Rd→R that can be
parameterized by a neural network of the form

f0(x)= x,
fℓ(x)=ρ(Aℓ fℓ−1(x)+bℓ), ℓ=1,··· ,L−1,
f (x)= fL(x)=AL fL−1(x)+bL.

(2.2)

The network weights Aℓ are defined as Aℓ : RNℓ−1 →RNℓ , where N0 = d, NL = 1, and Nℓ

represents the width of the ℓ-th layer of the network. The numbers W and L represent
the largest width and depth of the network, respectively. nθ denotes the total number of
nonzero weights, while ρ represents the activation function. In this paper, we focus on
two specific activation functions: ReLU and Sigmoidal. When the activation function ρ
is clear, we use the notation NN (W,L) to represent a neural network with a width of
W, depth of L, and NN (L,nθ) to represent a neural network with a depth of L and total
number of non-zero weights nθ.

We introduce the concept of a norm bounded neural network, which is defined as a
network whose output function fθ is constrained by a value of M using a specific norm
|·|. This type of network is denoted as NN (W,L,|·|,M) or NN (L,nθ,|·|,M). The choice
of norm used in the constraint depends on the desired smoothness of the function space.
Throughout the paper, we denote P as a function class consisting of feedforward neural
networks parameterized by θ :=((A1,b1),··· ,(AL,bL)).

3 Main result

We provide convergence analysis for deep regression model and deep Ritz method [53]
for solving elliptic partial differential equation. These two problems are not only rep-
resentative model problems in deep learning but also of great practical interest in their
own right. We analyze ReLU and Sigmoidal activation functions, which are the two most
common types.

3.1 Regression model

Consider a nonparametric regression model

Y= f0(X)+ξ, (3.1)

where Y∈R is a response, X∈Rd is a d-dimensional vector of predictors, f0 : [0,1]d →R

is an unknown regression function, ξ is an error with mean 0 and finite variance V2,
independent of X. A basic problem in statistics and machine learning is to estimate the
unknown target regression function f0 based on a random sample, Sn = {(Xi,Yi)}n

i=1 ⊆



Y. Jiao et al. / Commun. Comput. Phys., 36 (2024), pp. 71-103 75

[0,1]d×R, where n is the sample size, that are independent and identically distributed
(i.i.d.) as (X,Y).

A basic paradigm for estimating f0 is to minimize the mean square error or the L2

risk. For any (random) function f , let Z ≡ (X,Y) be a random vector, the least-squares
estimation is to find a measurable function f0 :Rd →R satisfying

f0 :=argmin
f

L( f )=argmin
f

E
Z
|Y− f (X)|2. (3.2)

However, in applications, the distribution of (X,Y) is typically unknown and only a ran-
dom sample Sn ={(Xi,Yi)}n

i=1 is available. Let

L̂( f ) :=
1
n

n

∑
i=1

| f (Xi)−Yi|2, (3.3)

be the empirical risk of f on the sample Sn. Based on the observed random sample, our
primary goal is to construct an estimators of f0 within a certain class of functions P by
minimizing the empirical risk. Then we have the following convergence rate theorem.

Theorem 3.1 (Informal version of Theorem 4.4). Let B>0, d>2, β≥2 and k≥C(B,d,β). If
f0∈Hβ([0,1]d,B) is the target function of a regression model, there exists an over-parameterized
ReLU network class P =NN (W,L,∥·∥W1,∞ ,2B) with W,L≥C(n,d,β,k,B), such that for the
empirical risk minimizer f̂θ=argmin f∈P L̂( f ),

E
Sn

[
∥ f̂θ− f0∥2

L2(µ)

]
≤C(β,d,B)n− 1

d .

In contrast to existing convergence results where the number of parameters of neural
networks is required to be smaller than the number of training samples [5,16,17,27,30,42,
44,45,48,49], Theorem 3.1 holds for any sufficiently large width, i.e., Theorem 3.1 applies
to over-parameterization schemes.The proof will be given in Section 4.1.

3.2 Deep Ritz method

Since the ReLU function is not smooth, it may not be suitable for problems that require
high smoothness in the solution. In this section, we present a convergence analysis of
the over-parameterized Deep Ritz Method [53] for second-order elliptic equations with
Neumann boundary conditions. To ensure sufficient smoothness, we use the Sigmoidal
activation function, which is infinitely continuously differentiable.

Let [0,1]d be the unit hypercube on Rd, Ω⊂ [0,1]d be a convex bounded open set and
∂Ω be the boundary of Ω. Consider the elliptic equation on Ω equipped with Neumann
boundary condition:

−∆u+wu= f on Ω,
∂u
∂n

= g on ∂Ω. (3.4)
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According to the variation method and the integration by parts formula, the energy func-
tional can be defined by

L(u)=
∫

Ω

(
1
2
|∇u|2+ 1

2
w|u|2− f u

)
−
∫

∂Ω
(gTu)ds, (3.5)

where T is the trace operator. We use Monte Carlo method to discretize the energy func-
tional and rewrite (3.5) as

L(u)= |Ω| E
X∼U(Ω)

[
∥∇u(X)∥2

2
2

+
w(X)u2(X)

2
−u(X) f (X)

]
−|∂Ω| E

Y∼U(∂Ω)
[Tu(Y)g(Y)],

(3.6)
where U(Ω), U(∂Ω) are the uniform distribution on Ω and ∂Ω.

We now introduce the discrete version:

L̂(u)= |Ω|
Nin

Nin

∑
k=1

[
∥∇u(Xk)∥2

2
2

+
w(Xk)u2(Xk)

2
−u(Xk) f (Xk)

]
− |∂Ω|

Nb

Nb

∑
k=1

[u(Yk)g(Yk)], (3.7)

where {Xk}Nin
k=1 ∼U(Ω), {Yk}Nb

k=1 ∼U(∂Ω) i.i.d.. For the deep Ritz method, we have the
following convergence rate theorem.

Theorem 3.2 (Informal version of Theorem 4.8). Let B > 0, p > d > 2, Nin = Nb = n and
p,d,n∈N0. Suppose that u∗ ∈W4,p(Ω) is the target solution of the elliptic partial differential
equation, and it satisfies ∥u∗∥W4,p(Ω) ≤ B. Then, there exists an over-parameterized Sigmoidal
network function class P=NN (L,nθ,∥·∥C2 ,2B) with at least nθ≥C(d,B,p,n) non-zero weights,
such that for the empirical risk minimizer ûθ=argminu∈P L̂(u),

E
{Xk}

Nin
k=1,{Yk}

Nb
k=1

[∥ûθ−u∗∥2
H1(Ω)]≤C(d,B,M)n− 1

d .

There have been several works attempting to explain the mechanisms of DRM and
PINNs from a mathematical perspective [14, 15, 23, 24, 26, 31, 32, 35–39, 41, 46, 47, 51, 52].
However, all the studies conducted so far have assumed a scenario where the number
of neural network parameters is less than the number of training samples. Theorem 3.2
demonstrates that over-parameterized Sigmoidal neural networks can achieve a conver-
gence rate of n− 1

d in the H1 norm in solving elliptic partial differential equations with
Neumann boundary conditions.

3.3 The smoothness of network

We also discuss the impact of the smoothness index on the network’s convergence and
demonstrate that higher smoothness leads to better convergence. To further explore
this topic, we revisit the regression model. Since ReLU networks only have first-order
smoothness, we can impose stronger assumptions by replacing the activation function
with a Sigmoidal activation function. This allows us to investigate how the smoothness
of the network function class affects the convergence rate.
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Theorem 3.3 (Informal version of Theorem 4.10). Let B > 0, s = ⌊β⌋, 1 ≤ t ≤ η ≤ s−1,
t<d/2 and t,η,d∈N0. Sn={(Xi,Yi)}n

i=1 is a random sample set, f0∈Hβ([0,1]d,B) is the target
function of a regression model. For each t, there exists an over-parameterized Sigmoidal network
function class P =NN (L,nθ,∥·∥Ct ,2B) with nθ ≥C(d,B,s,n,η,t), such that for the empirical
risk minimizer f̂θ=argmin f∈P L̂( f ),

E
Sn

[
∥ f̂θ− f0∥2

L2(µ)

]
≤C(s,d,B,t,η)n− t

d .

From Theorem 3.3, we observe that the upper bound of excess risk is inversely propor-
tional to the smoothness index of the Sigmoidal neural network t. Therefore, the higher
the smoothness, the better the convergence.

4 Proof sketch

This section presents the proof sketches for Theorems 3.1, 3.2, and 3.3, with each proof
consisting of four steps.

4.1 Proof sketch of Theorem 3.1

Assumption 4.1. Assume that the target function f0 belongs to Hβ
(
[0,1]d,B

)
defined in

(2.1) for a given β≥2 and a finite constant B>0.

For any estimator f̂θ, we evaluate its quality via its excess risk, defined as the differ-
ence between the L2 risks of f̂θ and f0, then

L( f̂θ)−L( f0)=E
Z
|Y− f̂θ(X)|2−E

Z
|Y− f0(X)|2=E

X
| f̂θ(X)− f0(X)|2=∥ f̂θ− f0∥2

L2(µ), (4.1)

where µ denotes the marginal distribution of X. A good estimator f̂θ should have a small
excess risk ∥ f̂θ− f0∥2

L2(µ)
. Thereafter, we focus on deriving the non-asymptotic upper

bounds of the expected excess risk E
Sn
∥ f̂θ− f0∥2

L2(µ)
.

Step 1. Error decomposition. We decompose the expected excess risk into approximation
error and statistical error and analyze them separately.

Proposition 4.1. Suppose that P=NN (W,L) (or NN (L,nθ)), then

E
Sn

[
∥ f̂θ− f0∥2

L2(µ)

]
≤ inf

f̄∈P
∥ f̄ − f0∥2

L2(µ)︸ ︷︷ ︸
Eapp

+E
Sn

[
sup
f∈P

|L( f )−L̂( f )|
]

︸ ︷︷ ︸
Esta

.
(4.2)
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The approximation error Eapp describes the expressive power of the network class P
in L2 norm. The statistical error Esta can also be referred to as the generalization error,
which is caused by the Monte Carlo discretization of L(·) defined in (3.2) with L̂(·) in
(3.3).

Step 2. Approximation error bound. In this part, we follow the constructions out-
lined in [28, 54] and [21] to derive a novel approximation error bound for the Hölder
smooth functions with smoothness index β≥ 2 using ReLU activated neural networks.
We demonstrate that large ReLU networks can not only achieve accurate approximation
of a target function in terms of function value, but also approximate the first derivative
of the target function.

Theorem 4.1. Consider ReLU activation function. For any k ∈ N0 which satisfies k ≥
log2C2(d,s)+1 and f ∈Hβ([0,1]d,B) where β ≥ 2, s = ⌊β⌋, d ≥ s and d,s ∈ N0, there exists
f̄θ∈NN (W,L) where

W=C1(d,s)2k+ kd
s−1 ,

L=4⌈log2(d+s−1)⌉+2,

such that
∥ f − f̄θ∥W1,∞([0,1]d)≤2C2(d,s)2−kB≤B, (4.3)

where C1(d,s) and C2(d,s) depend on d and s.

While Hieber [44], Suzuki [48] and Chen et al. [11] established approximation error
bounds for ReLU deep neural networks in the L∞ space, our paper presents a novel
bound for approximation error specifically in the Sobolev space W1,∞.

Since Hβ([0,1]d) is embedded into W1,∞([0,1]d) and f0∈Hβ([0,1]d,B), by the approx-
imation result and the triangle inequality, we have ∥ f̄θ∥W1,∞([0,1]d) ≤∥ f0− f̄θ∥W1,∞([0,1]d)+
∥ f0∥W1,∞([0,1]d) ≤ 2B. It is reasonable to add a constraint to the neural network: for any
fθ ∈P , ∥ fθ∥W1,∞([0,1]d)≤ 2B, because the network function class P defined in this way is
non-empty and contains the best approximation element f̄θ. According to the definition,
we can say that P=NN (W,L,∥·∥W1,∞ ,2B) when the width of the network is W and the
depth is L. We summarize the above analysis in Corollary 4.1.

Assumption 4.2. We assume that the ReLU neural network function class P is W1,∞-
norm bounded by 2B, i.e. P=NN (W,L,∥·∥W1,∞ ,2B).

Corollary 4.1. Let β≥2, s= ⌊β⌋, d≥ s and d,s∈N0, ρ be ReLU activation function. Assume
that the problem satisfies Assumption 4.1 and the neural network function class P satisfies As-
sumption 4.2. For k∈N0 which satisfies k≥ log2C2(d,s)+1, there exist neural networks f̄θ∈P
with

W=C1(d,s)2k+ kd
s−1 ,

L=4⌈log2(d+s−1)⌉+2,
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such that
∥ f − f̄θ∥W1,∞([0,1]d)≤2C2(d,s)2−kB≤B, (4.4)

where C1(d,s) and C2(d,s) depend on d and s.

Proof. Directly from Theorem 4.1.

Step 3. Statistical error bound. We provide a statistical error bound for W1,∞-norm
bounded ReLU neural networks from the perspective of function space. Our primary
contribution lies in demonstrating that norm-bounded over-parameterized neural net-
works can achieve convergence, with their complexity controlled by the metric entropy
of the function space, independent of the number of parameters.

We define the Rademacher complexity of function class F associate with random
sample {Xk}N

k=1 as

R(F )= E
{Xk ,σk}N

k=1

[
sup
f∈F

1
N

N

∑
k=1

σk f (Xk)

]
,

where {σk}N
k=1 are i.i.d Rademacher variables with P(σk =1)=P(σk =−1)= 1

2 . Then we
can drive the statistical error bound by calculating the Rademacher complexity of the
function space P .

Lemma 4.1.

Esta =E
Z

[
sup
f∈P

|L( f )−L̂( f )|
]
≤2R(P). (4.5)

In order to bound the Rademacher complexity of P , we recall the definition of the
covering number.

Definition 4.1. Let W be a function class. For any ϵ> 0, let V be an ϵ−cover of W with
respect to the distance d∞, that is, for any u∈W, there exists a v∈V such that d∞(u,v)<ϵ,
where d∞ is defined by

d∞(u,v) := ||u−v||L∞ .

The covering number C(ϵ,W,d∞) is defined to be the minimum cardinality among all
ϵ−cover of W with respect to the distance d∞.

By applying Dudley’s Theorem A.5, our objective is to limit the covering number,
which can be bounded above using the following theorem.

Theorem 4.2. Let F be the norm-ball of radius 2B in W1,∞([0,1]d). Then for any ϵ>0

logC(ϵ,F ,d∞)≤C(d)(2B)dϵ−d =C(d,B)ϵ−d. (4.6)

Proof. See [19], Theorem 4.3.36.

The most important result in this section is now the following, in which we can see
that the upper bound of Esta is independent of W and L.
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Theorem 4.3. Let the sample size is n and d>2, d∈N0. For the regression model, if the neural
networks satisfy Assumption 4.2, i.e. P=NN (W,L,∥·∥W1,∞ ,2B), we have

Esta =E
Z

[
sup
f∈P

|L( f )−L̂( f )|
]
≤C(d,B)n− 1

d . (4.7)

Step 4. Total error bound. By combining Steps 1 to Step 3, we can obtain our main result.

Theorem 4.4. Let ρ be ReLU function. Let B > 0, β ≥ 2, s = ⌊β⌋, d ≥ s and d > 2, d,s ∈
N0. For the problem satisfies Assumption 4.1, there exists an over-parameterized neural net-
work function class P that satisfies Assumption 4.2. If the sample size is n, when k ∈ N0,
k≥max{log2C2(d,s)+1,C(d,B,s)log2 n} and

W=C1(d,s)2k+ kd
s−1 ,

L=4⌈log2(d+s−1)⌉+2,

we have that for the estimator f̂θ∈P ,

E
Sn

[
∥ f̂θ− f0∥2

L2(µ)

]
≤C(s,d,B)n− 1

d , (4.8)

where C1(d,s) and C2(d,s) depend on d and s, and C(d,B,s) depends on d,B,s.

Remark 4.1. While our work is deeply rooted in classical theory, focusing on exploring
size-independent generalization bounds, we recognize that our contributions are just the
beginning of our exploration into this complex field. The challenges we’ve encountered
in applying constraints to the W1,∞([0,1]d) norms within neural networks have not only
highlighted certain limitations but also underscored the need for more detailed explo-
ration and refinement in future research. Specifically, these limitations stem from the
fact that approaches to effectively regularize the W1,∞([0,1]d) norm are not yet well-
established in the current literature. Despite these challenges, it’s worth noting that our
work provides a valuable perspective for understanding common techniques like weight
clipping, batch normalization, and spectral normalization, shedding light on their poten-
tial effectiveness in regulating neural network regularity.

4.2 Proof sketch of Theorem 3.2

Deep Ritz method have been proven numerically to be efficient in solving partial dif-
ferential equations. For the second-order elliptic equations with Neumann boundary
conditions (3.4), we make the following assumption on the known terms in equation, for

1< p<∞: f ∈W2,p(Ω), g∈W3− 1
p ,p(∂Ω), w(x)∈C2(Ω), and ∥w(x)∥C2(Ω)≥ c1 where c1 is

some positive constant. Assume that M=max{∥ f ∥W2,p(Ω),∥g∥
W3− 1

p ,p
(∂Ω)

,∥w∥C2(Ω)}, and

∂Ω∈C4.
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Lemma 4.2. The unique weak solution u∗∈H1(Ω) of (3.4) is the unique minimizer of L(u) over
H1(Ω). Moreover, u∗∈W4,p(Ω).

Proof. See [1], Theorem 15.2.

Assumption 4.3. Assume that p>d and ∥u∗∥W4,p(Ω)≤B.

Step 1. Error decomposition.

Proposition 4.2.

c1∧1
2

∥u−u∗∥2
H1(Ω)≤L(u)−L(u∗)≤

∥w∥L∞(Ω)∨1
2

∥u−u∗∥2
H1(Ω) .

The above statement highlights the properties of the loss function. The following
proposition plays a crucial role by dividing the total errors into two distinct types.

Proposition 4.3. Suppose that P=NN (L,nθ)), then

E
{Xk}

Nin
k=1,{Yk}

Nb
k=1

[
||ûθ−u∗||2H1(Ω)

]
≤ 2

c1∧1

{
M∨1

2
inf
u∈P

||u−u∗||2H1(Ω)︸ ︷︷ ︸
Eapp

+2 E
{Xk}

Nin
k=1,{Yk}

Nb
k=1

[
sup
u∈P

|L(u)−L̂(u)|
]

︸ ︷︷ ︸
Esta

}
.

Proof. The proof is similar to the proof of Proposition 4.1.

Step 2. Approximation error bound. Following the results in [20], we show that for an
arbitrary accuracy ϵ>0 and B>0, every function from the ball of the Sobolev space Ws,p

Fs,d,p :=
{

f ∈Ws,p
(
[0,1]d

)
: ∥ f ∥Ws,p([0,1]d)≤B

}
can be ϵ-approximated in weaker Sobolev norms Wη,p (with s,η,p ∈ N0, s ≥ η+1 and
1≤ p≤∞) by neural networks with Sigmoidal activation function.

Theorem 4.5. Let s,η,d,p ∈N0, s ≥ η+1, 1≤ p ≤ ∞, ρ be tanh function ex−e−x

ex+e−x or sigmoid
function 1

1+e−x . For any ϵ>0 and f ∈Fs,d,p, there exists a neural network fθ∈NN (L,nθ) with

depth L and total number of nonzero weights nθ≥Cϵ
− d

s−η−µη such that

∥ f − fθ∥Wη,p([0,1]d)≤ϵ,

where µ is an arbitrarily small positive number and L,C depend on d,s,p,η,µ,B.

Proof. See [20]. The main idea is based on the common strategy of approximating f by
localized polynomials which in turn are approximated by neural networks.
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Since the region [0,1]d is larger than the region Ω we consider (recalling that we as-
sumed without loss of generality that Ω⊂ [0,1]d at the beginning), we need the following
extension result.

Lemma 4.3. Let η∈N0, 1≤p<∞. There exists a linear operator E from Wη,p(Ω) to Wη,p
0 ([0,1]d)

and Eu=u in Ω.

Proof. See Theorem 7.25 in [18].

From Lemma 4.2 we know that our target function u∗∈W4,p(Ω). Hence we are able
to obtain an approximation result in W3,p(Ω) norm.

Corollary 4.2. Let s=4, η=3 and d∈N0, ρ be tanh function ex−e−x

ex+e−x or sigmoid function 1
1+e−x .

For any ϵ> 0 and u∗ ∈F4,d,p, there exists a neural network ūθ ∈NN (L,nθ) with depth L and

total number of nonzero weights nθ≥Cϵ
− d

1−3µ such that

∥u∗−ūθ∥W3,p(Ω)≤ϵ,

where µ is an arbitrarily small positive number and L,C depend on d,µ,p,B.

Proof. Set s = 4 and η = 3 in Theorem 4.5 and use the fact ∥u∗−ūθ∥W3,p(Ω) ≤ ∥Eu∗−
ūθ∥W3,p([0,1]d), where E is the extension operator in Lemma 4.3.

By Sobolev Imbedding Theorem, when p > d, W3,p(Ω)⟲ W2,∞(Ω) and W4,p(Ω)⟲
W2,∞(Ω). Then ∥u∗−ūθ∥W2,∞(Ω)≤∥u∗−ūθ∥W3,p(Ω)≤ϵ. In Assumption 4.3, ∥u∗∥W3,∞(Ω)≤B,
then by the approximation result and the triangle inequality, we obtain ∥ūθ∥W2,∞(Ω) ≤
∥u∗−ūθ∥W2,∞(Ω)+∥u∗∥W2,∞(Ω)≤2B. From Corollary 4.2, we know that ūθ∈NN (L,nθ) is
an infinitely continuously differentiable function, then we have ∥ūθ∥C2(Ω)≤2B. It is rea-
sonable to add a constraint to the neural network: for any fθ∈P , ∥ fθ∥C2(Ω)≤2B, because
the network function class P defined in this way contains the best approximation element
ūθ and is non-empty. According to the definition, we can say that P=NN (L,nθ,∥·∥C2 ,2B)
when the depth of the network is L and the total number of nonzero weights is nθ.

Assumption 4.4. For s ≥ 2, 1≤ t ≤ s−1, t,s ∈N0, we assume that the Sigmoidal neural
network function class P=NN (L,nθ) is Ct-norm bounded, i.e. P=NN (L,nθ,∥·∥Ct ,2B).

Corollary 4.3. Let t= 2, p> d, p,d∈N0 and ρ be tanh function ex−e−x

ex+e−x or sigmoid function
1

1+e−x . Assume that the problem satisfies Assumption 4.3 and the neural network function class
P satisfies Assumption 4.4, i.e. P =NN (L,nθ,∥·∥C2 ,2B). For any 0< ϵ < B, there exists a

neural network ūθ∈P with depth L and total number of nonzero weights nθ≥Cϵ
− d

1−3µ such that

∥u∗−ūθ∥W2,∞(Ω)≤ϵ,

where µ is an arbitrarily small positive number and L,C depends on d,µ,p,B.
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Proof. Similar to the proof of Corollary 4.1, it can be drawn directly from Corollary 4.2.

Step 3. Statistical error bound.

Lemma 4.4.

E
{Xk}

Nin
k=1,{Yk}

Nb
k=1

[
sup
u∈P

|L(u)−L̂(u)|
]
≤C(d,M,|∂Ω|,|Ω|)

4

∑
j=1

R(Fj),

where
F1={± f : Ω→R | ∃u∈P , s.t. f (x)= |∇u(x)|2},

F2={± f : Ω→R | ∃u∈P , s.t. f (x)=u2(x)},
F3=P , F4=P|∂Ω.

Proof. We can prove this lemma using the same method as Lemma 4.1, by combining
equations (3.6) and (3.7) and applying Talagrand’s lemma.

Theorem 4.6. Let F be the norm-ball of radius 2B in Ct([0,1]d), t>0. Then for any ϵ>0,

logC(ϵ,F ,d∞)≤C(d,t)(2B)
d
t ϵ−

d
t =C(d,B,t)ϵ−

d
t .

Proof. See [19], Theorem 4.3.36.

When the neural network function space P satisfies the condition in Assumption 4.4,
we have the following result. This demonstrates that the upper bound of Esta is indepen-
dent on nθ and L.

Theorem 4.7. Let the sample size is n, t=2 and d>2, d∈N0. For the deep Ritz method, if the
neural networks satisfy Assumption 4.4, i.e. P=NN (L,nθ,∥·∥C2 ,2B), we have

E
{Xk}

Nin
k=1,{Yk}

Nb
k=1

[
sup
u∈P

|L(u)−L̂(u)|
]
≤C(d,B,M)n− 1

d .

Step 4. Total error bound. Combining Corollary 4.3, Theorem 4.7 and Proposition 4.3,
we come to the following conclusion.

Theorem 4.8. Let ρ be tanh function ex−e−x

ex+e−x or sigmoid function 1
1+e−x . Let B>0, t=2, p>d>2,

p,d∈N0 and µ is an arbitrarily small positive number. For the problem satisfies Assumption 4.3,
there exists an over-parameterized neural network function class P that satisfies Assumption 4.4.
If the sample size Nin =Nb =n, when nθ is no less than

max{C(d,µ,B,M,p)n
1

2(1−3µ) ,C(d,µ,B,p)B− d
1−3µ }

and L depends on d,µ,B,p, we have that for the estimator ûθ∈P

E
{Xk}

Nin
k=1,{Yk}

Nb
k=1

[∥ûθ−u∗∥2
H1(Ω)]≤C(d,µ,B,M)n− 1

d .
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4.3 Proof sketch of Theorem 3.3

In Theorem 3.1 we have analyzed the error bound under ReLU neural networks, how-
ever, since the ReLU networks only have the first order smoothness, we can only consider
the network function class P satisfies Assumption 4.2. If we replace the activation func-
tion with Sigmoidal activation function, we can make stronger assumptions (Assumption
4.4) about the network function class and investigate the impact of the smoothness of the
neural network function class on the convergence rate.

Consider the regression model (3.1) with Assumption 4.1. Firstly, we can get the
approximation error bound in (4.2) by Theorem 4.5.

Corollary 4.4. Let s= ⌊β⌋, 1≤ t≤ η≤ s−1, p=∞ and t,η,d∈N0, ρ be tanh function ex−e−x

ex+e−x

or sigmoid function 1
1+e−x . Assume that the problem satisfies Assumption 4.1 and the neural

network function class P satisfies Assumption 4.4. For any 0 < ϵ < B, there exists a neural

network f̄θ∈P with depth L and total number of nonzero weights nθ≥Cϵ
− d

s−η−µη such that∥∥ f0− f̄θ

∥∥
Wη,∞([0,1]d)≤ϵ,

where µ is an arbitrarily small positive number and L,C depends on d,µ,B,s,η.

Proof. Since 1≤ t≤ η ≤ s−1 and f0 ∈Hβ
(
[0,1]d,B

)
, we have that ∥ f0∥Wt,∞([0,1]d) ≤ B. Re-

gardless of the Assumption 4.4, we have ∥ f̄θ∥Wη,∞([0,1]d) ≤ ϵ < B by the approximation
result in Theorem 4.5 with p=∞. Using the triangle inequality, we have ∥ f̄θ∥Wt,∞([0,1]d)≤
∥ f0− f̄θ∥Wη,∞([0,1]d)+∥ f0∥Wt,∞([0,1]d) ≤ 2B. Since the activation function is infinitely con-
tinuously differentiable, we have ∥ f̄θ∥Ct([0,1]d) ≤ 2B. It means that the assumption P =
NN (L,nθ,∥·∥Ct ,2B) is reasonable and does not change the approximation result. The
proof is complete.

Secondly, we can get the statistical error bound in (4.2) by combining Lemma 4.1,
Dudley’s theorem A.5 and Theorem 4.6.

Theorem 4.9. Let the sample size is n, 1≤ t<d/2 and t,d∈N0. For the regression model, if the
neural networks satisfy Assumption 4.4, i.e. P=NN (L,nθ,∥·∥Ct ,2B), we have

Esta =E
Sn

[
sup
f∈P

|L( f )−L̂( f )|
]
≤C(d,B,t)n− t

d .

Finally, combining Corollary 4.4, Theorem 4.9 and Proposition 4.1 with s=⌊β⌋, 1≤t≤
η≤ s−1, p=∞, t<d/2 and t,η,d∈N0, we come to the total error bound.

Theorem 4.10. Let ρ be tanh function ex−e−x

ex+e−x or sigmoid function 1
1+e−x . Let B> 0, s= ⌊β⌋,

1≤ t≤ η≤ s−1, p=∞, t< d/2 and t,η,d∈N0, and µ is an arbitrarily small positive number.
Consider the problem satisfies Assumption 4.1. For each t, there exists an over-parameterized
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neural network function class P that satisfies Assumption 4.4. If the sample size is n, when

nθ≥max{C(d,µ,B,s,t,η)n
t

2(s−η−µη) ,CB− d
s−η−µη }, C and L depend on d,µ,B,s,η, we have that for

the estimator f̂θ∈P ,

E
Sn

[
∥ f̂θ− f0∥2

L2(µ)

]
≤C(s,d,B,t,η,µ)n− t

d .

5 Conclusion

In this paper, we introduce a new theoretical framework based on function space the-
ory and establish the consistency of norm-bounded over-parameterized deep learning.
We demonstrate that the complexity of a neural network can be controlled by the metric
entropy of the balls in certain metric space, which is independent of the number of pa-
rameters. This provides a novel perspective for understanding the good generalization
ability of over-parameterized neural networks.

Further research is needed to explore related issues. One area of focus is finding
new methods for estimating approximation error, particularly for target functions with
smoothness β<2. Another is extending this framework to include other activation func-
tions and to different kinds of problems.
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A Appendix

A.1 Proof of regression model

A.1.1 Proof of Proposition 4.1

For any f̄ ∈P , we have

L( f̂θ)−L( f0)=L( f̂θ)−L̂( f̂θ)+L̂( f̂θ)−L̂( f̄ )+L̂( f̄ )−L( f0)

≤L( f̂θ)−L̂( f̂θ)+L̂( f̄ )−L( f0),
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where the inequality is due to the fact that L̂( f̂θ)−L̂( f̄ )≤0. Take the expectation of both
sides of this equation, we have

E
Sn

[
L( f̂θ)−L( f0)

]
≤E

Sn

[
L( f̂θ)−L̂( f̂θ)+L̂( f̄ )−L( f0)

]
≤E

Sn

[
L̂( f̄ )−L( f0)

]
+E

Sn

[
sup
f∈P

|L( f )−L̂( f )|
]

=
[
L( f̄ )−L( f0)

]
+E

Sn

[
sup
f∈P

|L( f )−L̂( f )|
]

.

Since f̄ can be any element in P , we take the infimum of f̄ :

E
Sn

[
L( f̂θ)−L( f0)

]
≤ inf

f̄∈P

[
L( f̄ )−L( f0)

]
+E

Sn

[
sup
f∈P

|L( f )−L̂( f )|
]

.

By ∥ f̄ − f0∥2
L2(µ)

=L( f̄ )−L( f0),

E
Sn

[
∥ f̂θ− f0∥2

L2(µ)

]
≤ inf

f̄∈P
∥ f̄ − f0∥2

L2(µ)+E
Sn

[
sup
f∈P

|L( f )−L̂( f )|
]

.

A.1.2 Proof of Theorem 4.1

The approximation error depends on P through its parameters and is related to the
smoothness of the target. In this section, the function class P =NN (W,L) consists of
the feed-forward neural networks with the ReLU activation function. We show that ev-
ery function from the unit ball of the Sobolev space Ws,∞

Fs,d,∞ :=
{

f ∈Ws,∞
(
[0,1]d

)
: ∥ f ∥Ws,∞([0,1]d)≤B

}
can be approximated in weaker Sobolev norms W1,∞(with s≥2) by neural networks with
ReLU activation function. The main idea is based on the common strategy of approxi-
mating f by localized polynomials which in turn are approximated by neural networks.
Following the constructions in [20] and [28], we can build approximate partitions of unity
which are compatible with ReLU activation function. Firstly, we consider the approxima-
tion of the quadratic function f (x)= x2.

Lemma A.1. Let f (x)= x2, for any k∈N, there exists ϕ0
k ∈NN

(
2k+1,2

)
such that ϕ0

k(0)=0
and

∥ f −ϕ0
k∥L∞([0,1])≤2−2(k+1), ∥ f −ϕ0

k∥W1,∞([0,1])≤2−k.

Proof. We modify the construction in [28]. We define a set of teeth functions Ti : R→ [0,1]
by

T1(x) :=


2x, 0≤ x≤ 1

2 ,
2(1−x), 1

2 < x≤1,
0, else,
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and Ti+1=T1◦Ti, for i∈N. It is easy to check that Ti has 2i−1 teeth and

Ti(x)=
2i−1−1

∑
j=0

σ
(

1−
∣∣∣2ix−2j−1

∣∣∣).

Since |x|=σ(x)+σ(−x), the function

fi,j(x)=σ
(

1−
∣∣∣2ix−2j−1

∣∣∣)
=σ
(

1−σ
(

2ix−2j−1
)
−σ
(
−2ix+2j+1

))
=σ

(
1−
(

2i+2j+1
)

σ

(
2i

2i+2j+1
x− 2j+1

2i+2j+1

)
−
(

2i+2j+1
)

σ

(
− 2i

2i+2j+1
x+

2j+1
2i+2j+1

))
is in NN (2,2). Then Ti ∈NN (2i,2).

For any k∈N, let ϕ0
k : [0,1]→ [0,1] be the piecewise linear function such that ϕ0

k(
j

2k )=

( j
2k )

2 for j=0,1,··· ,2k, and ϕ0
k is linear on [ j−1

2k , j
2k ] for j=1,2,··· ,2k. Then, for all x∈[ j−1

2k , j
2k ],

ϕ0
k(x)=

(
j2

2k −
(j−1)2

2k

)(
x− j−1

2k

)
+

(
j−1
2k

)2

, j=1,2,··· ,2k,

D(ϕ0
k(x))=

j2

2k −
(j−1)2

2k .

Since ∥ f −ϕ0
k∥W1,∞([0,1])=max

{
∥ f −ϕ0

k∥L∞([0,1]),∥D f −Dϕ0
k∥L∞([0,1])

}
,

∥ f −ϕ0
k∥L∞([0,1])=

∣∣∣∣∣x2−
(

j2

2k −
(j−1)2

2k

)(
x− j−1

2k

)
+

(
j−1
2k

)2
∣∣∣∣∣

=

∣∣∣∣(x− 2j−1
2k+1

)2
−
( 1

2k+1

)2
∣∣∣∣≤( 1

2k+1

)2
,

∥D f −Dϕ0
k∥L∞([0,1])=max

{∣∣∣2j−1
2k − 2(j−1)

2k

∣∣∣,∣∣∣2j−1
2k − 2j

2k

∣∣∣}=2−k.

Therefore,
∥ f −ϕk∥W1,∞([0,1])≤2−k, k∈N.

Furthermore, ϕ0
k−1(x)−ϕ0

k(x)= Tk(x)
4k and x−ϕ0

1(x)= T1(x)
4 . Hence,

ϕ0
k(x)= x−

(
x−ϕ0

1(x)
)
−

k

∑
i=2

(
ϕ0

i−1(x)−ϕ0
i (x)

)
=σ(x)−

k

∑
i=1

Ti(x)
4i , x∈ [0,1], k∈N.

Since ∑k
i=12i+1=2k+1−1, we have ϕ0

k ∈NN (2k+1−1,2), which completes the proof.
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Using the relation

xy=2

((
|x+y|

2

)2

−
(
|x|
2

)2

−
(
|y|
2

)2
)

,

we can approximate the product function by neural networks and then further approxi-
mate any monomials x1 ···xd.

Lemma A.2. Let f (x,y)= xy, for any k∈N, there exists ϕ1
k ∈NN

(
3·2k+1,4

)
such that ϕ1

k :
[−1,1]2→ [−1,1] and ∥∥∥ f −ϕ1

k

∥∥∥
W1,∞([−1,1]2)

≤6·2−k.

Furthermore, ϕ1
k(x,y)=0 if xy=0.

Proof. By Lemma A.1, if f̃ (x) = x2, there exists network ϕ0
k ∈NN

(
2k+1−1,2

)
such that∥∥∥ f̃ −ϕ0

k

∥∥∥
W1,∞([0,1])

≤2−k and ϕ0
k(0)=0. Using

xy=2

((
|x+y|

2

)2

−
(
|x|
2

)2

−
(
|y|
2

)2
)

,

we consider the function

ϕ̃1
k(x,y) :=2ϕ0

k

(
1
2
|x+y|

)
−2ϕ0

k

(
1
2
|x|
)
−2ϕ0

k

(
1
2
|y|
)

=2ϕ0
k

(
1
2

σ(x+y)+
1
2

σ(−x−y)
)

−2ϕ0
k

(
1
2

σ(x)+
1
2

σ(−x)
)
−2ϕ0

k

(
1
2

σ(y)+
1
2

σ(−y)
)

.

Then, ϕ̃1
k(x,y)=0 if xy=0, and, for any x,y∈ [−1,1],

∥∥∥xy−ϕ̃1
k(x,y)

∥∥∥
W1,∞([0,1]2)

≤2

∥∥∥∥∥
(
|x+y|

2

)2

−ϕ0
k

(
|x+y|

2

)∥∥∥∥∥
W1,∞([0,1]2)

+2

∥∥∥∥∥
(
|x|
2

)2

−ϕ0
k

(
|x|
2

)∥∥∥∥∥
W1,∞([0,1]2)

+2

∥∥∥∥∥
(
|y|
2

)2

−ϕ0
k

(
|y|
2

)∥∥∥∥∥
W1,∞([0,1]2)

≤6·2−k.
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Finally, let χ(x)=σ(x)−σ(−x)−2σ
( 1

2 x− 1
2

)
+2σ

(
− 1

2 x− 1
2

)
=(x∨−1)∧1, then χ∈NN (4,1).

We construct the target function as

ϕ1
k(x,y)=χ

(
ϕ̃1

k(x,y)
)
=
(

ϕ̃1
k(x,y)∨−1

)
∧1.

Then, for any x,y∈ [−1,1],∥∥∥xy−ϕ1
k(x,y)

∥∥∥
W1,∞([0,1]2)

≤
∥∥∥xy−ϕ̃1

k(x,y)
∥∥∥

W1,∞([0,1]2)
≤6·2−k.

Here, ϕ1
k ∈NN

(
3·2k+1,4

)
.

Lemma A.3. For any k∈N, a,b∈R with a<b, there exists ϕ1
k ∈NN

(
3·2k+1,4

)
such that∥∥∥xy−ϕ1

k(x,y)
∥∥∥

W1,∞([a,b]2)
≤6(b−a)22−k.

Proof. See [22]. By Lemma A.1 and Lemma A.2, there exists ϕ̂1
k ∈NN

(
3·(2k+1−1),4

)
such that ∥∥∥x̂ŷ−ϕ̂1

k(x̂,ŷ)
∥∥∥

W1,∞([0,1]2)
≤6·2−k.

By setting x= a+(b−a)x̂ and y= a+(b−a)ŷ for any x̂,ŷ∈ [0,1], we define the following
network ϕ1

k

ϕ1
k =(b−a)2ϕ̂1

k

(
x−a
b−a

,
y−a
b−a

)
+a(x−a)+a(y−a)+a2.

Note that a(x−a)+a(y−a) is positive. Hence, the width of ϕ1
k can be as small as 3·(2k+1−

1)+1<3·(2k+1). Thus, by xy=(b−a)2
(

x−a
b−a ·

y−a
b−a

)
+a(x−a)+a(y−a)+a2, we have∥∥∥ϕ1

k(x,y)−xy
∥∥∥

W1,∞([a,b]2)

=(b−a)2
∥∥∥∥ϕ̂1

k

(
x−a
b−a

,
y−a
b−a

)
−
(

x−a
b−a

· y−a
b−a

)∥∥∥∥
W1,∞([a,b]2)

≤(b−a)26·2−k.

This completes the proof.

Lemma A.4. For any d ≥ 2, m = ⌈log2 d⌉ and k ∈ N, k ≥ 2⌈log2 d⌉+2, there exists ϕm
k ∈

NN
(
6d·2k,4⌈log2 d⌉

)
such that ϕm

k : [−1,1]d → [−1,1] and

∥x1 ···xd−ϕm
k (x)∥W1,∞([0,1]d)≤3·22⌈log2 d⌉−1−k, x=(x1,··· ,xd)

⊤ .

Furthermore, ϕm
k (x)=0 if x1 ···xd =0.
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Proof. m= ⌈log2 d⌉. For m=1, by Lemma A.2, there exists ϕ1
k ∈NN

(
3·2k+1,4

)
such that

ϕ1
k : [−1,1]2→ [−1,1] and

∥∥x1x2−ϕ1
k (x1,x2)

∥∥
W1,∞([−1,1]2)≤ 6·2−k for any x1,x2∈ [−1,1]. We

define ϕm
k : [−1,1]2

m → [−1,1] inductively by

ϕm
k (x1,··· ,x2m)=ϕ1

k

(
ϕm−1

k (x1,··· ,x2m−1),ϕm−1
k (x2m−1+1,··· ,x2m)

)
.

Then, ϕm
k (x1,··· ,x2m)= 0 if x1 ···x2m = 0 because the equation is true for m= 1. Next, we

inductively show that ϕm
k ∈NN

(
3·2k+m,4m

)
and

∥x1 ···x2m −ϕm
k (x1,··· ,x2m)∥W1,∞([−1,1]2m )≤3·22m−1−k =4m−1 ·6·2−k.

It is obvious that the assertion is true for m=1 by construction. Assume that the assertion
is true for some m−1∈N, we will prove that it is true for m. By the assumption, ϕm−1

k ∈
NN (3·2m+k−1,4m−4) and∥∥∥x1 ···x2m−1−ϕm−1

k (x1,··· ,x2m−1)
∥∥∥

W1,∞([−1,1]2m−1 )
≤4m−2 ·6·2−k,

then we have ϕm
k ∈NN (2·3·2m+k−1,4m−4+4)=NN (3·2m+k,4m) and

∥x1 ···x2m −ϕm
k (x1,··· ,x2m)∥W1,∞([−1,1]2m )

=
∥∥∥x1 ···x2m−1 ·x2m−1+1 ···x2m −ϕ1

k

(
ϕm−1

k (x1,··· ,x2m−1),ϕm−1
k (x2m−1+1,··· ,x2m)

)∥∥∥
W1,∞

≤∥x1 ···x2m−1 ·(x2m−1+1 ···x2m)−ϕm−1
k (x1,··· ,x2m−1)·(x2m−1+1 ···x2m)∥W1,∞

+∥ϕm−1
k (x1,··· ,x2m−1)∥W1,∞ ·∥(x2m−1+1 ···x2m)−ϕm−1

k (x2m−1+1,··· ,x2m)∥W1,∞

+∥ϕm−1
k (x1,··· ,x2m−1)·ϕm−1

k (x2m−1+1,··· ,x2m)

−ϕ1
k

(
ϕm−1

k (x1,··· ,x2m−1),ϕm−1
k (x2m−1+1,··· ,x2m)

)
∥W1,∞

≤4m−2 ·6·2−k+(1+4m−2 ·6·2−k)4m−2 ·6·2−k+6·2−k(1+2·4m−1 ·6·2−k)2

≤4·4m−2 ·6·2−k =4m−1 ·6·2−k,

where the first inequality is due to the triangle inequality. By the induction hypothesis
and Lemma A.3, we get the second inequality. Since k≥ 2⌈log2 d⌉+2= 2m+2, we have
4m−1 ·6·2−k < 1, which can derive the last inequality. Hence, the assertion is true for m,
the proof is complete.

In Lemma A.4 we construct neural networks to approximate monomials. We can then
approximate any f ∈Ws,∞ by approximating its local Taylor expansion.

p(x)= ∑
n∈{0,1,···,N}d

ψn(x) ∑
∥α∥1≤s

∂α f
( n

N

)
α!

(
x− n

N

)α
, (A.1)

where we use the usual conventions α!=∏d
i=1 αi! and

(
x− n

N

)α
=∏d

i=1
(
xi− ni

N

)αi . The func-
tions {ψn}n form a partition of unity of [0,1]d and each ψn is supported on a sufficiently
small neighborhood of n/N.
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Theorem A.1. For any N,k∈N, k≥ 2⌈log2(d+s−1)⌉+2 and f ∈Fs,d,∞ where s∈N0 and
s≥2, there exists ϕ∈NN (W,L) where

W=6s(d+s−1)ds−1(N+1)d2k =C1(d,s)(N+1)d2k,
L=4⌈log2(d+s−1)⌉+2,

such that
∥ f −ϕ∥W1,∞([0,1]d)≤2ddsB

(
N−s+1+3· s

d
·22⌈log2(d+s−1)⌉−1−k

)
=C2(d,s)(N−s+1+2−k)B,

where C1(d,s)=6s(d+s−1)ds−1 and C2(d,s)=2dds ·3· s
d ·22⌈log2(d+s−1)⌉−1.

Proof. Let
ψ(t)=σ(1−|t|)=σ(1−σ(t)−σ(−t))∈ [0,1], t∈R,

then ψ∈NN (2,2) and the support of ψ is [−1,1]. For any n=(n1,··· ,nd)∈{0,1,··· ,N}d,
define

ψn(x) :=
d

∏
i=1

ψ(Nxi−ni), x=(x1,··· ,xd)
⊤∈Rd,

then ψn is supported on
{

x∈Rd :
∥∥x− n

N

∥∥
L∞ ≤ 1

N

}
. The functions {ψn}n form a partition

of unity of the domain [0,1]d :

∑
n∈{0,1,···,N}d

ψn(x)=
d

∏
i=1

N

∑
ni=0

ψ(Nxi−ni)≡1, x∈ [0,1]d.

Let p(x) be the local Taylor expansion (A.1).

p(x)= ∑
n∈{0,···,N}d

ψn(x) ∑
∥α∥1≤s−1

(
x− n

N

)α ∂α f ( n
N )

α!
. (A.2)

For a fixed n∈{0,1,··· ,N}d and any x∈{x∈Rd :∥x− n
N∥L∞ ≤ 1

N}, by the Taylor expansion
there exists a ξx ∈ (0,1) such that

f (x)= ∑
∥α∥1≤s−1

∂α f ( n
N )

α!

(
x− n

N

)α
+ ∑

∥α∥1=s

∂α f ( n
N +ξx(x− n

N ))

α!

(
x− n

N

)α
.

We denote the first order derivatives of f by ∂γ f with ∥γ∥1=1. For x∈{x∈Rd :∥x− n
N∥L∞≤

1
N}, by Taylor’s expansion there exists a ξ

γ
x ∈ (0,1) such that

∂γ f (x)= ∑
∥α∥1≤s−2

∂α∂γ f ( n
N )

α!

(
x− n

N

)α
+ ∑

∥α∥1=s−1

∂α∂γ f ( n
N +ξ

γ
x (x− n

N ))

α!

(
x− n

N

)α

=∂γ

(
∑

∥α∥1≤s−1

∂α f ( n
N )

α!

(
x− n

N

)α
)
+ ∑

∥α∥1=s−1

∂α∂γ f ( n
N +ξ

γ
x (x− n

N ))

α!

(
x− n

N

)α
.
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Then for any x∈ [0,1]d, f (x)=∑n∈{0,1,···,N}d ψn(x) f (x).

∥ f (x)−p(x)∥L∞([0,1]d)=

∥∥∥∥ ∑
n∈{0,1,···,N}d

ψn(x)
(

∑
∥α∥1≤s−1

∂α f ( n
N )

α!

(
x− n

N

)α

+ ∑
∥α∥1=s

∂α f ( n
N +ξx(x− n

N ))

α!

(
x− n

N

)α
)
−p(x)

∥∥∥∥
L∞([0,1]d)

=

∥∥∥∥ ∑
n∈{0,1,···,N}d

ψn(x) ∑
∥α∥1=s

∂α f ( n
N +ξx(x− n

N ))

α!

(
x− n

N

)α
∥∥∥∥

L∞([0,1]d)

≤ ∑
n:∥x− n

N ∥L∞≤ 1
N

∑
∥α∥1=s

∥∥∥ B
α!

(
x− n

N

)α∥∥∥
L∞([0,1]d)

≤2ddsBN−s,

and

∥D f (x)−Dp(x)∥L∞([0,1]d)≤2d max
∥γ∥1=1

∥∥∥∥ ∑
∥α∥1=s−1

∂α∂γ f ( n
N +ξ

γ
x (x− n

N ))

α!

(
x− n

N

)α
∥∥∥∥

L∞([0,1]d)

≤2dds−1BN−(s−1).

Therefore,

∥ f (x)−p(x)∥W1,∞([0,1]d)=max
{
∥ f (x)−p(x)∥L∞([0,1]d),∥D f (x)−Dp(x)∥L∞([0,1]d)

}
≤2ddsBN−(s−1).

Next, we need to construct the neural network ϕ and bound ∥p(x)−ϕ(x)∥W1,∞([0,1]d). For

convenience, we denote cn,α := ∂α f ( n
N )

α! , then by (A.2)

p(x)= ∑
n∈{0,···,N}d

∑
∥α∥1≤s−1

cn,α ·ψn(x)
(

x− n
N

)α

= ∑
n∈{0,···,N}d

∑
∥α∥1≤s−1

cn,α

d

∏
i=1

ψ(Nxi−ni)
(

x− n
N

)α
.

We can approximate p(x) by

ϕ(x)= ∑
n∈{0,···,N}d

∑
∥α∥1≤s−1

cn,αϕn,α(x).

When we set m=⌈log2(d+∥α∥1)⌉,

ϕn,α(x) :=ϕm
k

(
ψ(Nx1−n1),··· ,ψ(Nxd−nd),··· ,xi−

ni

N
,···
)

,
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where the term xi− ni
N appears in the input only when αi ̸= 0 and it repeats αi times.

Since xi−ni/N = σ(xi−ni/N)−σ(−xi+ni/N), by Lemma A.4, ϕn,α ∈NN (6(d+s−1)·
2k,4⌈log2(d+s−1)⌉) and the approximation error is∥∥∥∥∥ d

∏
i=1

ψ(Nxi−ni)
(

x− n
N

)α
−ϕn,α(x)

∥∥∥∥∥
W1,∞([0,1]d)

≤3·22⌈log2(d+∥α∥1)⌉−1−k.

Observe that |cn,α|= | ∂α f ( n
N )

α! |≤B and the number of terms in the inner summation is

∑
∥α∥1≤s−1

1=
s−1

∑
j=0

∑
∥α∥1=j

1≤
s−1

∑
j=0

dj ≤ sds−1.

The approximation error is, for any x∈ [0,1]d,

∥p(x)−ϕ(x)∥W1,∞([0,1]d)≤∑
n

∑
∥α∥1≤s−1

B

∥∥∥∥∥ d

∏
i=1

ψ(Nxi−ni)
(

x− n
N

)α
−ϕn,α(x)

∥∥∥∥∥
W1,∞([0,1]d)

≤2dsds−1B·3·22⌈log2(d+s−1)⌉−1−k.

Hence, the total approximation error is

∥ f (x)−ϕ(x)∥W1,∞([0,1]d)≤∥ f (x)−p(x)∥W1,∞([0,1]d)+∥p(x)−ϕ(x)∥W1,∞([0,1]d)

≤2ddsBN−(s−1)+2dsds−1B·3·22⌈log2(d+s−1)⌉−1−k

=2ddsB
(

N−s+1+3· s
d
·22⌈log2(d+s−1)⌉−1−k

)
=C2(d,s)(N−s+1+2−k)B,

where C2(d,s)= 2dds ·3· s
d ·22⌈log2(d+s−1)⌉−1. The width W of the network ϕ is 6(d+s−1)·

2k ·sds−1(N+1)d and the depth L is 4⌈log2(d+s−1)⌉+2.

Theorem A.2. For k∈N, k≥2⌈log2(d+s−1)⌉+2 and f ∈Hβ([0,1]d,B) where β≥2, s=⌊β⌋∈
N0, there exists ϕ∈NN (W,L) where

W=C1(d,s)2k+ kd
s−1 ,

L=4⌈log2(d+s−1)⌉+2,

such that
∥ f −ϕ∥W1,∞([0,1]d)≤2C2(d,s)2−kB,

where C1(d,s) and C2(d,s) are defined as Theorem A.1.

Proof. Choose N= ⌈2
k

s−1 ⌉, by the result in Theorem A.1, we have W =C1(d,s)2k+ kd
s−1 , L=

4⌈log2(d+s−1)⌉+2 and ∥ f −ϕ∥W1,∞([0,1]d)≤2C2(d,s)2−kB.
Combining Theorem A.2 with k≥ log2C2(d,s)+1, we have that ∥ f −ϕ∥W1,∞([0,1]d)≤B,

and the proof of Theorem 4.1 is complete.
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A.1.3 Proof of Lemma 4.1

We take Z̃={Z̃i}n
i=1 as an independent copy of {Zi}n

i=1, then

L( f )−L̂( f )=E
Z
(ℓ( f ,Z))− 1

n

n

∑
i=1

ℓ( f ,Zi)

= E
{Z̃i}n

i=1

[
1
n

n

∑
i=1

ℓ( f ,Z̃i)−
1
n

n

∑
i=1

ℓ( f ,Zi)

]

= E
{Z̃i}n

i=1

1
n

n

∑
i=1

[
ℓ( f ,Z̃i)−ℓ( f ,Zi)

]
.

Since ℓ is the least squares loss function, combined with Talagrand’s lemma [40], we have

E
{Zi}n

i=1

sup
f∈P

|L( f )−L̂( f )|≤ E
{Zi ,Z̃i}n

i=1

sup
f∈P

∣∣∣∣∣ 1n n

∑
i=1

[
ℓ( f ,Z̃i)−ℓ( f ,Zi)

]∣∣∣∣∣
= E

{Zi ,Z̃i ,σi}n
i=1

sup
f∈P

1
n

n

∑
i=1

σi

[
ℓ( f ,Z̃i)−ℓ( f ,Zi)

]
≤ E

{Z̃i ,σi}n
i=1

sup
f∈P

1
n

n

∑
i=1

σiℓ( f ,Z̃i)+ E
{Zi ,σi}n

i=1

sup
f∈P

1
n

n

∑
i=1

(−σi)ℓ( f ,Zi)

=2 E
{Zi ,σi}n

i=1

sup
f∈P

1
n

n

∑
i=1

σiℓ( f ,Zi)

=2R(ℓ◦P)≤2R(P),

where the second step is due to the fact that the insertion of Rademacher variables doesn’t
change the distribution.

A.1.4 Proof of Theorem 4.3

Lemma A.5. Let F be a class of functions from Ω to R such that 0∈F and the diameter of F is
less than M, i.e., ||u||L∞(Ω)≤M, ∀u∈F . Then

R(F )≤ inf
0<δ<M

(
4δ+

12√
N

∫ M

δ

√
log(C(ϵ,F ,d∞))dϵ

)
. (A.3)

Proof. The proof is based on the chaining method. Set ϵk = 2−k+1M. We denote by Fk
such that Fk is an ϵk-cover of F and |Fk|=C (ϵk,F ,d∞). Hence for any u∈F , there exists
uk ∈Fk such that

d∞(u,uk)≤ϵk.
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Let K be a positive integer determined later. We have

R(F )= E
{σi ,Xi}N

i=1

[
sup
u∈F

1
N

N

∑
i=1

σiu(Xi)

]

= E
{σi ,Xi}N

i=1

1
N

sup
u∈F

[
N

∑
i=1

σi (u(Xi)−uK (Xi))+
K−1

∑
j=1

N

∑
i=1

σi
(
uj+1(Xi)−uj (Xi)

)
+

N

∑
i=1

σiu1(Xi)

]

≤ E
{σi ,Xi}N

i=1

[
sup
u∈F

1
N

N

∑
i=1

σi (u(Xi)−uK (Xi))

]
+

K−1

∑
j=1

E
{σi ,Xi}N

i=1

[
sup
u∈F

1
N

N

∑
i=1

σi
(
uj+1(Xi)−uj (Xi)

)]

+ E
{σi ,Xi}N

i=1

[
sup
u∈F1

1
N

N

∑
i=1

σiu(Xi)

]
.

We can choose F1={0} to eliminate the third term. For the first term,

E
{σi ,Xi}N

i=1

sup
u∈F

1
N

[
N

∑
i=1

σi (u(Xi)−uK (Xi))

]
≤ E

{σi ,Xi}N
i=1

sup
u∈F

1
N

N

∑
i=1

|σi|∥u−uK∥L∞ ≤ϵK.

For the second term, for any fixed samples {Xi}N
i=1, we define

Vj :=
{(

uj+1(X1)−uj (X1),··· ,uj+1(XN)−uj (XN)
)
∈RN : u∈F

}
.

Then, for any vj ∈Vj,

∥∥∥vj
∥∥∥

2
=

(
n

∑
i=1

∣∣uj+1(Xi)−uj (Xi)
∣∣2)1/2

≤
√

n
∥∥uj+1−uj

∥∥
L∞

≤
√

n
∥∥uj+1−u

∥∥
L∞ +

√
n
∥∥uj−u

∥∥
L∞ =

√
nϵj+1+

√
nϵj =3

√
nϵj+1.

Applying Massart’s lemma [40], we have

K−1

∑
j=1

E
{σi}N

i=1

[
sup
u∈F

1
N

N

∑
i=1

σi
(
uj+1(Xi)−uj (Xi)

)]

=
K−1

∑
j=1

E
{σi}N

i=1

sup
vj∈Vj

1
N

N

∑
i=1

σiv
j
i

≤K−1

∑
j=1

3ϵj+1√
N

√
2log

∣∣Vj
∣∣.

By the definition of Vj, we know that
∣∣Vj
∣∣≤ ∣∣Fj

∣∣∣∣Fj+1
∣∣≤ ∣∣Fj+1

∣∣2. Hence

K−1

∑
j=1

E
{σi ,Xi}N

i=1

[
sup
u∈F

1
N

N

∑
i=1

σi
(
uj+1(Xi)−uj (Xi)

)]
≤

K−1

∑
j=1

6ϵj+1√
N

√
log
∣∣Fj+1

∣∣.
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Now we obtain

R(F )≤ϵK+
K−1

∑
j=1

6ϵj+1√
N

√
log
∣∣Fj+1

∣∣
=ϵK+

12√
N

K

∑
j=1

(
ϵj−ϵj+1

)√
logC

(
ϵj,F ,d∞

)
≤ϵK+

12√
N

∫ M

ϵK+1

√
logC (ϵ,F ,d∞)dϵ

≤ inf
0<δ<M

(
4δ+

12√
N

∫ M

δ

√
log(C(ϵ,F ,d∞))dϵ

)
,

where last inequality holds since for 0≤ δ≤M, we can choose K to be the largest integer
such that ϵK+1>δ, at this time ϵK ≤4ϵK+2≤4δ.

Proof of Theorem 4.3. From Lemma 4.1 we have

Esta =E
Z

[
sup
f∈P

|L( f )−L̂( f )|
]
≤2R(P).

Combining with Lemma A.5 and Theorem 4.2, when d>2,

R(P)≤ inf
0<δ<2B

(
4δ+

12√
n

∫ 2B

δ

√
log(C(ϵ,P ,d∞))dϵ

)
≤ inf

0<δ<2B

(
4δ+

12√
n

∫ 2B

δ

√
C(d,B)ϵ−ddϵ

)
≤ inf

0<δ<2B

(
4δ+

12√
n
C(d,B)

2
d−2

(
δ−

d
2+1−(2B)−

d
2+1
))

≤ inf
0<δ<2B

(
4δ+

C(d,B)√
n

δ−
d
2+1
)

≤C(d,B)n− 1
d .

Therefore, Esta ≤2C(d,B)n− 1
d =C(d,B)n− 1

d .

A.1.5 Proof of Theorem 4.4

Firstly, since f0 ∈Hβ([0,1]d,B), by Corollary 4.1 we know that for any k≥ log2C2(d,s)+1,
there exists a neural network fθ∈P with W=C1(d,s)2k+ kd

s−1 and L=4⌈log2(d+s−1)⌉+2
such that

∥ f0− fθ∥W1,∞([0,1]d)≤2C2(d,s)B·2−k.

Secondly, by Theorem 4.2, we have that the statistic error

E
Sn

[
sup
f∈P

|L( f )−L̂( f )|
]
≤C(d,B)n− 1

d .



Y. Jiao et al. / Commun. Comput. Phys., 36 (2024), pp. 71-103 97

Finally, take (2C2(d,s)B·2−k)2 ≤ C(d,B)n− 1
d , we have that k ≥ − 1

2 log2(C(d,B,s)n− 1
d ) =

C(d,B,s)log2 n. Hence take k≥max{log2C2(d,s)+1,C(d,B,s)log2 n}, and by Proposition
4.1 the total error is

E
Sn

[
∥ f̂θ− f0∥2

L2(µ)

]
≤C(s,d,B)n− 1

d .

A.2 Proof of Deep Ritz Method

In this section, P consists of the feed-forward neural networks with the Sigmoidal activa-
tion function.

A.2.1 Proof of Proposition 4.2

For any u∈P , set v=u−u∗, then

L(u)=L(u∗+v)

=
1
2
(∇(u∗+v),∇(u∗+v))L2(Ω)+

1
2
(u∗+v,u∗+v)L2(Ω;w)−⟨u∗+v, f ⟩L2(Ω)

=
1
2
(∇u∗,∇u∗)L2(Ω)+

1
2
(u∗,u∗)L2(Ω;w)−⟨u∗, f ⟩L2(Ω)

+
1
2
(∇v,∇v)L2(Ω)+

1
2
(v,v)L2(Ω;w)+

[
(∇u∗,∇v)L2(Ω)+(u∗,v)L2(Ω;w)−⟨v, f ⟩L2(Ω)

]
=L(u∗)+

1
2
(∇v,∇v)L2(Ω)+

1
2
(v,v)L2(Ω;w),

where the last equality is due to the fact that u∗ is the weak solution of Eq. equation 3.4.
Hence

c1∧1
2

∥v∥2
H1(Ω)≤L(u)−L(u∗)=

1
2
(∇v,∇v)L2(Ω)+

1
2
(v,v)L2(Ω;w)

≤
∥w∥L∞(Ω)∨1

2
∥v∥2

H1(Ω),

that is,
c1∧1

2
∥u−u∗∥2

H1(Ω)≤L(u)−L(u∗)≤
∥w∥L∞(Ω)∨1

2
∥u−u∗∥2

H1(Ω) .

A.2.2 Proof of Theorem 4.7

Since Ω=[0,1]d, by Lemma 4.4, we have

Esta ≤C(d,M,|∂Ω|,|Ω|)
4

∑
j=1

R(Fj).

Since P=NN (L,nθ,∥·∥C2 ,2B) and the activation function is infinitely differentiable, for
all j, 1≤ j≤4, Fj ∈M0 :={ f ∈C1 : ∥ f ∥C1 ≤2B}. Then by Theorem 4.6, logC(ϵ,M0,d∞)≤
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C(d,B)ϵ−d. By Lemma A.5 and Theorem 4.6, when d>2,

R(Fj)≤ inf
0<δ<2B

(
4δ+

12√
n

∫ 2B

δ

√
log(C(ϵ,M0,d∞))dϵ

)
≤ inf

0<δ<2B

(
4δ+

12√
n

∫ 2B

δ

√
C(d,B)ϵ−ddϵ

)
≤ inf

0<δ<2B

(
4δ+

12√
n
C(d,B)

2
d−2

(
δ−

d
2+1−(2B)−

d
2+1
))

≤ inf
0<δ<2B

(
4δ+

C(d,B)√
n

δ−
d
2+1
)

≤C(d,B)n− 1
d .

Therefore,

Esta =2 E
{Xk}

Nin
k=1,{Yk}

Nb
k=1

[
sup
u∈P

|L(u)−L̂(u)|
]
≤C(d,B,M)n− 1

d .

A.2.3 Proof of Theorem 4.8

Firstly, by Corollary 4.3 we know that the assumption P=NN (L,nθ,∥·∥C2 ,2B) is reason-
able and for any 0< ϵ< B, there exists a neural network uθ ∈P with depth L and total

number of nonzero weights nθ≥C(d,µ,p,B)ϵ−
d

1−3µ such that

∥u∗−uθ∥W2,∞(Ω)≤ϵ<B,

where µ is an arbitrarily small positive number and L depends on d,µ,p,B.

Secondly, by Theorem 4.7,

E
{Xk}

Nin
k=1,{Yk}

Nb
k=1

[
sup
u∈P

|L(u)−L̂(u)|
]
≤C(d,B,M)n− 1

d .

Finally, take ϵ2 = C(d,B,M)n− 1
d , we have that nθ ≥ C(d,µ,B,M,p)n

1
2(1−3µ) . On the other

hand, since ϵ<B, nθ≥C(d,µ,p,B)ϵ−
d

1−3µ ≥C(d,µ,p,B)B− d
1−3µ .

Hence take nθ≥max{C(d,µ,B,M,p)n
1

2(1−3µ) ,C(d,µ,B,p)B− d
1−3µ }, by Proposition 4.3, the
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total error is

E
{Xk}

Nin
k=1,{Yk}

Nb
k=1

[
||ûθ−u∗||2H1(Ω)

]
≤ 2

c1∧1

{
M∨1

2
inf
u∈P

||u−u∗||2H1(Ω)︸ ︷︷ ︸
Eapp

+2 E
{Xk}

Nin
k=1,{Yk}

Nb
k=1

[
sup
u∈P

|L(u)−L̂(u)|
]

︸ ︷︷ ︸
Esta

}

≤ 2
c1∧1

{
M∨1

2
inf
u∈P

||u−u∗||2W2,∞(Ω)︸ ︷︷ ︸
Eapp

+2 E
{Xk}

Nin
k=1,{Yk}

Nb
k=1

[
sup
u∈P

|L(u)−L̂(u)|
]

︸ ︷︷ ︸
Esta

}

≤C(d,µ,B,M)n− 1
d .

A.3 Proof of smoothness

A.3.1 Proof of Theorem 4.9

For the regression model, by Lemma 4.1, we have Esta ≤2R(P). Since P =NN (L,nθ,∥·
∥Ct ,2B), by Theorem 4.6, logC(ϵ,P ,d∞)≤C(d,B,t)ϵ−

d
t . By Lemma A.5 when t<d/2,

R(P)≤ inf
0<δ<2B

(
4δ+

12√
n

∫ 2B

δ

√
log(C(ϵ,P ,d∞))dϵ

)
≤ inf

0<δ<2B

(
4δ+

12√
n

∫ 2B

δ

√
C(d,B,t)ϵ−

d
t dϵ

)
≤ inf

0<δ<2B

(
4δ+

12√
n
C(d,B,t)

2t
d−2t

(
δ−

d
2t+1−(2B)−

d
2t+1

))
≤ inf

0<δ<2B

(
4δ+

C(d,B,t)√
n

δ−
d
2t+1

)
≤C(d,B,t)n− t

d .

Therefore,

Esta =E
Sn

[
sup
f∈P

|L( f )−L̂( f )|
]
≤C(d,B,t)n− t

d .

A.3.2 Proof of Theorem 4.10

Firstly, since f0 ∈Hβ([0,1]d,B), β≥ 2 and 1≤ t≤ η ≤ s−1, by Corollary 4.4 we know that
for any 0< ϵ<B, there exists a neural network fθ∈P with depth L and total number of

nonzero weights nθ≥C(d,µ,B,s,η)ϵ−
d

s−η−µη such that

∥ f0− fθ∥Wt,∞([0,1]d)≤∥ f0− fθ∥Wη,∞([0,1]d)≤ϵ<B,
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where µ is an arbitrarily small positive number and L depends on d,µ,B,s.
Secondly, by Theorem 4.9, we have that the statistic error satisfies

E
Sn

[
sup
f∈P

|L( f )−L̂( f )|
]
≤C(d,B,t)n− t

d .

Finally, take ϵ2=C(d,B,t)n− t
d , we have that nθ≥C(d,µ,B,s,η,t)n

t
2(s−η−µη) .

On the other hand, since ϵ<B, nθ≥C(d,µ,B,s,η)ϵ−
d

s−η−µη ≥C(d,µ,B,s,η)B− d
s−η−µη . Hence

take
nθ≥max{C(d,µ,B,s,t,η)n

t
2(s−η−µη) ,C(d,µ,B,s,η)B− d

s−η−µη },

and by Proposition 4.1, the total error is

E
Sn

[
L( f̂θ)−L( f0)

]
≤C(s,d,B,t,η,µ)n− t

d .
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