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Abstract. We introduce a novel phase-field model designed for ternary Cahn-Hilliard
(CH) dynamics, incorporating contact angle boundary conditions within complex do-
mains. In this model, we utilize a fixed phase field variable to accurately represent
intricate domains within the ternary CH system. Simultaneously, the remaining two
phase field variables are employed to simulate CH dynamics effectively. The contact
angle term is derived from Young’s equality and the hyperbolic tangent profile of the
equilibrium interface. To ensure compliance with the hyperbolic tangent property at
the interface, a fidelity term is incorporated into the original CH model. This addition
reduces mass loss for each phase and improves the accuracy of the contact angle effect.
Moreover, we implement a finite difference scheme along with a nonlinear multigrid
method to solve the corrected ternary CH model. A series of numerical experiments
is conducted in both two- and three-dimensional spaces to demonstrate the efficiency
and robustness of the proposed model.

AMS subject classifications: 35K55, 35J60, 65M06
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1 Introduction

The Cahn-Hilliard (CH) equation, originally formulated by Cahn and Hilliard [1], repre-
sents a fundamental phase-field model utilized to describe the mass-conserved spinodal
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decomposition observed in binary alloys. In the CH equation, an order parameter, re-
ferred to as the phase-field variable, is introduced to characterize the physical state of
the system. Notably, this phase-field variable assumes distinct values within each phase,
with, for instance, -1 representing the liquid phase and 1 representing the solid phase.
The interface separating these phases is characterized by a continuous and finite transi-
tion layer, and its position can be defined as a level set of the phase-field function. This
unique formulation allows implicit capture of topological changes in the interface dur-
ing the solution process. Moreover, it is worth noting that the CH equation naturally
satisfies mass conservation when either periodic or homogeneous Neumann boundary
conditions are applied. The CH equation, governing the behavior of the phase-field vari-
able, adheres to the H−1-gradient flow principle of the total free energy. Through appro-
priate modifications, the original CH equation has found wide-ranging applications in
modeling diverse physical phenomena, including but not limited to diblock copolymer
dynamics [2–4], surfactant behavior [5–7], contact angle and wetting phenomena [8, 9],
the dynamics of gravity and capillary waves [10], solid tumor growth [11, 12], as well as
applications in topology optimization and image processing [13, 14], etc..

Many real-world physical phenomena and natural processes, such as the formation
of double emulsions in micro-fluidic devices [15, 16], the behavior of hydrocarbon flu-
ids in the petroleum industry [17], the intricate dynamics of water-oil-surfactant mix-
tures [18, 19], and multi-component chemo-mechanics [20], etc., inherently involve more
than two components, including substances like water, surfactants, alcohols, and other
immiscible materials. Researchers, such as Fontaine [21] and Morral and Cahn [22],
have extended the CH model to address multi-component systems, enabling the mod-
eling of the dynamic behavior of materials featuring multiple phases within their mi-
crostructures. In the multi-component CH phase-field model, tailored for systems in-
volving more than two components, a minimum of three phase-field variables is em-
ployed, with each variable representing an individual component. For instance, a value
of 1 signifies the presence of the respective component, while 0 indicates its absence.
This multi-component CH model has found widespread application in fluid simulations.
For instance, Kim [23] introduced a generalized continuous surface tension force model
to account for surface tension effects in multi-component fluid flow. Lee and Kim [24]
conducted a numerical investigation into buoyancy-driven mixing of incompressible im-
miscible fluids, involving multi-component CH equations, within two-dimensional tilted
channels. Additionally, Zhang et al. [25] delved into the ramifications of droplet inertia
and interfaces, utilizing an incompressible fluid flow-coupled ternary CH model to an-
alyze the flow dynamics during the collision of two immiscible droplets. This allowed
them to evaluate factors such as film thickness, maximal spreading time, and deforma-
tion, with a particular focus on the liquid-liquid interface. Furthermore, Kalantarpour
et al. [26] constructed a ternary phase-field Lattice Boltzmann model to explore scenar-
ios involving high-density ratios and total spreading within three incompressible and
immiscible fluids. Their work showcased the utilization of multi-component CH equa-
tions to monitor the phasic evolution of the system. The simulation results in the context
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of bubble-droplet interactions illuminated that off-center collisions yielded higher film
drainage and coalescence times compared to head-on impacts.

Numerous multiphase flow phenomena manifest not only within regular domains,
such as 2D rectangular or 3D cuboid configurations but also in intricately irregular, com-
plex domains. Researchers have devised various approaches to address these complexi-
ties. Li et al. [27] introduced a direct discretization method for solving multi-component
CH systems on surfaces employing surface meshes comprising piecewise triangles and
their dual-surface polygonal tessellations. Xia et al. [28] devised an innovative surface
discrete finite volume method to address binary fluid flow models on arbitrarily curved
surfaces. In contrast, Tan et al. [29] adopted a different approach, simulating multiphase
fluids within 3D narrow band domains, encompassing the surfaces. For an extensive ar-
ray of methods concerning arbitrarily curved surfaces, we refer readers to [30–33] and
the associated references. Jeong et al. [34] introduced a modified ternary CH system
within a complex domain, employing a phase-field variable to define the arbitrary do-
main. Notably, the phase-field variable remained fixed during the temporal evolution of
the other two phases. Validation of the modified CH system’s performance was achieved
through simulations in both 2D and 3D complex domains. The influence of the contact
angle [35–37] between the fluid and solid is pivotal in wetting or non-wetting simula-
tions. Taking into account contact angle boundary conditions and the fixed phase con-
dition within complex domains, Li et al. [38] proposed an efficient phase-field model for
multi-component CH systems, accommodating various boundary conditions in complex
domains. By coupling the modified ternary CH equation with the NS equation, Yang and
Kim [39] simulated two-phase flows in arbitrary domains while considering the effects
of contact angles. In the paper [40], Yang et al. detailed the estimation of energy stability
for the modified ternary CH equation within arbitrary domains and employed the scalar
auxiliary variable approach for its solution.

In previous models, the incorporation of the contact angle condition into the chemical
potential within the CH system relied on the utilization of a hyperbolic tangent profile
for the equilibrium interface at boundaries. This approach aimed to satisfy the surface
energy formulation, as established by Young’s equation [41]. However, the inherent dy-
namics of interface length minimization in the CH equation did not consistently ensure
that the interface transitions between different phases followed hyperbolic tangent pro-
files. To address this issue and minimize the interface length minimization property,
Li et al. [42] introduced a corrective term for the interfacial profile within the original
CH equation. This corrective term serves to enforce a hyperbolic tangent profile for the
phase-field profile. Building upon this development, Xia et al. [43] extended the interfa-
cial profile correction term to encompass the multi-component immiscible flows model.

This study aims to propose an corrected ternary CH model incorporating contact an-
gle boundary conditions within complex domains. The inherent dynamics of the orig-
inal ternary CH model present a challenge, as they do not inherently yield hyperbolic
transitions between multiple phases, a crucial consideration for accurate representation
of contact angle conditions. To rectify this, an interfacial profile correction term will be
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introduced into the original ternary CH model. This corrective measure effectively en-
forces a hyperbolic tangent profile for the phase-field, thereby mitigating mass loss in
each phase. The computational solution of the corrected ternary CH equation will be
facilitated through the application of an efficient multigrid method, grounded in the fi-
nite difference technique. The paper includes several numerical examples in both 2D and
3D domains, serving to illustrate the effectiveness and precision of the proposed model.
Comparative analyses with the original ternary CH model, conducted through numeri-
cal tests, underscore the model’s capability to maintain the hyperbolic tangent property
while concurrently reducing mass loss in each phase.

The remainder of this paper is organized as follows. An corrected phase-field model
for a ternary CH system in a complex domain is formulated in Section 2. In Section 3,
numerical scheme is given. Various numerical examples are carried out in Section 4.
Finally, the paper is concluded in Section 5.

2 Governing equations

Let us consider a ternary CH system within a domain Ω⊂Rdim, where dim=2 or dim=3.
Ωin is a complex subdomain within Ω, as illustrated in Fig. 1(a).

Each component of the ternary mixture is represented by a function ϕk(x,t) defined
across space x and time t, referred to as the order parameter. This order parameter signi-
fies the mole fraction of the respective component in the mixture, i.e.,

ϕk =

{
1, inside the k-th phase,
0, outside the k-th phase, k=1,2,3.

(2.1)

(a) (b)

Figure 1: Schematic illustrations of (a) complex regions and (b) contact angle among three phases.



108 J. Wu and Z. Tan / Commun. Comput. Phys., 36 (2024), pp. 104-132

In accordance with the principle of mass conservation, the summation of mole fractions
adheres to the following equation

ϕ1(x,t)+ϕ2(x,t)+ϕ3(x)=1. (2.2)

We employ a fixed phase variable ϕ3(x,t) to characterize the arbitrary domain Ωin, i.e.,

ϕ3(x,t)=

{
1, if x∈Ωin,
0, if x∈Ω−Ωin.

(2.3)

The boundary of the arbitrary domain Ωin is the 0.5-level set of ϕ3. The determination of
the contact angle between fluid and solid surfaces is crucial for simulating wetting and
non-wetting phenomena. In this context, our focus lies specifically on the dihedral con-
tact angle occurring at the interface among the three distinct components, as illustrated
in Fig. 1(b). Here, Fluid 1 is denoted by ϕ1 while Fluid 2 is represented by ϕ2. The contact
angles for ϕ1 and ϕ2 are labeled as θ1 and θ2, respectively, and they are complementary
angles.

The ternary model describing the CH dynamics with different contact angle condi-
tions in arbitrary domain can be derived from the following energy functional

ECHmod(ϕ)=
2∑

k=1

ECHmodk(ϕ)

=
2∑

k=1

∫
Ω

F(ϕk)+
ϵ2

2
(1−ϕ3)|∇ϕk|2+ϵ

(
1
3

ϕ3
k−

1
2

ϕ2
k

)
|∇ϕ3|cosθk/

√
2︸ ︷︷ ︸

I

 dx,

(2.4)

where F(ϕk)= 0.25ϕ2
k(ϕk−1)2 is the homogenous free energy, ϵ represents a small posi-

tive constant associated with the thickness of the diffuse interface separating two com-
ponents. The nonlinear term I is the contact angle term, by which we can investigate
different contact angle conditions. It is established upon a hyperbolic tangent profile that
characterizes the equilibrium interface at the boundaries, incorporating Young’s equal-
ity. Note this kind of energy functional has been extensively used for various ternary
physical systems [38–40, 44, 45].

The original CH equation possesses inherent dynamics, specifically the minimization
of interface length through motion. The resulting interfacial transitions between different
phases deviate from hyperbolic tangent profiles, which holds significance for establishing
the contact angle condition and leads to the nonconservation of the enclosed area. To
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address this shortcoming, we add a fidelity term into Eq. (2.4), i.e.,

Ecorrected(ϕ)=ECHmod(ϕ)+EF(ϕ)

=
2∑

k=1

ECHmodk(ϕ)+
2∑

k=1

EFk(ϕ)

=
2∑

k=1

∫
Ω

(
F(ϕk)+

ϵ2

2
(1−ϕ3)|∇ϕk|2+ϵ

(
1
3

ϕ3
k−

1
2

ϕ2
k

)
|∇ϕ3|cosθk/

√
2
)

dx

+
2∑

k=1

∫
Ω

λ

2
(1−ϕ3)

(
ϕk(1−ϕk)√

2ϵ
−|∇ϕk|

)2

dx, (2.5)

where λ>0 is a constant. When the phase-field across the interface is a hyperbolic tangent
profile we have

|∇ϕk|=ϕk(1−ϕk)/(
√

2ϵ), (2.6)

which is derived from F(ϕk)=
ϕ2

k (ϕk−1)2

4 = ϵ2

2 |∇ϕk|2, see Xia et al. [43] and the references
therein. Minimizing EF(ϕ) forces the phase-field profile to be a hyperbolic tangent profile.
Therefore, the modified version of total energy, Eq. (2.5), has the capacity to induce a
hyperbolic tangent profile for the interface between the two phases.

By taking the variational approach to Eq. (2.5) with respect to ϕ, the corrected ternary
CH equation can be derived by a ’gradient flow’ a [43]

∂ϕk

∂t
=M∇·((1−ϕ3)∇µk)−λM

δEFk

δϕk
, (2.7)

µk =
δECHmodk

δϕk
+β(Φ), k=1,2, (2.8)

where µk is the kth chemical potential and M> 0 is a constant mobility. We take M≡ 1
for convenience. To ensure the constraint in Eq. (2.2), a Lagrange multiplier β(Φ) [46]
is imposed on the chemical potential. The periodic boundary condition or the following
zero-Neumann boundary condition, i.e.,

∇ϕk ·n|∂Ω =∇µk ·n|∂Ω =0, for k=1,2, (2.9)

is used on all boundaries of domain Ω.
The variational derivatives of EFk and ECHmodk with respect to ϕk are given as

δECHmodk

δϕk
= f (ϕk)−ϵ2∇·((1−ϕ3)∇ϕk)+ϵϕk(ϕk−1)|∇ϕ3|cosθk/

√
2, (2.10)

δEFk

δϕk
=λ

(
(1−ϕ3)

ϕk(
√

2ϵ|∇ϕk|−ϕk(1−ϕk))

ϵ2 −∇·((1−ϕ3)∇ϕk)

+
1√
2ϵ

∇·
(
(1−ϕ3)(1−ϕk)ϕk

∇ϕk

|∇ϕk|

))
, (2.11)
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where f (ϕk)=F
′
(ϕk)=ϕk(ϕk−1)(ϕk−0.5). Because we have

d
dξ

ECHmodk(ϕk+ξψ)|ξ=0

=

∫
Ω
(ψF

′
(ϕk)+(1−ϕ3)ϵ

2∇ψ·ϕk) dx

+

∫
Ω

ψϵϕk(ϕk−1)|∇ϕ3|cosθk/
√

2 dx

=

∫
Ω
(F

′
(ϕk)−(1−ϕ3)ϵ

2∆ϕk)ψ dx+(1−ϕ3)

∫
∂Ω

ϵ2 ∂ϕk

∂n
ψ ds

+

∫
Ω

ψϵϕk(ϕk−1)|∇ϕ3|cosθk/
√

2 dx

=

∫
Ω
(F

′
(ϕk)−ϵ2∇·((1−ϕ3)∇ϕk)+ϵϕk(ϕk−1)|∇ϕ3|cosθk/

√
2)ψ dx, (2.12)

d
dξ

EFk(ϕk+ξψ)|ξ=0

=λ

∫
Ω

(
(1−ϕ3)

ϕk(
√

2ϵ|∇ϕk|−ϕk(1−ϕk))

ϵ2 −∇·((1−ϕ3)∇ϕk)

+
1√
2ϵ

∇·
(
(1−ϕ3)(1−ϕk)ϕk

∇ϕk

|∇ϕk|

))
ψ dx. (2.13)

Here,
∫

Ω ψ dx= 0 and ∂ϕk/∂n= 0 at ∂Ω are used. n represents the unit outward normal
vector to the boundary ∂Ω.

The governing equations of the corrected ternary CH system can be represented by

∂ϕk

∂t
=M∇·((1−ϕ3)∇µk)−λM

(
(1−ϕ3)

ϕk(
√

2ϵ|∇ϕk|−ϕk(ϕk−1))
ϵ2

)

+λM
(
∇·((1−ϕ3)∇ϕk)−

1√
2ϵ

∇·
(
(1−ϕ3)(1−ϕk)ϕk

∇ϕk

|∇ϕk|

))
, (2.14)

µk = f (ϕk)+β(Φ)+ϵϕk(ϕk−1)|∇ϕ3|cosθk/
√

2−ϵ2∇·((1−ϕ3)∇ϕk), k=1,2. (2.15)

By taking the differentiations of Eq. (2.15) with respect to time t, we have

d
dt

∫
Ω

ϕk dx=
∫

Ω
ϕkt dx=

∫
Ω
−λM

(
(1−ϕ3)

ϕk(
√

2ϵ|∇ϕk|−ϕk(ϕk−1))
ϵ2

)
dx ̸=0, (2.16)

which indicates that the system does not satisfy the total mass conservation. According
to Eq. (2.6), when interfaces adhere to the hyperbolic tangent profile, the second term
in Eq. (2.14) can be ignored. To ensure total mass conservation, Eqs. (2.14)-(2.15) can be
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simplified to

∂ϕk

∂t
=M∇·((1−ϕ3)∇µk)

+λM
(
∇·((1−ϕ3)∇ϕk)−

1√
2ϵ

∇·
(
(1−ϕ3)(1−ϕk)ϕk

∇ϕk

|∇ϕk|

))
︸ ︷︷ ︸

I I

, (2.17)

µk = f (ϕk)+β(Φ)+ϵϕk(ϕk−1)|∇ϕ3|cosθk/
√

2−ϵ2∇·((1−ϕ3)∇ϕk), k=1,2, (2.18)

where II is the correction term. If λ=0, the corrected ternary CH equations equal to the
original ternary CH equations, which can be derived from Eq. (2.4). To satisfy ϕ1(x,t)+
ϕ2(x,t)+ϕ3(x)=1, a Lagrange multiplier

β(Φ)=−1
3

(
3∑

k=1

f (ϕk)+
2∑

k=1

ϵϕk(ϕk−1)|∇ϕ3|cosθk/
√

2

)
(2.19)

is used, which can be derived from

0=
∂(
∑3

k=1 ϕk)

∂t
=

3∑
k=1

∂ϕk

∂t
=M∇·

(
(1−ϕ3)

3∑
k=1

∇µk

)

=M∇·
(
(1−ϕ3)∇

2∑
k=1

(
f (ϕk)+β(Φ)+ϵϕk(ϕk−1)|∇ϕ3|cosθk/

√
2

−ϵ2∇·((1−ϕ3)∇ϕk)
))
+M∇·

(
(1−ϕ3)∇

(
β(Φ)+ f (ϕ3)−ϵ2∇·((1−ϕ3)∇ϕ3)

))
=M∇·

(
(1−ϕ3)∇

(
3∑

k=1

f (ϕk)+
3∑

k=1

β(Φ)+
2∑

k=1

ϵϕk(ϕk−1)|∇ϕ3|cosθk/
√

2)

))
. (2.20)

Since ϕ3 is fixed, i.e., ∂ϕ3
∂t =0, we can set

µ3= f (ϕ3)+β(Φ)−ϵ2∇·((1−ϕ3)∇ϕ3. (2.21)

Remark 2.1. It is important to note that the fixed phase ϕ3 in Eq. (2.3) functions as a
Heaviside function, signifying the fixed phase or non-fixed phases. Specifically, when in
the complex domain Ωin, 1−ϕ3 = 0 holds. Consequently, according to Eqs. (2.17)-(2.18),
∂ϕk/∂t= 0, implying that ϕ1 and ϕ2 remain at zero within Ωin. Conversely, outside the
complex domain, where 1−ϕ3 =1, ϕ1 and ϕ2 follow the gradient flow system. Thus, the
ternary CH system with a fixed phase effectively emulates complex boundaries within
the Cartesian grid.

Remark 2.2. The proposed model is designed to mitigate the inherent interface length
minimization property of the CH model when in contact with a solid substrate. However,
this modification no longer preserves the energy dissipation law, as a penalty term has
been introduced into the CH model to enforce the interface to adhere to a hyperbolic
tangent profile.
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2.1 Contact angle boundary condition

In this section, we explain in more detail how our model can implicitly describe the wet-
ting condition of binary fluids in contact with solids. We begin by examining Young’s
equality [41], which delineates the relationship between surface tensions and the mi-
croscale contact angle θ1

σF1F2 cosθ1=σSF2−σSF1 , (2.22)

where σF1F2 ,σSF2 , and σSF1 are the surface tension coefficients at the interfaces between
Fluid 1–Fluid 2, Solid–Fluid 2, and Solid–Fluid 1, respectively, as schematically shown in
Fig. 1(b). On the boundary of solid domain ϕ3, n=∇ϕ3/|∇ϕ3| is the unit normal vector
to ∂Ωin and the following condition is satisfied

∇ϕk ·n=−|∇ϕk|cos(π−θk), k=1,2. (2.23)

As the equilibrium profile of ϕk closely resembles a hyperbolic tangent function, |∇ϕk|
can be represented by ϕk(1−ϕk)/(

√
2ϵ) (see Eq. (2.6)). Therefore, we can reformulate

Eq. (2.23) as
ϵ2∇ϕ3 ·∇ϕk+ϵϕk(ϕk−1)|∇ϕ3|cosθk/

√
2=0. (2.24)

As the right-hand side of Eq. (2.24) is zero, we assert that the terms on the left-hand
side contribute negligibly, often referred to as ”zero-contribution”. As discussed in [38],
achieving the homogeneous Neumann boundary condition entails setting a specific con-
tact angle θk =90◦.

For the Helmholtz free energy functional

ECH =
2∑

k=1

ECHk =
2∑

k=1

∫
Ω

F(ϕk)+
ϵ2

2
|∇ϕk|2 dx, (2.25)

the kth chemical potential is

µ̄k =
δECHk

δϕk
+β(Φ)

= f (ϕk)−ϵ2∆ϕk+β(Φ). (2.26)

Subsequently, by integrating the contact angle boundary condition (i.e., Eq. (2.24)) into
the expression of µk (i.e., Eq. (2.26)), we derive the following equation

µ̄k = f (ϕk)+β(Φ)+ϵϕk(ϕk−1)|∇ϕ3|cosθk/
√

2−ϵ2∇·((1−ϕ3)∇ϕk)−ϵ2ϕ3∆ϕk, (2.27)

where ∆ϕk=∇·((1−ϕ3)∇ϕk)+∇ϕ3 ·∇ϕk+ϕ3∆ϕk and Eq. (2.24) are used. Eqs. (2.26) and
(2.27) are equivalent. As ϵ2ϕ3∆ϕk tends to zero when ϕ3 approaches zero, the impact of
the last term on the boundary can be neglected.

We hereby modify Eq. (2.27) to yield

µ̄k = f (ϕk)+β(Φ)+ϵϕk(ϕk−1)|∇ϕ3|cosθk/
√

2−ϵ2∇·((1−ϕ3)∇ϕk), (2.28)
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which precisely aligns with Eq. (2.18). The contact angle boundary condition can be
exactly held as ϕ3 → 0. The corresponding modified Helmholtz free energy functional
is

ECHmod(ϕ)=
2∑

k=1

ECHmodk(ϕ) (2.29)

=
2∑

k=1

∫
Ω

(
F(ϕk)+

ϵ2

2
(1−ϕ3)|∇ϕk|2+ϵ

(
1
3

ϕ3
k−

1
2

ϕ2
k

)
|∇ϕ3|cosθk/

√
2
)

dx.

3 Numerical schemes

Now, we outline the numerical methodology for implementing the proposed model, as
depicted by Eqs. (2.17)-(2.18), within a two-dimensional spatial domain. The extension
to the three-dimensional domains is straightforward. Let Ω=(a,b)×(c,d) be a compu-
tational domain. We define the discrete domain Ωh = {(xi,yj)|1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny},
where xi = a+(i−0.5)h, yj = c+(j−0.5)h. Nx and Ny are the numbers of mesh grid. The
space step is h=(b−a)/Nx =(d−c)/Ny. Let ϕn

k,i,j be an approximation of ϕk(xi,yj,n∆t),
where ∆t=T/Nt is the time step, T is the final computational time, Nt is the number of
time steps. To simplify the notations, dij and cn

k,ij are the approximations of 1−ϕ3(xi,yj)

and (1−ϕ3(xi,yj))(1−ϕk(xi,yj,n∆t))ϕk(xi,yj,n∆t), respectively. The second-order back-
ward difference formula (BDF2) and the stabilization technique [47] are used to discretize
Eqs. (2.17) and (2.18) as the following form

3ϕn+1
k,ij −4ϕn

k,ij+ϕn−1
k,ij

2∂t
=M∇d ·(dij∇dµn+1

k,ij )

+λM
(
∇d ·(dij∇dϕn

k,ij)−
1√
2ϵ

∇̃c
d ·
(

ck,ij
∇c

dϕk

|∇c
dϕk|

)n)
, (3.1)

µn
k,ij = f (ϕ∗

k,ij)+β(Φ∗
ij)+ϵϕ∗

k,ij(ϕ
∗
k,ij−1)|∇dϕ3,ij|cosθk/

√
2−ϵ2∇·(dij∇dϕ∗

k,ij)

+S(ϕn+1
k,ij −ϕ∗

k,ij), k=1,2. (3.2)

S is a positive second-order linear stabilizer used to enhance the stability of the numerical
method. The explicit Adams–Bashforth (AB) approximation is used in (·)∗, i.e., (·)∗ =
2(·)n−(·)n−1. The periodic boundary or the following discrete boundary conditions are
considered ∇cn

k ·n|∂Ω =∇µn
k ·n|∂Ω =0, for k=1,2.

The discrete Laplacian operators ∇d ·(dij∇dµn+1
k,ij ) can be given by

∇d ·(dij∇dµn+1
k,ij )=

di+1/2,jµ
n+1
k,i+1,j+di−1/2,jµ

n+1
k,i−1,j+di,j+1/2µn+1

k,i,j+1+di,j−1/2µn+1
k,i,j−1

h2

−
di+1/2,j+di−1/2,j+di,j+1/2+di,j−1/2

h2 µn+1
k,ij , (3.3)
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where di+1/2,j =(di+1,j+dij)/2. ∇d ·(dij∇dµn+1
k,ij ) and ∇d ·(dij∇dϕ∗

k,ij) are defined in a sim-
ilar manner. |∇dϕ3,ij| is computed by the central difference scheme

|∇dϕ3,ij|=

√(
ϕ3,i+1,j−ϕ3,i−1,j

2h

)2

+

(
ϕ3,i,j+1−ϕ3,i,j−1

2h

)2

. (3.4)

Note that m=∇c
dϕ is a gradient vector at the cell corner. Vertex-centered normal vectors

are obtained by differentiating the phase field in the four surrounding cells. For example,
the normal vector at the top right vertex of cell Ωh is given by

mi+1/2,j+1/2=(nx
i+1/2,j+1/2,ny

i+1/2,j+1/2)

=

(
ϕi+1,j+ϕi+1,j+1−ϕij−ϕi,j+1

2h
,
ϕi,j+1+ϕi+1,j+1−ϕij−ϕi+1,j

2h

)
. (3.5)

Then, the vertex-centered normal is given by

∇d ·
(

m
|m|

)
ij
=

1
2h

(
nx

i+1/2,j+1/2+ny
i+1/2,j+1/2

|mi+1/2,j+1/2|
+

nx
i+1/2,j−1/2−ny

i+1/2,j−1/2

|mi+1/2,j−1/2|

−
nx

i−1/2,j+1/2−ny
i−1/2,j+1/2

|mi−1/2,j+1/2|
−

nx
i−1/2,j−1/2+ny

i−1/2,j−1/2

|mi−1/2,j−1/2|

)
. (3.6)

Here, we discretize the last term of Eq. (3.2) at the cell centers from the vertex-centered
normal as follows

∇̃c
d ·
(

ck,ij
∇c

dϕk

|∇c
dϕk|

)
=

1
2h

(
ck,i+1/2,j+1/2

nx
i+1/2,j+1/2

mi+1/2,j+1/2
+ck,i+1/2,j−1/2

nx
i+1/2,j−1/2

mi+1/2,j−1/2

−ck,i−1/2,j+1/2
nx

i−1/2,j+1/2

mi−1/2,j+1/2
−ck,i−1/2,j−1/2

nx
i−1/2,j−1/2

mi−1/2,j−1/2

+ck,i+1/2,j+1/2

ny
i+1/2,j+1/2

mi+1/2,j+1/2
+ck,i+1/2,j−1/2

ny
i+1/2,j−1/2

mi+1/2,j−1/2

−ck,i−1/2,j+1/2

ny
i−1/2,j+1/2

mi−1/2,j+1/2
−ck,i−1/2,j−1/2

ny
i−1/2,j−1/2

mi−1/2,j−1/2

)
. (3.7)

The resulting nonlinear system of Eqs. (3.1) and (3.2) is solved efficiently using a nonlin-
ear multigrid method [48].

Remark 3.1. To initiate the second-order scheme (3.1)-(3.2), we need the values of ϕ1
1, ϕ1

2.
Here, we describe the first-order scheme for Eqs. (2.17)-(2.18). Based on the backward
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Euler approach, the fully discrete scheme can be written to be

ϕn+1
k,ij −ϕn

k,ij

∂t
=M∇d ·(dij∇dµn+1

k,ij )+λM
(
∇d ·(dij∇dϕn

k,ij)−
1√
2ϵ

∇̃c
d ·
(

ck,ij
∇c

dϕk

|∇c
dϕk|

)n)
,

(3.8)

µn
k,ij = f (ϕn

k,ij)+β(ϕn
ij)+ϵϕn

k,ij(ϕ
n
k,ij−1)|∇dϕ3,ij|cosθk/

√
2−ϵ2∇·(dij∇dϕn

k,ij)

+S(ϕn+1
k,ij −ϕn

k,ij), k=1,2, (3.9)

where S is a positive stabilization parameter to improve stability of the numerical method.

4 Numerical experiments

In this section, various numerical experiments have been performed to demonstrate the
efficiency of the proposed method. In 2D space, we consider a comparison with the orig-
inal ternary CH model, the effect of contact angle without fluid flow, and droplets in
the 2D complex domain. With background fluid, the effect of contact angle with fluid
flow and gravity-driven flow in a porous medium are performed. In 3D space, a com-
parison of original ternary CH model in 3D and droplets in the 3D complex domain is
investigated. Unless otherwise, S=2, ϵ=4h/(2

√
2tanh−1(0.9)) [43]. In the 2D case, the

periodic and homogeneous Neumann boundary conditions are considered along x- and
y-directions, respectively. In the 3D case, the periodic conditions are considered along x-
and y-directions, and the homogeneous Neumann boundary conditions are considered
along z-direction.

4.1 Comparison with original ternary CH in 2D

We consider two droplets located at the solid substrate. The initial conditions are defined
to be

ϕ3(x,y)=0.5+0.5tanh
(
−max(|x−0.5|−0.45,|y+0.2|−0.5)

2
√

2ϵ

)
, (4.1)

ψ(x,y,0)=0.5+0.5tanh

(
0.2−

√
(x−0.3)2+(y−0.35)2

2
√

2ϵ

)

+0.5+0.5tanh

(
0.1−

√
(x−0.75)2+(y−0.25)2

2
√

2ϵ

)
, (4.2)

ϕ1(x,y,0)=

{
1−ϕ3(x,y), if ϕ3(x,y)+ψ(x,y,0)>1,
ψ(x,y,0), otherwise,

(4.3)

ϕ2(x,y,0)=1−ϕ1(x,y,0)−ϕ3(x,y), (4.4)
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Figure 2: Temporal evolution of phase interface contacting a solid boundary for the original ternary CH equation
(a) and corrected ternary CH equation (b).

on the domain (0,1)×(0,1). The parameters h = 1/128, ∆t = 5h2, θ1 = 90◦, λ = 0.15 are
used. Fig. 2(a) and (b) illustrate the temporal evolutions for the original ternary CH
model (λ= 0) and corrected ternary CH model, respectively. The solid phase is defined
by ϕ3 (black), the droplets (Fluid 1) phase are defined by ϕ1 (gray), and the Fluid 2 phase
is defined by ϕ2 (white). The interface profiles are shown in Fig. 3. It becomes evident
that when employing the original ternary CH model, the small droplet gradually shrinks
and eventually vanishes, a behavior that contradicts physical expectations (Fig. 3(a)).
Conversely, when the interface correction term is applied, the small droplet persists, as
demonstrated in Fig. 3(b). Fig. 4 presents the temporal evolution of total mass and mass
ratio for the small droplet, comparing the results obtained with both methods. Notably,
both methods exhibit mass conservation properties across the entire domain. However,
it is worth highlighting that the mass for the small droplet, when computed using the
original ternary CH model, undergoes significant changes over time from its initial state.
In contrast, our model effectively addresses and corrects the mass loss occurring within
the interfacial region.

4.2 Effect of contact angle without fluid flow

In this test, we examine an equilibrium phase interface interfacing with a solid surface,
with specified contact angles denoted as θ1=60◦ and θ1=120◦, symbolizing wetting and
non-wetting conditions, respectively. The determination of the equilibrium state adheres
to convergence criteria predicated on |ϕn+1

1 −ϕn
1 |2 ≤ 10−6. The corrected CH model is



J. Wu and Z. Tan / Commun. Comput. Phys., 36 (2024), pp. 104-132 117

(a)

(b)

Figure 3: Mesh plots of the phase-field profiles for the original ternary CH equation (a) and proposed equation
(b). The whole view is on the left, and the plane view is on the right.

numerically solved over the computational domain Ω=(0,2)×(0,1) utilizing a grid res-
olution of 256×128. Additionally, the other parameters are set as ∆t= 5h2 and λ= 0.01.
The initial conditions are specified as follows

ϕ3=0.5+0.5tanh
(
−max(|x−0.75|−0.75,|y−0.5|−(x/6−0.01))

0.5
√

2ϵ

)
, (4.5)

ϕ1(x,y,0)=(1−ϕ3)

(
0.5+0.5tanh

(
−max(|x−0.75|−0.3,|y−0.5|−0.28)

0.5
√

2ϵ

))
, (4.6)

ϕ2(x,y,0)=1−ϕ1(x,y,0)−ϕ3(x,y). (4.7)
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Figure 4: (a) Temporal evolution of the mass. (b) Temporal evolution of the mass ratio for the small drop.

Figure 5: Temporal evolution with respect to different contact angles: (a) θ1=60◦and (b) θ1=150◦. The times
from left to right in each row are: t=0, 0.3052, 8.5449 (equilibrium state).

Fig. 5(a) and (b) illustrate the temporal evolution with respect to different contact angles
θ1 = 60◦ and θ1 = 150◦, respectively. The solid phase is defined by ϕ3 (black), the Fluid
1 phase is defined by ϕ1 (gray), and the Fluid 2 phase is defined by ϕ2 (white). We can
find that an initial phase evolves to a specific pattern with respect to different θ1. Table
1 lists the exact contact angles and numerical contact angles. These numerical angles are
computed following a similar procedure in [49]. Numerical values 1 and 2 are computed
using the original ternary CH model and the corrected ternary CH model, respectively.
It is evident that the results obtained from the improved ternary CH model closely align
with the prescribed contact angles, in contrast to the outcomes generated by the original
ternary CH model. The associated snapshots at the final stage are visually presented in
Fig. 6, with a close-up view provided in the right column.
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Table 1: Comparison between the numerical and exact contact angles.

Exact value 60◦ 150◦

Numerical value 1 60.97◦ 147.90◦

Numerical value 2 59.41◦ 148.49◦

Figure 6: Comparisons of equilibrium state under (a) θ=60◦ and (b) θ=150◦ obtained by different ternary CH
model. The red lines are the results obtained by the original ternary CH model. The blue lines are the results
obtained by the corrected ternary CH model. The right column is close-up views.

4.3 Droplets in 2D complex domain

The parameters h = 1/256, ∆t = 5h2, λ = 0.15 are used. Fig. 7(a) and (b) illustrate the
final state results (i.e., t=0.0443) obtained using the original ternary CH model and cor-
rected ternary CH model, respectively, for varying contact angles θ = 30◦, 90◦, 150◦.The
outcomes from these experiments affirm that the proposed model effectively preserves
intricate geometric features.

4.4 The corrected ternary CH system with background fluid

To verify the robustness of the proposed ternary CH system in a complex domain, we
introduce convection terms into Eq. (2.18). These terms enable the phase interfaces to
be advected by a prescribed background velocity field denoted as u. By integrating the



120 J. Wu and Z. Tan / Commun. Comput. Phys., 36 (2024), pp. 104-132

Figure 7: Droplets in a complex domain at t=0.0443 with respect to θ1=45◦, 90◦, 135◦ obtained by the original
ternary CH model (a) and corrected ternary CH model (b), respectively.

incompressible Navier-Stokes (NS) equations, we formulate an incompressible ternary
CHNS system

ρ∗
(

∂u
∂t

+u·∇u
)
=−∇p+

1
Re

∆u+
1

We
SF+(ρ(Œ)−ρ∗)g, (4.8)

∇·u=0, (4.9)
∂ϕk

∂t
+∇·(ϕku)=

1
Pe

∇·((1−ϕ3)∇µk)

+λM
(
∇·((1−ϕ3)∇ϕk)−

1√
2ϵ

∇·
(
(1−ϕ3)(1−ϕk)ϕk

∇ϕk

|∇ϕk|

))
, (4.10)

µk = f (ϕk)+β(Φ)+ϵϕk(1−ϕk)|∇ϕ3|cosθk/
√

2−ϵ2∇·((1−ϕ3)∇ϕk), k=1,2, (4.11)

where u, p are the velocity, pressure, respectively. Pe, Re and We are the P’eclet number,
Reynolds number and Weber number, respectively. We set ρ(Œ) = ρ1ϕ1+ρ2ϕ2, where
ρ1, ρ2 are the densities of ϕ1, ϕ2. The background density is set as a constant ρ∗=ρ2. The
gravitational force is g. The surface tension is defined as [23]

SF=−6
√

2ϵ
2∑

k=1

∇·
(

∇ϕk

|∇ϕk|
|∇ϕk|∇ϕk

)
. (4.12)

In this paper, we adopted an augmented projection method for computing flows with
complex boundaries proposed by Kim [50].
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4.4.1 Effect of contact angle with fluid flow

In this investigation, we explore the influence of contact angle in the presence of fluid
flow, as illustrated in Fig. 9(a). In this representation, the triangular-shaped solid do-
main is characterized by ϕ3 (in black), the droplet is represented by ϕ1 (in gray), and
the continuous fluid phase is delineated by ϕ2 (in white). Within the spatial domain
Ω=(0,4)×(0,1), the initial conditions are specified as follows

ϕ3=0.5+0.5tanh
(
−max(|x−2.25|−0.75,|y−0.5|−(x/6−0.25))√

2ϵ

)
, (4.13)

ϕ1(x,y,0)=(1−ϕ3)

(
0.5+0.5tanh

(
0.25−

√
(x−1)2+(y−0.5)2

√
2ϵ

))
, (4.14)

ϕ2(x,y,0)=1−ϕ1(x,y,0)−ϕ3(x,y), (4.15)
u(x,y,0)=1.0, v(x,y,0)=0, p(x,y,0)=0. (4.16)

Figure 8: Temporal evolution of a droplet passing a triangle-shaped solid structure for (a) θ1 = 30◦ and (b)
θ1 =150◦, respectively. The times from the top to bottom in each column are: t=0, 2.3193, 3.5400, 4.7607.
The red lines are the results obtained by the original ternary CH model. The blue lines are the results obtained
by the corrected ternary CH model. The insets are close-up views.
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Figure 9: (a) Initial state. Temporal evolution of the mass ratio for the ϕ1 for (b) θ = 30◦ and (c) θ = 150◦,
respectively.

The boundary conditions for the u, v at y-direction are set as follows

u|x=0=3y(1−y), n·∇u|x=4=0,
v|x=0=0, v|x=4=0.

We use no slip boundary condition for the u, v at x-direction. The homogeneous Neu-
mann conditions are given for phase-field variables and pressure. The background flow
field is shown in Fig. 9(a). The parameters h= 1/128, ∆t= 10h2, Re= 1, We= 10, Pe=
0.1/ϵ, λ=0.03, ρ1=ρ2=1 are used. The effect of gravity is ignored (i.e. g=(0,0)).

In Fig. 8(a) and (b), we depict the temporal progression of a droplet navigating past
a triangle-shaped solid structure, considering contact angles of θ1=30◦ and θ1=150◦, re-
spectively. These visualizations enable us to discern wetting and non-wetting processes
associated with θ1=30◦ and θ1=150◦, respectively. The results obtained using the original
ternary CH model and the proposed model are represented by red and blue lines, respec-
tively. Evidently, the proposed model excels in preserving the area of the droplet, as also
evidenced in Fig. 9(b) and (c). Fig. 9(b) and (c) further illustrate the temporal evolution
of the mass ratio for ϕ1 under contact angles of θ=30◦ and θ=150◦, respectively.
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4.4.2 Gravity-driven flow in a porous medium

The phase-field method has gained extensive utilization in the investigation of transport
phenomena within porous media [51], primarily due to its capacity to provide precise
insights into flow physics, particularly when dealing with intricate moving interfaces
and complex topological structures. In this context, we examine two-phase flows within
a simulated porous medium, as showed in Fig. 11(a). The porous region, comprised of
multiple circular structures, is represented by ϕ3. Let us establish the initial conditions as
follows

ϕ1(x,y,0)=(1−ϕ3)

(
0.5+0.5tanh

(
−max(|y−0.75|−0.08,|x|−0.4)

2
√

2ϵ

))
, (4.17)

v(x,y,0)=
5
2

(
tanh

(
−max(|y−0.75|−0.08,|x|−0.4)

2
√

2ϵ

)
+1
)

, (4.18)

u(x,y,0)=0, p(x,y,0)=0, (4.19)

on the whole computational domain Ω=[−0.5,0.5]×[−1,1] with a uniform grid 256×512.
We set the no-slip condition for velocities on the porous region, i.e., un+1|∂Ω =0. The ho-
mogeneous Neumann conditions are given for phase field variables and pressure. The
background flow field, as shown in Fig. 11(a). The other numerical parameters are set as
follows: Re=100, ρ1:ρ2=2:1, g=(0,10), θ=90◦, λ=0.15, ∆t=100h2, Pe=0.1/ϵ. Notably, for
this particular simulation, the impact of the surface tension force is disregarded, mean-
ing that We = ∞. Fig. 10(a) and (b) illustrate the temporal evolution of gravity-driven
flow within a porous medium, as computed using the original ternary CH equation and
the corrected ternary CH equation, respectively. As we can see, under the combined
influences of convection and boundary collisions, the droplet undergoes fragmentation,
resulting in the formation of multiple segments. To facilitate a comparative assessment
of the two models, Fig. 10(c) presents a side-by-side comparison, clearly indicating that
the corrected ternary CH model excels in capturing more intricate geometric features of
the interfaces. Furthermore, Fig. 11(b) presents the temporal evolution of the mass ratio
for ϕ1, underscoring the improved ability of the corrected ternary CH model to preserve
local mass compared to the original CH equation.

4.5 Comparison with original CH in 3D

In this example, we investigate the behavior of a droplet on the rectangular solid, as
represented in Fig. 12. The computational domain is defined as Ω = [0,1]×[0,1]×[0,1],
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(a)

(b)

(c)

Figure 10: Temporal evolution of gravity-driven flow in a porous medium for (a) the original ternary CH equation,
(b) the corrected ternary CH equation. Comparisons of gravity-driven flow in a porous medium between the
CH model and the corrected ternary CH model are in (c). The red dash lines and blue solid lines are the results
obtained by the original ternary CH model and the corrected ternary CH model, respectively. The times from
the left to right in each row are: t=1.6785, 2.8992, 4.4250, 5.1880, 5.9509.
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Figure 11: (a) Initial state. (b) Temporal evolution of the mass ratio for the ϕ1.

with a discretized mesh size of 64×64×64. The initial conditions are specified as follows:

ϕ3(x,y,z)=0.5+0.5tanh
(
−max(max(|x−0.5|−0.35,|y−0.5|−0.35),|z+0.2|−0.5)

1.6
√

2ϵ

)
,

(4.20)

ϕ1(x,y,z,0)=(1−ϕ3(x,y,z))

(
0.5+0.5tanh

(
0.3−

√
(x−0.5)2+(y−0.5)2+(z−0.2)2

0.8
√

2ϵ

))
,

(4.21)

ϕ2(x,y,z,0)=1−ϕ3(x,y,z)−ϕ1(x,y,z,0). (4.22)

The parameters are set as ∆t=0.01, θ1=150◦, λ=0.15. Fig. 12(a) and (b) illustrate the tem-
poral evolution for the original ternary CH model and the corrected ternary CH model,
respectively. The solid phase is represented by ϕ3 (in red), the droplet is denoted as ϕ1 (in
green), and the continuum phase is symbolized by ϕ2 (in white). Cross-sectional views
at t= 0.95 are provided in Fig. 13(a), distinctly showcasing the capacity of the corrected
ternary CH model to rectify mass loss within the interfacial region. Fig. 13(b) and (c)
further elucidate the temporal evolution of total mass and mass ratio for ϕ1 using both
methods. Notably, both approaches demonstrate sound mass conservation properties
across the entire domain. Nevertheless, it is evident that the proposed model signifi-
cantly mitigates mass loss for ϕ1, whereas the original ternary CH model experiences
substantial mass loss for the same phase.
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Figure 12: Temporal evolution of phase interface contacting a solid boundary for (a) the original ternary CH
equation and (b) proposed equation.

4.6 Droplets in 3D complex domain

We close with an investigation of a rectangular prism-shaped droplet positioned on an
ellipsoid with different contact angles θ1 = 30◦, 90◦, 150◦. The initial state is shown in
Fig. 14. The initial conditions are considered as

ϕ3(x,y,z)=0.5+0.5tanh

1−
√
( x−0.5

0.25 )2+( y−0.5
0.45 )2+( z−0.26

0.25 )2

2
√

2ϵ

, (4.23)

ϕ1(x,y,z,0)=(1−ϕ3(x,y,z))(
0.5+0.5tanh

(
−max(max(|x−0.5|−0.18,|y−0.5|−0.18),|z−0.5|−0.19)√

2ϵ

))
,

(4.24)

ϕ2(x,y,z,0)=1−ϕ1(x,y,z,0)−ϕ3(x,y,z). (4.25)

The whole computational domain is defined as Ω=[0,1]×[0,1]×[0,1]. Employing a spa-
tial discretization with h=1/64, a temporal step size of ∆t=0.01, and λ=0.15, we present
computational results in Fig. 15 for varying contact angles, specifically θ1=30◦, 90◦, 150◦.
The cross sections at y=0.5 and t=0.75 are highlighted in the right column of the figure.
Notably, the impact of contact angle on the dynamic evolution of the solid boundaries is
prominently displayed.
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Figure 13: (a) Cross sections at y=0.5, t=0.95. (b) Temporal evolution of the mass. (c) Temporal evolution
of the mass ratio for ϕ1.

5 Conclusion

This paper presented an efficient phase-field model specifically designed for a ternary
CH system, tailored to incorporate contact angle conditions within complex domains.
The importance of an interface with a hyperbolic tangent profile lied in the derivation of
the contact angle term from Young’s equality and the hyperbolic tangent profile of the
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Figure 14: (a) Initial state. (b) Cross section at y=0.5.

Figure 15: Temporal evolution of a droplet in the complex domain with different contact angle (a) 30◦, (b) 90◦,
(c) 150◦. The times from left to right in each row are: t=0.0, 0.25, 0.5, 0.75.
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equilibrium interface. The inherent interface length minimization property of the orig-
inal ternary CH model may result in a non-hyperbolic tangent profile for the interface
between two phases, leading to inaccurate contact angle effects and mass loss within
the enclosed area. To address this, a fidelity energy functional was integrated into the
total energy functional, and by minimizing this part, an interface correction term was
derived to enforce a hyperbolic tangent profile for the interface of the two phases. The
algorithm devised for solving the corrected ternary CH model was formulated in a semi-
implicit manner utilizing the BDF2 scheme. The resulting nonlinear discrete equations
were solved using a nonlinear multigrid method. Computational results included com-
parisons with the original ternary CH model, examination of the contact angle effect
without fluid flow, droplet behavior in a 2D complex domain, analysis of contact angle
effects with fluid flow, and investigation of gravity-driven flow in a porous medium. Ad-
ditionally, comparisons with the original ternary CH model in 3D and droplet behavior
within a 3D complex domain collectively underscored the corrected ternary CH model’s
ability to enforce the desired hyperbolic tangent interface property, improve the contact
angle effect, and reduce mass loss in each phase.
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