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Abstract. In this paper, we develop and analyze an efficient discontinuous Galerkin
method for stochastic Allen-Cahn equation driven by multiplicative noise. The pro-
posed method is realized by symmetric interior penalty discontinuous Galerkin finite
element method for space domain and implicit Euler method for time domain. Sev-
eral new estimates and techniques are developed. Under some suitable regularity as-
sumptions, we rigorously establish strong convergence results for the proposed fully
discrete numerical scheme and obtain optimal convergence rates in both space and
time. Numerical experiments are also carried out to validate our theoretical results
and demonstrate the effectiveness of the proposed method.
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1 Introduction

In this paper, we consider strong approximation for the Itô type Allen-Cahn equation
with multiplicative noise of the form

du+Audt= f (u)dt+g(u)dW in D×(0,T], (1.1)
∂u
∂n

=0 on ∂D×[0,T], (1.2)

u=u0 in D×{t=0}. (1.3)
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Here T is a fixed positive time instant, D is a bounded convex domain in Rd, d= 1,2,3,
with polygonal boundary ∂D, n denotes the unit outward normal vector to the boundary
∂D, the operator A denotes the linear elliptic operator defined by Au :=−∆u, f : R→R

is given by f (u) := 1
ϵ2 (u−u3) with parameter ϵ the interfacial width, g : R → R is an

appropriate regular function which will be specified in the next section, and the driving
noise W is a standard Wiener process defined on a complete probability space (Ω,F ,P)
with normal filtration F={Ft}0≤t≤T. For the sake of notational simplicity, we focus our
discussion on the one dimensional noise case and it is straightforward to generalize the
analysis below to the multidimensional noise cases.

The deterministic Allen-Cahn equation was first introduced by Allen and Cahn in [1]
to describe the motion of anti-phase boundaries of a binary alloy at a fixed tempera-
ture. Since then, as a fundamental tool, Allen-Cahn equation plays an important role
in many complicated moving interface problems such as material science, fluid dynam-
ics, image analysis and mean curvature flow [27]. Frequently, due to the presence of
external perturbations, lack of information, uncertainty in the measurements, and in-
complete knowledge of certain physical parameters, a stochastic noise is usually added
in the model to make the description of the system more realistic, which results in the
stochastic Allen-Cahn equation (SAC). Note that sharing the same structure with the de-
terministic case, the model (1.1) admits superlinearly growing coefficient and in general
it can not be solved explicitly. In recent years, the construction and numerical analysis
of efficient approximation schemes for stochastic Allen-Cahn equation have begun to at-
tract the attention of many researchers and plenty of interesting numerical methods have
been developed, analyzed and tested, see e.g. [3–5,9,17,28,29,37,38,41,45] and the refer-
ences therein. However, most of the aforementioned works have considered the additive
noise case, where the stochastic convolution plays a key role in the numerical analysis.
In comparison with large amounts of numerical studies of stochastic Allen-Cahn equa-
tion with additive noise, the numerical studies of multiplicative noise driving stochastic
Allen-Cahn equation are still very limited (see e.g. [21, 30, 37, 39]).

Discontinuous Galerkin (DG) methods are a class of finite element methods with the
basis functions which can be completely discontinuous [16]. DG methods are eligible
for high order schemes in space and flexible of parallel implementation of handling the
complex problem, which have been widely used to solve deterministic partial differen-
tial equations (PDEs). And we refer to the books [16, 18, 19, 42] for more details on the
development of DG methods in all aspects including algorithm design, analysis, imple-
mentation and applications. As far as the stochastic cases are concerned, DG methods for
stochastic partial differential equations (SPDEs) can inherit the advantages of their coun-
terparts for deterministic PDEs and they are good choices to solve SPDEs with sharp fea-
ture. For this reason, recently, many researchers turn their attentions to working in the de-
sign and analysis of DG methods for SPDEs. A symmetric interior penalty DG and local
DG for SPDEs are proposed and investigated in [34,46]. Discontinuous Galerkin methods
for stochastic wave equations, Helmholtz equation, conservation laws and Kdv equations
are investigated in [2,10,11,26,32,33]. Mean-square convergence analysis of a symplectic
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local discontinuous Galerkin method applied to stochastic linear Schrödinger equation
is carried out in [13]. Discontinuous Galerkin methods for the stochastic Maxwell equa-
tions are considered in [12, 43, 44]. Discontinuous Galerkin methods for the stochastic
Cahn–Hilliard equation are studied in [31, 47], etc.

Our primary objective of this paper is to study the strong convergence of a fully dis-
crete numerical method for multiplicative noise driving stochastic Allen-Cahn equation.
To be precise, we will numerically solve model (1.1)-(1.3) with symmetric interior penalty
discontinuous Galerkin (SIPG) finite element method in space and implicit Euler method
in time. By overcoming a variety of technical difficulties in the numerical approximation
of problem (1.1)-(1.3) caused by multiplicative nose, superlinear growth coefficients, and
low time regularity of the solution, we provide rigorous error estimates with optimal
strong convergence rates (see Theorem 4.1 in Section 4) for the proposed fully discrete
scheme. In order to prove Theorem 4.1, we first establish some technical lemmas includ-
ing time regularities in different form of the exact solution and stability properties of the
proposed fully discrete approximation. Based on these established key lemmas, together
with some classical error estimates from the finite element theory for deterministic PDEs,
we eventually derive the strong approximation errors with optimal convergence rates in
both space and time. As far as we are aware of, this is the first try to consider SIPG ap-
proximations for stochastic Allen-Cahn equation and obtain the optimal error estimates.

The rest of the paper is arranged as follows. In Section 2, we introduce some pre-
liminaries and establish some regularity results of the solution. Section 3 is devoted to
construct the proposed fully discrete numerical scheme. In Section 4, we first collect
some well-known estimates and study the strong convergence of the proposed numeri-
cal scheme. The main result is also given. In Section 5, numerical experiments are carried
out to validate our theoretical results. Finally, in Section 6 some concluding remarks are
provided.

2 Preliminaries

Let L2(D) be the space of all square integrable functions equipped with the usual inner
product (·,·) and norm ∥·∥. Let κ ≥ 0 be an arbitrary integer and 1≤ p≤∞. We denote
by Wκ,p(D) the standard Sobolev space. For the case p=2, the space Wκ,2(D) is a Hilbert
space and we denote it by Hκ(D), which is equipped with the norm ∥·∥Hκ(D) and the
seminorm |·|Hκ(D)= ∥∇κ ·∥L2(D). And obviously, H0(D)= L2(D) and |·|H0(D)= ∥·∥L2(D).
Let Cκ

b (R) denote the space of bounded and κ-times continuously differentiable functions
defined on R with bounded derivatives of all orders less than or equal to κ.

With a filtered probability space or stochastic basis (Ω,F ,F,P) given in Section 1, we
define Lp(Ω,Ft;X),p ≥ 1 as the space of all Ft-measurable X-valued random variables
η satisfying E

[
∥η∥p

X
]
<∞. Let Lp

F((0,T);X) denote the space of all F-adapted X-valued
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processes φ={φ(t)}t∈[0,T] satisfying

E

[∫ T

0
∥φ(t)∥p

X dt
]
<∞.

Denote by CF([0,T];L2(Ω,X)) the space of all F-adapted, mean square continuous, X-
valued processes ψ={ψ(t)}t∈[0,T] satisfying

sup
0≤t≤T

E
[
∥ψ(t)∥2

X
]
<∞.

Let L2
F(Ω;C([0,T];X)) be the subspace of CF([0,T];L2(Ω,X)) such that

E

[
sup

0≤t≤T
∥ψ(t)∥2

X

]
<∞.

In the sequel, we impose the following condition on the function g in (1.1). The generic
constant C will be used to denote generic positive constants independent of discretization
parameters throughout the paper.

Assumption 2.1. Let g∈Cκ
b (R) with κ≥ 0, and g is Lipschitz continuous and has linear

growth, i.e., there exists a positive constant C such that for all x,y∈R,

|g(x)−g(y)|≤C|x−y|. (2.1)

And there exists a constant M>0 such that |g(0)|≤M.

Set H :=L2(D) and V :=H1(D). We identify H with its dual H∗, and denote by V∗ the
dual of V. Then we have the Gelfand triplet V ↪→ H ↪→V∗. The duality pairing between
V and V∗ is denoted by ⟨·,·⟩. Obviously, the following relation holds:

⟨u,v⟩=(u,v), u∈H, v∈V. (2.2)

Define the operator A : V→V∗ by

⟨Au,v⟩=(∇u,∇v), u,v∈V. (2.3)

It is easy to see that there exists a positive constant C such that for all w,w1,w2∈H,(
f (w1)− f (w2),w1−w2

)
+∥g(w1)−g(w2)∥2≤C∥w1−w2∥2, (2.4)

and
∥g(w)∥2≤C

(
1+∥w∥2). (2.5)

Assumption 2.2 (Initial value). The initial value u0 is smooth enough, i.e., u0 ∈
Lp (Ω,F0;Hκ(D)) with p≥2, κ≥1.
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Definition 2.1. An F-adapted process u={u(t),t∈ [0,T]} is called a variational solution
of the stochastic Allen-Cahn equation (1.1) if almost surly u(t)∈V for almost every t and

(u(t),v)+
∫ t

0
⟨Au(s),v⟩ds=(u0,v)+

∫ t

0
( f (u(s)),v)ds

+
∫ t

0
(g(u(s)),v)dW(s), (2.6)

holds for a.e. ω∈Ω, all t∈ [0,T], and all v∈V.

Next, we present some auxiliary results on existence and time regularity of solution
to (1.1)-(1.3).

Theorem 2.1 ([14]). Let Assumptions 2.1–2.2 hold. Then, the problem (1.1)-(1.3) admits a
variational solution. Moreover, it holds

E

[
sup

0≤t≤T
∥u(t)∥2

]
+E

[∫ T

0
∥u(t)∥2

V dt
]
<∞, (2.7)

i.e., u∈L2
F(Ω;C([0,T];H))∩L2

F((0,T);V).

Remark 2.1. From [22] and [39], let u be variational solution to the problem (1.1)-(1.3),
then we have

sup
0≤t≤T

E[∥u(t)∥p]
∨

sup
0≤t≤T

E
[
∥u(t)∥10

L10(D)

]
<∞, p≥1, (2.8)

where a∨b :=max{a,b}.

The following lemmas deal with the time regularities of the solution in different norm.

Lemma 2.1. Under the same assumptions of Theorem 2.1, let u be the variational solution of
SAC (1.1). If g∈Cκ

b (R) and

u∈CF

(
[0,T];L2(Ω,Hκ(D))

)⋂
L2

F

(
(0,T);H2+κ(D)

)
with κ≥0 being integer, then we have

E
[
|u(t)−u(s)|2Hκ(D)

]
≤C(t−s), (2.9)

for s,t∈ [0,T] with s< t.

Proof. The proof is similar to the proof of Corollary 4.4 in [25] and Lemma 2.1 in [46].
Hence we omit it here.
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Lemma 2.2. Let u be the variational solution of SAC (1.1). Suppose that

u∈L2
F

(
(0,T);H2+κ(D)

)
∩L6

F

(
(0,T);H1+κ(D)

)
with κ≥0. Then it holds for 0≤ s< t≤T

|E[u(t)−u(s)|Fs]|2Hκ(D)≤C(t−s)E
[∫ t

s
∥u(ξ)∥6

H1+κ(D)+∥u(ξ)∥2
H2+κ(D) dξ|Fs

]
. (2.10)

Proof. We only prove the case κ = 0 and the other cases can be proved in the same line.
Due to the H2–regularity, we have for t> s

u(t)−u(s)=
∫ t

s
Au(ξ)dξ+

∫ t

s
f (u(ξ))dξ+

∫ t

s
g(u(ξ))dW(ξ). (2.11)

Then taking the conditional mathematical expectation yields

E[u(t)−u(s)|Fs]=E

[∫ t

s
Au(ξ)dξ|Fs

]
+E

[∫ t

s
f (u(ξ))dξ|Fs

]
, (2.12)

from which we get

∥E[u(t)−u(s)|Fs]∥2≤2
∥∥∥∥E

[∫ t

s
Au(ξ)dξ|Fs

]∥∥∥∥2

+2
∥∥∥∥E

[∫ t

s
f (u(ξ))dξ|Fs

]∥∥∥∥2

. (2.13)

Using the Cauchy–Schwartz inequality and the Sobolev embedding H1(D) ↪→ L6(D) for
d≤3 leads to

∥E[u(t)−u(s)|Fs]∥2≤2(t−s)E
[∫ t

s
|u(ξ)|2H2(D) dξ|Fs

]
+2(t−s)E

[∫ t

s

∥∥u(ξ)−u3(ξ)
∥∥2

dξ|Fs

]
≤C(t−s)E

[∫ t

s
∥u(ξ)∥2

H2(D) dξ|Fs

]
+C(t−s)E

[∫ t

s
∥u(ξ)∥6

L6(D)+∥u(ξ)∥2 dξ|Fs

]
≤C(t−s)E

[∫ t

s
∥u(ξ)∥6

H1(D)+∥u(ξ)∥2
H2(D) dξ|Fs

]
, (2.14)

which completes the proof.

Using a similar argument as that in [21], we can derive the following lemma.

Lemma 2.3. let u be the variational solution of SAC (1.1). Suppose that

u∈CF

(
[0,T];L2(Ω,H2(D))

)
.

Then, for s,t∈ [0,T] with s< t, we have

E
[
∥ f (u(t))− f (u(s))∥2]≤C(t−s), (2.15)

where C is a positive constant.
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3 Discontinuous Galerkin discretization

In this section, we propose a fully discrete discontinuous Galerkin scheme for (1.1)–(1.3).
Let Th with h>0 be a quasi-uniform triangulation of the space domain D such that D=
∪K∈Th K. Let hK denote the diameter of K∈Th and h :=maxK∈Th hK. By ϱK we denote the
largest d-dimensional ball inscribed into K. For a positive integer κ, we define a broken
Sobolev space on Th as

Hκ(Th) :={v∈L2(D); v|K ∈Hκ(K), ∀K∈Th}

equipped with the broken Sobolev norm and seminorm:

∥v∥Hκ(Th)=

(
∑

K∈Th

∥v∥2
Hκ(K)

) 1
2

, |v|Hκ(Th)=

(
∑

K∈Th

|v|2Hκ(K)

) 1
2

.

And clearly, Hκ(D)⊂Hκ(Th). For any K∈Th, Pr(K) denotes the set of all polynomials of
degree at most r≥1 on the element K, and the DG finite element space Sh is defined as

Sh :={v∈L2(D); v|K ∈Pr(K), ∀K∈Th}. (3.1)

Let E I
h denote the set of all interior faces/edges of Th, EB

h the set of all boundary faces/edges
of Th, and Eh := E I

h∪EB
h . Let K,K′ ∈Th and e be an interior edge shared by two elements

K and K′, i.e., e= ∂K∩∂K′. Assume that the global labeling number of K is smaller than
that of K′. We choose ne :=nK|e=−nK′ |e as the unit normal on e and define the following
standard notations of jump and average across the face/edge e:

[[v]] :=v|K−v|K′ on e∈E I
h ,

{{v}} :=
1
2
(
v|K+v|K′

)
on e∈E I

h ,

for a scalar function v.
We now recall the following well-known result.

Lemma 3.1 ([18]). If a function v∈Hκ(Th) for κ≥1 belongs to Hκ(D), then

[[v]]=0, ∀e∈E I
h , (3.2)

and
∥v∥Hκ(Th)=∥v∥Hκ(D), |v|Hκ(Th)= |v|Hκ(D). (3.3)

Now we define the DG bilinear form ah : Hκ(Th)×Hκ(Th)→R:

ah(u,v)= ∑
K∈Th

∫
K
∇u·∇vdx− ∑

e∈E I
h

∫
e
{{∇u·ne}}[[v]]dS

− ∑
e∈E I

h

∫
e
{{∇v·ne}}[[u]]dS+ ∑

e∈E I
h

∫
e

σ

he
[[u]][[v]]dS, (3.4)
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where the parameter σ>0 is called penalty parameter and he means the length of e in 2d
and the area of e in 3d. Now we define the so-called DG-norm

|||u|||=

 ∑
K∈Th

∥∇u∥2
L2(K)+ ∑

e∈E I
h

σ

he
∥[[u]]∥2

L2(e)


1
2

. (3.5)

3.1 Fully discrete scheme

In view of the definition of the weak solution and the bilinear form ah(·,·), we derive

(u(t),v)=(u0,v)−
∫ t

0
ah(u(s),v)ds+

∫ t

0
( f (u(s)),v)ds (3.6)

+
∫ t

0
(g(u(s)),v)dW(s), ∀v∈Hs(Th), t∈ [0,T]. (3.7)

Let tn=n∆t (n=0,1,··· ,M) be a uniform partition of [0,T] with time step size ∆t=T/M.
Denote by un

h the approximation of u(tn) at time tn and define ∆Wn :=W(tn+1)−W(tn).
Based on (3.6), now we propose the space-time fully discrete scheme for SAC (1.1)-(1.3)
as follows.

Scheme 3.1. Given an initial value u0
h =Rhu0, solve for un+1

h , n=0,1,··· ,M−1 such that
for all vh ∈Sh

(un+1
h ,vh)=(un

h ,vh)−
∫ tn+1

tn

ah(un+1
h ,vh)ds

+
∫ tn+1

tn

( f (un+1
h ),vh))ds+

∫ tn+1

tn

(g(un
h)),vh)dW(s)

=(un
h ,vh)−∆tah(un+1

h ,vh)+∆t( f (un+1
h ),vh)

+(vh,g(un
h)∆Wn), (3.8)

where the definition of Rh is given in (4.3).

To analyze the well-posedness of Scheme 3.1, we introduce the following Browder
fixed point theorem.

Lemma 3.2 (Browder fixed point theorem [8, 23]). Let (E,(·,·)) be a finite dimensional inner
product space, ∥·∥E the associated norm, the mapping Π : E → E be continuous. Assume that
(Πz,z)≥0 for all z∈E with ∥z∥E=µ≥0, then there exists a z∗∈E such that Πz∗=0, ∥z∗∥E≤µ.

Theorem 3.1. Under the condition ∆t
ϵ2 <1, for all ω∈Ω, Scheme 3.1 is solvable.

Proof. Referring to [8], let us fix ω ∈Ω and suppose that uk
h(ω), k= 1,2,··· ,n have been

determined. We introduce the mapping Πω : Sh →Sh defined by

(Πωwh,vh)=(wh,vh)−(un
h(ω),vh)+∆tah(wh,vh)

−∆t( f (wh),vh)−(vh,g(un
h(ω))∆Wn(ω)), ∀vh ∈Sh. (3.9)
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Following Lemma 3.2, we have

(Πωwh,wh)=(wh,wh)−(un
h(ω),wh)+∆tah(wh,wh)

−∆t( f (wh),wh)−(wh,g(un
h(ω))∆Wn(ω))

≥∥wh∥2−∥wh∥∥un
h(ω)∥+Ca∆t|||wh|||2

+
∆t
ϵ2 (w

3
h−wh,wh)−∥wh∥∥gh(un

h(ω))∆Wn(ω)∥

≥
((

1−∆t
ϵ2

)
∥wh∥−∥un

h(ω)∥−∥gh(un
h(ω))∆Wn(ω)∥

)
∥wh∥.

From [6,36], there exists a constant C>0 such that ∥vh∥≤C|||vh||| for vh∈Sh. By choosing
|||wh|||=µ≥ 1

C ∥wh∥= ϵ2

C(ϵ2−∆t) (
∥∥un

h(ω)
∥∥+∥∥g(un

h(ω))∆Wn(ω)
∥∥)≥0, we get (Πωwh,wh)≥0

for all wh with |||wh|||=µ. Hence un+1
h (ω) exists for all ω∈Ω.

4 Strong convergence analysis

In this section, we are going to establish the optimal strong error estimates for the pro-
posed fully discrete Scheme 3.1.

4.1 The main result

In this paper, the strong optimal error estimates are mainly considered for the proposed
fully discrete Scheme 3.1. To start this section, we first present our main result in Theorem
4.1.

Theorem 4.1. Let u(t) and un
h , n=0,1,2,··· ,M be the solutions of (3.6) and Scheme 3.1, respec-

tively. Under the conditions given in Theorems 3.1 and 4.2, for a sufficient small ∆t> 0, there
exists a constant C independent of h and ∆t, such that

sup
0≤n≤M

E
[
∥un

h−u(tn)∥2]+h2CE

[
M

∑
n=0

|||un
h−u(tn)|||2∆t

]
≤C

(
∆t+h2min{r+1,κ}

)
.

4.2 Auxiliary theoretical techniques

We firstly collect some well-known estimates which are frequently used in our error anal-
ysis.

Lemma 4.1 (Continuity and coercivity [42]). With a proper parameter σ>0, there exist posi-
tive constants C>0 and Ca >0 such that the DG bilinear form ah has the following properties:

ah(uh,vh)≤C|||uh||||||vh|||, uh,vh ∈Sh, (4.1)

ah(vh,vh)≥Ca|||vh|||2, vh ∈Sh. (4.2)
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Next, we introduce the elliptic projection operator Rh : H1(Th)→Sh defined by

ah(Rh φ,χ)= ah(φ,χ), ∀φ∈H1(Th), χ∈Sh. (4.3)

Lemma 4.2 ([42]). For κ>3/2, the following error estimates hold:

|||u−Rhu|||≤Chmin(r+1,κ)−1∥u∥Hκ(Th), u∈Hκ(Th), (4.4)

∥u−Rhu∥≤Chmin(r+1,κ)∥u∥Hκ(Th), u∈Hκ(D). (4.5)

For u∈H, we define the L2-projection operator Ph : H→Sh by

(Phu,χ)=(u,χ), ∀u∈H, ∀χ∈Sh. (4.6)

Obviously, if K∈Th, then the function Phv|K is the L2(K)-projection of v|K on Pr(K). Next,
we cite some well-known error estimates for the L2-projection operator Ph and we refer
the readers to [7, 15, 20] for more details.

Lemma 4.3. For the operator Ph, the standard error estimates read:

∥Phu−u∥≤Chmin{r+1,κ}∥u∥Hκ(D), (4.7)

∥Phu−u∥L2(K)≤Chmin{r+1,κ}
K ∥u∥Hκ(K), (4.8)

∥Phu−u∥L∞(D)≤Ch2−d/2∥u∥H2(D) (4.9)

for all u∈Hκ(D).

Lemma 4.4 ([19]). Assume the triangulations {Th}h∈(0,h0),h0 >0 of the space domain D satisfy
the shape-regularity condition, i.e., there exists a positive constant C such that

hK

ϱk
≤C, ∀K∈Th, ∀h∈ (0,h0). (4.10)

Then, there is a constant C>0 independent of v,h and K such that for v∈H1(K)

∥v∥2
L2(∂K)≤C

(
∥v∥L2(K)|v|H1(K)+h−1

K ∥v∥2
L2(K)

)
, ∀K∈Th. (4.11)

Lemma 4.5 ([20]). There exists a constant CI >0 independent of v, h and K such that

∥v∥L∞(K)≤CIh−d/2
K ∥v∥L2(K), ∀v∈Sh. (4.12)

The following lemma is a generalised discrete Gronwall inequality.

Lemma 4.6 ([42]). Let ∆t,B,C>0 and let {an},{bn},{cn} be sequences of nonnegative numbers
satisfying

∀n≥0, an+∆t
n

∑
i=0

bi ≤B+C∆t
n

∑
i=0

ai+∆t
n

∑
i=0

ci. (4.13)

Then, if C∆t<1,

∀n≥0, an+∆t
n

∑
i=0

bi ≤ eC(n+1)∆t

(
B+∆t

n

∑
i=0

ci

)
. (4.14)
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Define θn =un
h−Rhu(tn), ρn =u(tn)−Rhu(tn), so that the approximation error can be

decomposed as
en =un

h−u(tn)= θn−ρn.

Our first step is to identify the error equation for the time evolution of θn. To the end, by
subtracting (3.6) from (3.8), we infer that

(un+1
h −u(tn+1),vh))+

∫ tn+1

tn

ah(un+1
h −u(tn+1),vh)ds

=(un
h−u(tn),vh)+

∫ tn+1

tn

( f (un+1
h )− f (Rhu(tn+1)),vh)ds

+
∫ tn+1

tn

( f (Rhu(tn+1))− f (u(tn+1)),vh)ds+
(

vh,
∫ tn+1

tn

(
g(un

h)−g(u(tn))
)

dW(s)
)

−
∫ tn+1

tn

ah(u(tn+1)−u(s),vh)ds+
∫ tn+1

tn

( f (u(tn+1))− f (u(s)),vh)ds

+
(

vh,
∫ tn+1

tn

(
g(u(tn))−g(u(s))

)
dW(s)

)
, ∀vh ∈Sh.

Using the definitions of θn and ρn leads to the error equation:

(θn+1−θn,vh)+
∫ tn+1

tn

ah(θ
n+1,vh)ds

=(ρn+1−ρn,vh)+
∫ tn+1

tn

( f (un+1
h )− f (Rhu(tn+1)),vh)ds

+
∫ tn+1

tn

( f (Rhu(tn+1))− f (u(tn+1)),vh)ds+
(

vh,
∫ tn+1

tn

(
g(un

h)−g(u(tn))
)

dW(s)
)

−
∫ tn+1

tn

ah(u(tn+1)−u(s),vh)ds+
∫ tn+1

tn

( f (u(tn+1))− f (u(s)),vh)ds

+
(

vh,
∫ tn+1

tn

(
g(u(tn))−g(u(s))

)
dW(s)

)
, ∀vh ∈Sh. (4.15)

4.3 Several key lemmas

In this subsection, we will establish several lemmas which will be used in our error esti-
mates for Scheme 3.1.

Lemma 4.7 ([46]). Suppose that E
[
∥ψ∥H1(D)

]
<∞. Then, the following relation holds

E[Rhψ]=RhE[ψ]. (4.16)

Lemma 4.8. Suppose Assumptions 2.1–2.2 hold. Let u be the variational solution of SAC (1.1).
Suppose that

u∈CF

(
[0,T];L6(Ω,Hκ(D))

)
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with κ≥2. Then we have the following estimates

1
2

E

[
∥θm∥2

]
+

1
4

E

[m−1

∑
n=0

∥θn+1−θn∥2
]
+CaE

[ m

∑
n=1

|||θn|||2∆t
]

≤2E

[m−1

∑
n=0

∥ρn+1−ρn∥2
]
+E

[m−1

∑
n=0

(
E
[
ρn+1−ρn|Ftn

]
,θn
)]

+CE

[m−1

∑
n=0

∥θn+1∥2∆t
]
+CE

[m−1

∑
n=0

∥ρn+1∥2∆t
]

+CE

[m−1

∑
n=0

∥ρn∥2∆t
]
+C

m−1

∑
n=0

(
E
[
∥ρn+1∥6]) 1

3 ∆t

+CE

[m−1

∑
n=0

∥θn∥2∆t
]
+E

[m−1

∑
n=0

Ξn
]

, (4.17)

where Ξn :=Ξn
1+Ξn

2+Ξn
3 with

Ξn
1 =−

∫ tn+1

tn

ah(u(tn+1)−u(s),θn+1)ds,

Ξn
2 =

∫ tn+1

tn

( f (u(tn+1))− f (u(s)),θn+1)ds,

Ξn
3 =

(
θn+1,

∫ tn+1

tn

(g(u(tn))−g(u(s)))dW(s)
)

.

Proof. By choosing vh = θn+1 in the error equation (4.15), we obtain

(θn+1−θn,θn+1)+
∫ tn+1

tn

ah(θ
n+1,θn+1)ds

=(ρn+1−ρn,θn+1)+
∫ tn+1

tn

( f (un+1
h )− f (Rhu(tn+1)),θn+1)ds

+
∫ tn+1

tn

( f (Rhu(tn+1))− f (u(tn+1)),θn+1)ds

+
(

θn+1,
∫ tn+1

tn

(
g(un

h)−g(u(tn))
)

dW(s)
)

−
∫ tn+1

tn

ah(u(tn+1)−u(s),θn+1)ds+
∫ tn+1

tn

( f (u(tn+1))− f (u(s)),θn+1)ds

+
(

θn+1,
∫ tn+1

tn

(
g(u(tn))−g(u(s))

)
dW(s)

)
. (4.18)

A straightforward algebraic calculation gives

(θn+1−θn,θn+1)=
1
2

(
∥θn+1∥2−∥θn∥2

)
+

1
2
∥θn+1−θn∥2. (4.19)
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It then follows that

1
2

(
∥θn+1∥2−∥θn∥2

)
+

1
2
∥θn+1−θn∥2+ah(θ

n+1,θn+1)∆t

=(ρn+1−ρn,θn+1)+∆t( f (un+1
h )− f (Rhu(tn+1)),θn+1)

+∆t( f (Rhu(tn+1))− f (u(tn+1)),θn+1)

+(θn+1,(g(un
h)−g(u(tn)))∆Wn)+Ξn. (4.20)

Summing (4.20) from n=0 to n=m−1 with m≤M yields

1
2
∥θm∥2+

1
2

m−1

∑
n=0

∥θn+1−θn∥2+Ca

m

∑
n=1

|||θn|||2∆t

≤
m−1

∑
n=0

(ρn+1−ρn,θn+1−θn)+
m−1

∑
n=0

(ρn+1−ρn,θn)

+
m−1

∑
n=0

∆t( f (un+1
h )− f (Rhu(tn+1)),θn+1)

+
m−1

∑
n=0

∆t( f (Rhu(tn+1))− f (u(tn+1)),θn+1)

+
m−1

∑
n=0

(θn+1−θn,(g(un
h)−g(u(tn)))∆Wn)

+
m−1

∑
n=0

(θn,(g(un
h)−g(u(tn)))∆Wn)+

m−1

∑
n=0

Ξn, (4.21)

where the coercivity (4.2) of ah has been used. Employing the Cauchy–Schwartz inequal-
ity and the Young inequality, we further get

1
2
∥θm∥2+

1
2

m−1

∑
n=0

∥θn+1−θn∥2+Ca

m

∑
n=1

|||θn|||2∆t

≤2
m−1

∑
n=0

∥ρn+1−ρn∥2+
1
4

m−1

∑
n=0

∥θn+1−θn∥2+
m−1

∑
n=0

(ρn+1−ρn,θn)+
m−1

∑
n=0

∥θn+1∥2∆t

+
m−1

∑
n=0

∆t( f (un+1
h )− f (Rhu(tn+1)),θn+1)+

m−1

∑
n=0

∥ f (Rhu(tn+1))− f (u(tn+1))∥2∆t

+2
m−1

∑
n=0

∥(g(un
h)−g(u(tn)))∆Wn∥2+

m−1

∑
n=0

(θn,(g(un
h)−g(u(tn)))∆Wn)+

m−1

∑
n=0

Ξn. (4.22)

Now, taking expectation and using the properties of conditional mathematical expecta-
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tion and martingale give

1
2

E

[
∥θm∥2

]
+

1
4

E

[m−1

∑
n=0

∥θn+1−θn∥2
]
+CE

[ m

∑
n=1

|||θn|||2∆t
]

≤2E

[m−1

∑
n=0

∥ρn+1−ρn∥2
]
+E

[m−1

∑
n=0

(
E
[
ρn+1−ρn|Ftn

]
,θn
)]

+E

[m−1

∑
n=0

∆t( f (un+1
h )− f (Rhu(tn+1)),θn+1)

]
+E

[m−1

∑
n=0

∥ f (Rhu(tn+1))− f (u(tn+1))∥2∆t
]
+2E

[m−1

∑
n=0

∥(g(un
h)−g(u(tn)))∆Wn∥2

]
+CE

[m−1

∑
n=0

∥θn+1∥2∆t
]
+E

[m−1

∑
n=0

Ξn
]

. (4.23)

Together with (2.4), an application of the Itô isometry results in

E

[m−1

∑
n=0

∆t( f (un+1
h )− f (Rhu(tn+1)),θn+1)

]
+E

[m−1

∑
n=0

∥(g(un
h)−g(u(tn)))∆Wn∥2

]
=E

[m−1

∑
n=0

∆t( f (un+1
h )− f (Rhu(tn+1)),θn+1)

]
+E

[m−1

∑
n=0

∥(g(un
h)−g(u(tn)))∥2∆t

]
≤CE

[m−1

∑
n=0

∥θn+1∥2∆t
]
+E

[m−1

∑
n=0

(
C∥θn−ρn∥2∆t

)]
≤CE

[ m

∑
n=0

∥ρn∥2∆t
]
+CE

[m−1

∑
n=0

∥θn∥2∆t
]
+CE

[m−1

∑
n=0

∥θn+1∥2∆t
]

. (4.24)

By virtue of the definition of f and Hölder’s inequality, we arrive at

E

[m−1

∑
n=0

∥ f (Rhu(tn+1))− f (u(tn+1))∥2∆t
]

=∆t
m−1

∑
n=0

E

[∥∥∥ρn+1
(

u(tn+1)
2+u(tn+1)Rhu(tn+1)+(Rhu(tn+1))

2−1
)∥∥∥2

]
≤C∆t

m−1

∑
n=0

E

[
∥u(tn+1)

2+u(tn+1)Rhu(tn+1)+(Rhu(tn+1))
2−1∥2

L∞(D)∥ρn+1∥2
]

≤C∆t
m−1

∑
n=0

(
E
[
∥u(tn+1)∥6

L∞(D)+∥Rhu(tn+1)∥6
L∞(D)+1

]) 2
3
(

E
[
∥ρn+1∥6]) 1

3

≤C∆t
m−1

∑
n=0

(
Φ(u)

) 2
3
(

E
[
∥ρn+1∥6]) 1

3
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with
Φ(u) :=E

[
∥u(tn+1)∥6

L∞(D)+∥Rhu(tn+1)−u(tn+1)∥6
L∞(D)+1

]
.

With the aid of the triangle inequality and the Sobolev embedding H2(D) ↪→ L∞(D) for
d≤3, we derive

Φ(u)≤E
[
∥u(tn+1)∥6

L∞(D)

]
+E

[
sup
K∈Th

∥Rhu(tn+1)−Phu(tn+1)∥6
L∞(K)

]
+E

[
∥Phu(tn+1)−u(tn+1)∥6

L∞(D)

]
+1

≤E
[
∥u(tn+1)∥6

H2(D)

]
+E

[
sup
K∈Th

∥Rhu(tn+1)−Phu(tn+1)∥6
L∞(K)

]
+E

[
∥Phu(tn+1)−u(tn+1)∥6

L∞(D)

]
+1. (4.25)

In view of Lemmas 4.2, 4.3 and 4.5, we further get

Φ(u)≤E
[
∥u(tn+1)∥6

H2(D)

]
+CE

[
sup
K∈Th

h−3d
K ∥Rhu(tn+1)−Phu(tn+1)∥6

L2(K)

]
+E

[
∥Phu(tn+1)−u(tn+1)∥6

L∞(D)

]
+1

≤E
[
∥u(tn+1)∥6

H2(D)

]
+CE

[
sup
K∈Th

h−3d
K ∥Rhu(tn+1)−u(tn+1)∥6

L2(K)

]
+CE

[
sup
K∈Th

h−3d
K ∥Phu(tn+1)−u(tn+1)∥6

L2(K)

]
+E

[
∥Phu(tn+1)−u(tn+1)∥6

L∞(D)

]
+1

≤E
[
∥u(tn+1)∥6

H2(D)

]
+CE

[
sup
K∈Th

h−3d
K h6min(r+1,κ)∥u(tn+1)∥6

Hκ(K)

]
+CE

[
sup
K∈Th

h−3d
K h6min(r+1,κ)∥u(tn+1)∥6

Hκ(K)

]
+Ch12−3dE

[
∥u(tn+1)∥6

H2(D)

]
+1

≤E
[
∥u(tn+1)∥6

H2(D)

]
+CE

[
sup
K∈Th

∥u(tn+1)∥6
Hκ(K)

]
+Ch12−3dE

[
∥u(tn+1)∥6

H2(D)

]
+1

≤CE
[
∥u(tn+1)∥6

H2(D)

]
+CE

[
∥u(tn+1)∥6

Hκ(D)

]
+1<∞. (4.26)

As a consequence, we have

E

[m−1

∑
n=0

∥ f (Rhu(tn+1))− f (u(tn+1))∥2∆t
]
≤C

m−1

∑
n=0

(
E
[
∥ρn+1∥6]) 1

3 ∆t. (4.27)
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Substituting (4.24) and (4.27) into (4.23) ends the proof.

Lemma 4.9. Under the same conditions of Lemmas 2.1 and 2.3, there exist two positive numbers
ε1 and ε2 such that

E

[
m−1

∑
n=0

Ξn

]
≤C∆t+ε1E

[ m

∑
n=1

|||θn|||2∆t
]

+C∆tE
[m−1

∑
n=0

∥θn+1∥2
]
+ε2E

[m−1

∑
n=0

∥θn+1−θn∥2
]

. (4.28)

Proof. Note that

E

[m−1

∑
n=0

Ξn
]
=E

[m−1

∑
n=0

Ξn
1

]
+E

[m−1

∑
n=0

Ξn
2

]
+E

[m−1

∑
n=0

Ξn
3

]
:=R1+R2+R3.

By the same argument as that in Lemma 4.7 of [46], we have

R1≤C∆t+ε1E

[ m

∑
n=1

|||θn|||2∆t
]

, (4.29)

and

R3≤C∆t+ε2E

[m−1

∑
n=0

∥θn+1−θn∥2
]

. (4.30)

For the term R2, applying the Cauchy–Schwarz inequality, Young’s inequality and Lemma
2.3 gives

R2≤E

[m−1

∑
n=0

∫ tn+1

tn

∥ f (u(tn+1))− f (u(s))∥∥θn+1∥ds
]

≤C
m−1

∑
n=0

∫ tn+1

tn

E
[
∥ f (u(tn+1))− f (u(s))∥2

]
ds+CE

[m−1

∑
n=0

∫ tn+1

tn

∥θn+1∥2ds
]

≤C∆t+C∆tE
[m−1

∑
n=0

∥θn+1∥2
]

. (4.31)

Combining (4.29)-(4.31) completes the proof.

Lemma 4.10 ([46]). Under the same conditions of Lemma 2.1, the following estimate holds:

E

[m−1

∑
n=0

∥ρn+1−ρn∥2
]
≤Ch2min{r+1,κ}. (4.32)
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Lemma 4.11 ([46]). Under the same conditions of Lemma 2.2, we have the following estimate

E

[m−1

∑
n=0

(
E
[
ρn+1−ρn|Ftn

]
,θn
)]

≤Ch2min{r+1,κ}+CE

[m−1

∑
n=0

∥θn∥2∆t
]

. (4.33)

Theorem 4.2. Suppose Assumptions 2.1 and 2.2 hold, and

u∈CF

(
[0,T];L6(Ω,Hκ(D)

))⋂
L6

F

(
(0,T);Hκ+1(D)

)⋂
L2

F

(
(0,T);H2+κ(D)

)
, κ≥2.

Then there exists a constant C independent of the mesh size h and the time step ∆t, such that

sup
0≤n≤M

E
[
∥θm∥2]+CaE

[
M

∑
n=0

|||θn|||2∆t
]
≤C∆t+Ch2min{r+1,κ}. (4.34)

Proof. By substituting (4.28), (4.32), and (4.33) into (4.17), we deduce

1
2

E

[
∥θm∥2

]
+

1
4

E

[m−1

∑
n=0

∥θn+1−θn∥2
]
+CaE

[ m

∑
n=1

|||θn|||2∆t
]

≤Ch2min{r+1,κ}+C∆t+CE

[m−1

∑
n=0

∥ρn+1∥2∆t
]
+CE

[m−1

∑
n=0

∥ρn∥2∆t
]

+CE

[m−1

∑
n=0

∥θn∥2∆t
]
+CE

[m−1

∑
n=0

∥θn+1∥2∆t
]

+ε1E

[ m

∑
n=1

|||θn|||2∆t
]
+ε2E

[m−1

∑
n=0

∥θn+1−θn∥2
]

. (4.35)

Choosing ∆t, ε1, and ε2 such that 1
2 −C∆t>0, ε1=

1
2 Ca, and 1

4 −ε2>0 gives

E

[
∥θm∥2

]
+CaE

[ m

∑
n=1

|||θn|||2∆t
]

≤Ch2min{r+1,κ}+C∆t+CE

[ m

∑
n=0

∥θn∥2∆t
]

. (4.36)

With the discrete Gronwall inequality in Lemma 4.6, we complete the proof.

4.4 Proof of Theorem 4.1

In this subsection, we are going to prove our main result concerning the strong optimal
error estimates for the proposed fully discrete Scheme 3.1.
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Proof. Note that en = un
h−u(tn) = θn−ρn. With the help of the triangle inequality, we

achieve that

E
[
∥en∥2]+h2CE

[
M

∑
n=0

|||en|||2∆t
]

=E
[
∥θn−ρn∥2]+h2CE

[
M

∑
n=0

|||θn−ρn|||2∆t
]

≤2E
[
∥θn∥2]+2E

[
∥ρn∥2]+2h2CE

[
M

∑
n=0

|||θn|||2∆t
]

+2h2CE

[
M

∑
n=0

|||ρn|||2∆t
]

. (4.37)

Based on Lemma 4.2 and Theorem 4.2, it follows that

E
[
∥en∥2]+h2CE

[
M

∑
n=0

|||en|||2∆t
]

≤C∆t+Ch2min{r+1,κ}+h2CE
[
∥ρn∥2]+h2CE

[
M

∑
n=0

|||ρn|||2∆t
]

≤C∆t+Ch2min{r+1,κ}. (4.38)

This result gives the desired error bound in Theorem 4.1.

5 Numerical results

In this section, we first present the accuracy testing to support the theoretical results and
then provide the mergence of four bubbles and the phase separation tests to demonstrate
the effectiveness of Scheme 3.1 for solving the SAC equation (1.1)-(1.3).

Convergence tests

The computational domain in the following tests is chosen to be a unit square D=[0,1]2.
The numerical tests are performed on a sequence of discretizations with respect to the
time step ∆t in time and the spatial mesh size h in space. Since the exact solution of (1.1)-
(1.3) is unknown, we approximate the stochastic L2 error by the average of a family of
path-wise solutions with {ωi ∈Ω}M

i=1 as

(e[un
h ])

2 :=E[∥u(tn)−un
h∥2]≈ 1

M

M

∑
i=1

∥un
h(ωi)−un

ref(ωi)∥2, (5.1)

where {un
ref(ωi)} refer to the reference solutions and are specified on finest mesh.
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Figure 1: Errors and convergence rates of Case 1.

The configurations of the numerical tests are summarized as follows. The number
of samples {ωi}M

i=1 is taken as M = 1000. For the temporal convergence tests, we first
generate M discrete W(t) with sufficiently small ∆tref = 1/210, see [24]. The discontinu-
ous Galerkin Scheme 3.1 equipped with P2 discontinuous polynomial space on Th and
h = 1/26 is checked on a sequence of time discretizations with time step ∆t = 1/2k,k =
3,4,5,6,7. For the spatial convergence tests, we take time step ∆t= 10−10. We then em-
ploy a sequence of uniform triangulations {Th} in space with h=1/2k, k=2,3,4,5,6 and
a fixed small time step ∆t= 10−10. The reference solution uref is taken as the numerical
solution on the finest discretization with href=1/27 and ∆tref=10−10. The discontinuous
Galerkin Scheme 3.1 with P1 and P2 discontinuous polynomial bases is further carried
out to confirm the accuracy, respectively.

• CASE 1. In the first test, we consider the following stochastic Allen-Cahn equation
with ϵ= 1, in which the multiplicative noise term consists of the sine function and one
dimensional standard Wiener process as

du−∆udt= f (u)dt+sin(u)dW (5.2)

with an initial condition u(0,x)=sin2(πx)sin2(πy).
We present the computational results of Case 1 in Fig. 1 which illustrates the conver-

gence errors and rates. The left plot of Fig. 1 shows time convergence tests of Scheme
3.1 at tN = 1 from which we see that the optimal convergence rates is 0.5 in time. The
space convergence information at tN =1000×10−10 is given in the right of Fig. 1. We see
that the L2 optimal convergence rates 2, 3 for P1, P2 discontinuous polynomial bases in
space are both numerically obtained, respectively. The computational results are what
we expected.

• CASE 2. To further verify the accuracy of Scheme 3.1, in this test, we set the multiplica-
tive noise comprised of the sigmoid function as

du−∆udt= f (u)dt+
2

1+e−u dW. (5.3)
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Figure 2: Errors and Convergence rates of Case 2.

The initial condition is further chosen as a polynomial function u(0,x)=10x2y2(1−x)2(1−
y)2 and the other settings are the same as those in Case 1.

It can be checked that the sigmoid function satisfies the requirement of Assumption
2.1 in our theoretical analysis. The computational results of Case 2 are given in Fig. 2.
From Fig. 2, we see that the spatial convergence rates are 2, 3 for the P1 and P2 discon-
tinuous polynomial bases, respectively. The optimal order of convergence 0.5 in time is
also numerically obtained. In conclusion, the simulation results of Cases 1 and 2 are both
consistent with our theoretical results and further verify our theoretical result in Theorem
4.1.

Mergence of four bubbles

Referring to [35, 40], we consider the stochastic Allen-Cahn equation on D=[0,1]2 as

du−∆udt=
1
ϵ2 (1−u2)udt+

γ

ϵ2 (1−u2)udW, (5.4)

where the diffusion coefficient ϵ=0.02 and the initial condition is given as

u0(x,y)=−tanh(((x−0.3)2+y2−0.22)/ϵ)tanh(((x−0.3)2+y2−0.22)/ϵ)

×tanh((x2+(y−0.3)2−0.22)/ϵ)tanh((x2+(y−0.3)2−0.22)/ϵ).

To examine the influence of the noise perturbation to (5.4), we set four different γ=0,1.8×
10−2, 1.4×10−2 and 1.0×10−2, respectively. To carry out the tests, the P2 discontinuous
Galerkin space is used with 4096 uniform triangle elements and time step ∆t=10−4. For
the case with γ=0, model (5.4) reduces to the deterministic Allen-Cahn equation. Fig. 3
illustrates the simulation results at different time instants t̄1=0, t̄2=7×10−3, t̄3=9×10−3

and t̄4=5×10−2. From Fig. 3, we see that computational results are consistent with those
in [35].

The stochastic cases are presented in Fig. 4 with Monte Carlo simulation number
M=100. The evolution results shown in Figs. 4(a)-4(d) are obtained with γ̄1 =1.8×10−2
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(a) t= t̄1 (b) t= t̄2 (c) t= t̄3 (d) t= t̄4

Figure 3: Evolution of the deterministic AC for the mergence of four bubbles.

(a) γ= γ̄1, t= t̄1 (b) γ= γ̄1, t= t̄2 (c) γ= γ̄1, t= t̄3 (d) γ= γ̄1, t= t̄4

(e) γ= γ̄2, t= t̄1 (f) γ= γ̄2, t= t̄2 (g) γ= γ̄2, t= t̄3 (h) γ= γ̄2, t= t̄4

(i) γ= γ̄3, t= t̄1 (j) γ= γ̄3, t= t̄2 (k) γ= γ̄3, t= t̄3 (l) γ= γ̄3, t= t̄4

Figure 4: The averaged evolution of stochastic Allen-Cahn equations with different γ̄1 = 1.8×10−2, γ̄2 =
1.4×10−2 and γ̄3 =10−2 for the mergence of four bubbles.

followed by γ̄2 = 1.4×10−2 and γ̄3 = 10−2. Fig. 4 shows that the initial states with four
bubbles are gradually merging into a single bubble with time evolution for the three dif-
ferent cases. The computational results also show that the magnitude of stochastic phase
field decays faster with larger noise perturbation. From Figs. 4(i)-4(l), we see that the
stochastic Allen-Cahn model (5.4) approaches to the deterministic cases with sufficiently
small noise perturbation.
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Phase separation

The deterministic Allen-Cahn equation is commonly used as coarsening dynamics for
simulating certain phase separation [35]. To see the phenomenon of the phase sepa-
ration related to the stochastic Allen-Cahn equation, by referring to [40], we consider
the stochastic Allen-Cahn equation (5.4) with an initial condition given as u0(x,y) =
0.1×rand(x,y) where ‘rand’ is a uniform random generator in [−1,1]. In all the follow-
ing computation, the initial condition u0 is fixed and depicted in Fig. 5. We further set
the parameters ϵ= 10−2, ∆t= 10−5. The domain D= [0,1]2 is divided into 4098 uniform
triangles and the P2 discontinuous Galerkin space is used in the simulations.

The deterministic Allen-Cahn equation with γ= 0 in (5.4) is first investigated as ref-
erence states. The related simulation results at time instants t̃1 = 10−4, t̃2 = 5×10−4,
t̃3 = 8×10−4 and t̃4 = 10−3 for the deterministic case are listed in Fig. 6. As seen from
Fig. 6, the phase separation patterns with the time evolution are gradually apparent from
Fig. 6(a) to Fig. 6(d).

To investigate the coarsening dynamics of the stochastic Allen-Cahn equation, four
sets of numerical tests are performed with different γ, i.e., γ̃1 = 10−1, γ̃2 = 10−2, γ̃3 =
5×10−3 and γ̃4=10−3 in (5.4) and M=100 simulations are then done for each case. Figs. 7
and 8 show the evolution of the averaged phase states. As can be seen for the case with

Figure 5: The initial condition.

(a) t= t̃1 (b) t= t̃2 (c) t= t̃3 (d) t= t̃4

Figure 6: Evolution of the deterministic Allen-Cahn equation for phase separation.
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(a) t= t̃1 (b) t= t̃2 (c) t= t̃3 (d) t= t̃4

Figure 7: The averaged evolution of stochastic Allen-Cahn equation with γ̃1 =10−1 for phase separation.

(a) γ= γ̃2, t= t̃1 (b) γ= γ̃2, t= t̃2 (c) γ= γ̃2, t= t̃3 (d) γ= γ̃2, t= t̃4

(e) γ= γ̃3, t= t̃1 (f) γ= γ̃3, t= t̃2 (g) γ= γ̃3, t= t̃3 (h) γ= γ̃3, t= t̃4

(i) γ= γ̃4, t= t̃1 (j) γ= γ̃4, t= t̃2 (k) γ= γ̃4, t= t̃3 (l) γ= γ̃4, t= t̃4

Figure 8: The averaged evolution of stochastic Allen-Cahn equations with different γ̃2 = 10−2, γ̃3 = 5×10−3

and γ̃4 =10−3 for phase separation.

γ̃1 = 10−1 in Fig. 7, the computational solutions of the stochastic Allen-Cahn equation
are going to blow up with time evolution, which implies that the larger perturbation of
the noise term will completely destroy the properties of the original deterministic case.
Then we downgrade the magnitude of the noise terms by setting γ from 10−2 to 10−3.
The correspondingly computational results are depicted in Fig. 8. Figs. 8(a)-8(d) illus-
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trate the phase states with γ̃2=10−2, from which it can be seen that the phase separation
boundaries are relatively fuzzy. Fortunately, the outline of the phase separation can be
roughly distinct. As we further decrease the parameter γ to 5×10−3 and 10−3, the mi-
gration of the phase boundaries can be apparently observed as shown in Figs. 8(e)-8(l),
which means that the stochastic Allen-Cahn equation with small noise perturbation can
keep the properties of coarsening dynamics as the case of the deterministic Allen-Cahn
equation.

6 Conclusions

In this work, a fully discrete SIPG scheme for stochastic Allen-Cahn equation driven by
multiplicative noise is rigorously studied. The space discretization is performed by sym-
metric interior penalty discontinuous Galerkin finite element method and the implicit
Euler method is used for temporal discretization. Error estimates for the proposed nu-
merical scheme are established and optimal strong convergence rates in both space and
time are recovered. The numerical results concord well with our theoretical findings.
Based on the techniques developed in this paper, the other types of DG methods such as
NIPG, IIPG, etc., can be further studied.
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