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Abstract. In this study, we propose a blend of the average of THINC-EM and MUSCL
(ATM) methods based on the AUSMD scheme for solving detonation wave problems.
It is well known that the simulation of the detonation problems can produce incorrect
shock information or strong spurious due to the stiff source term. Accurate simulation
of detonation problems plays a crucial role in the design of detonation engines. The
proposed ATM method combines the MUSCL and THINC-EM methods with different
weighting functions, the optimized parameters of which are determined by the Q-
learning method in order to accurately capture detonation waves, shock waves, and
expansion fans. To validate the proposed numerical method, one and two-dimensional
shock tube and the detonation tube and nozzles are chosen as benchmark test cases.
Our numerical results show that the proposed the ATM type AUSMD scheme has
great potential for handling more complex detonation problems and pulse detonation
engine flow problems.
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1 Introduction

As demonstrated by numerous studies, the thermodynamic cycle of the engine driven by
a detonation wave is highly efficient [1-3]. During operation of detonation engines, the
detonation wave, which propagates at supersonic speed, typically transforms reactants
into products and releases energy, resulting in sudden and sharp jumps of the thermody-
namic states. It is noted that under certain conditions, the detonation wave propagates at
or near the Chapman-Jouguet (CJ) velocity, which is induced by the reactions associated
with shock waves and expansion fans within ducts or nozzles. There is a wide spectrum
of length scales and times in the collision of transverse waves caused by high pressure re-
gions and intensive reactions. However, it is not easy to observe the process of detonation
and understand the relevant scientific theories inside the internal reactive flows. Numeri-
cal simulation is often the most economical and effective way to study internal detonation
flows. The hyperbolic conservation laws are generally used in conjunction with the stiff
source terms to model the discontinuity fronts of the chemical reactive flows. However,
traditional schemes may produce spurious or incorrect wave information due to inho-



162 S.-I. Huang et al. / Commun. Comput. Phys., 36 (2024), pp. 160-199

mogeneous source terms, making it difficult to accurately capture discontinuities when
detonation waves occur (as first reported in [4]). Therefore, a precise numerical dissipa-
tion in the selected scheme is the necessary remedy for the spatial or time resolution of
discontinuities in the detonation problem calculations.

During the past decades, significant efforts have been put in to eliminate the spuri-
ous numerical solutions of the chemical reactive flow problems. These studies have re-
sulted in the development of modern schemes such as volume of fraction schemes [5-8],
level set schemes [9,10], and front tracking methods [11], which can track detonation
fronts or interfaces successfully. However, these methods can be challenging to combine
current shock-capturing schemes without losing conservation properties. In addition,
Chorin [12] proposed an analytical solution for discontinuities, and it can determine the
locations of reactive waves without requiring extra numerical viscosity. This approach
has been successful in resolving detonation problems. However, it is not easy to extend to
simulation of the complex flow problems. Yee et al. [13] discussed a simple scalar equa-
tion with the source term for understanding the behavior of numerical methods in re-
acting flow problems. MacCormack-type predictor-corrector methods with flux limiters
and splitting are proposed for the fluid dynamics and chemistry by solving the homo-
geneous conservation law as the convection step and the reaction step separately. Hezel
et al. [14] presented a modified fractional step method for detonation waves, and it uses
the exact Riemann solution to determine where burning should occur. Bao and Jin [15]
proposed a random projection method based on the fractional step method, which uses
a standard shock-capturing scheme in the convection step and performs a projection in
the reaction step to make the ignition temperature random. This method has been ap-
plied successfully to various problems in one- and two- dimensions, but it assumes an
a priori stiff source. In 2005, Xiao, Honma, and Kono [16] presented a practical and
straightforward numerical method for capturing the free boundary, and it was devised
using the hyperbolic tangent function. This method, also known as THINC (tangent of
hyperbola for interface capturing) [17], uses the hyperbolic tangent function to compute
the numerical flux for the fluid fraction function and gives a conservative, oscillation-
free, and smearing-free solution to the fluid fraction function even for very distorted
interfaces. In 2018, Deng et al. [18] proposed a new shock-capturing scheme to solve
stiff detonation wave problems. This method follows the sharp property of THINC to
reduce the dissipative effect of the MUSCL method [19] based on the idea of boundary
variation diminishing (BVD). It can significantly reduce the numerical dissipation errors,
thereby preventing the false calculation of the discontinuities or spurious waves prop-
agation speeds. By choosing the appropriate reconstruction polynomials from a given
set of polynomials, the BVD approach can reduce numerical dissipation by minimizing
jumps at the cell interfaces. As shown in [17], the degree of the discrepancy in the discon-
tinuities propagation speed is highly dependent on how shock-capturing schemes deal
with the discontinuities. The fundamental reason behind this spurious phenomenon is
that shock-capturing schemes introduce excessive numerical dissipation errors around
discontinuities. During the reconstruction process, a steplike tangent of hyperbola for
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interface capturing (THINC) function has been applied in many numerical approaches
and models as evident in [20,21]. The final reconstruction function effectively removes
the numerical dissipations. The resulting scheme is referred to as MUSCL-THINC-BVD.

Reinforcement learning is a computational approach to understanding and automat-
ing goal-directed learning and decision-making. It differs from other computational ap-
proaches as it emphasizes an individual’s learning from direct interaction with his/her
environment without relying on exemplary supervision or a complete model of the en-
vironment. Reinforcement learning is the first to seriously address the computational
problems that arise when learning from interactions with the environment to achieve
long-term goals. In the recent years, it has gained significant attention in the machine
learning (ML) and artificial intelligence communities. In a 2020 paper, Frank et al. [22]
examined how ML can be used to accelerate or enhance the accuracy of simulation tech-
niques such as computational fluid dynamics, molecular dynamics, and structural anal-
ysis. They have also investigated the potential of ML in generating computationally ef-
ficient surrogate models of physical systems, which could potentially eliminate the need
for more costly simulation techniques.

Several advances have been observed for the WENO scheme in the recent years
through the use of ML techniques. In 2019, Wang et al. [23] were the first to view nu-
merical PDE solvers as a Markov Decision Process (MDP) and use reinforcement learn-
ing (RL) to learn new solvers, with a focus on solving 1D Scalar Conservation Laws. In
2021, Kossaczka et al. [24] improved the accuracy of the well-known fifth-order WENO
shock-capturing scheme using deep learning techniques. Recently, in 2022, Way et al. [25]
introduced Backpropagation Through Time and Space (BPTTS), a method that trains a
recurrent spatiotemporal neural network, and is used in a homogeneous multi-agent re-
inforcement learning (MARL) setting to learn numerical methods for hyperbolic conser-
vation laws.

There are also several developments for the MUSCL scheme in recent years through
the use of ML techniques. In 2017, Singh et al. [26] proposed a modeling paradigm that
aimed to improve the accuracy of predictive models for turbulence by effectively utiliz-
ing limited data obtained from physical experiments. In 2020, Grimberg et al. [27] applied
ML to reduce the complexity of CFD models for turbulent flows. In 2021, Meuris et al. [28]
proposed a method that combined deep neural networks and spectral methods to solve
partial differential equations (PDEs). They used Deep Operator Network (DeepONet),
a deep learning approach, to identify suitable functions to expand the solution of PDEs.
Most recently, in 2022, Schwarz et al. [29] developed a new slope limiter based on deep
learning and reinforcement learning techniques. The limiter satisfies several admissibil-
ity constraints to ensure the accuracy of the solution, including positivity and adherence
to a relaxed discrete maximum principle.

The class of methods for solving optimal control problems by solving this equation
is known as dynamic programming [30]. In 1957, Bellman [31] also introduced the dis-
crete stochastic version of the optimal control problem known as Markovian decision
processes (MDPs). In 1960, Ron Howard [32] devised the policy iteration method for
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MDPs. These are all essential elements underlying the theory and algorithms of modern
reinforcement learning.

Dynamic programming is widely considered to be the only feasible method for solv-
ing general stochastic optimal control problems. It suffers from what Bellman called
the “curse of dimensionality”, where the computational requirements grow exponen-
tially with the number of state variables. Despite this, it is still more efficient and
widely applicable than any other general method. Since the late 1950s, dynamic pro-
gramming has been extensively developed, including extensions to partially observable
MDPs [33], many applications (including those surveyed by White [34-36] in 1985, 1988,
and 1993), approximation methods (including those surveyed by Rust [37] in 1996), and
asynchronous methods (including those surveyed by Bertsekas [38,39] in 1982 and 1983).

Another thread that led to the modern field of reinforcement learning is centered on
the idea of trial-and-error learning. This thread began in psychology, where “reinforce-
ment” learning theories are common. The first person to succinctly express the essence of
trial-and-error learning was Edward Thorndike. He proposed the idea that good or bad
outcomes following an action tend to be reselected and changed accordingly in a process
he referred to as the "Law of Effect.” This law describes the impact of reinforcing events
on the tendency to select actions. Although sometimes controversial [40-42], the Law of
Effect is widely regarded as a basic principle underlying such behavior [43—46].

The Law of Effect includes the two most important aspects of trial-and-error learning.
Firstly, it is selective, which means that it involves trying alternatives and choosing by
comparing their consequences. Secondly, it is associative, meaning that the alternatives
found by selection are relevant to a particular situation. Natural selection in evolution is
a classic example of a selection process, but it is not associative. Supervised learning is
associative, but not selective. The combination of these two is critical to the law of effects
and trial-and-error learning. Another way of saying this is that the Law of Effect is the
fundamental way of combining search and memory: search in the form of trying and
selecting among many actions in each situation, and memory in the form of remembering
which actions worked best, associating them with the situations in which they were the
best. Combining search and memory in this way is essential for reinforcement learning.

In the early days of artificial intelligence (Al), before it was distinguished from other
branches of engineering, some researchers explored trial-and-error learning as an engi-
neering principle. The earliest computational investigations of trial-and-error learning
were perhaps by Minsky [47] as well as Farley and Clark [48], both in 1954. Minsky dis-
cussed the computational models of reinforcement learning and described his construc-
tion of an analog machine composed of components which he called SNARCs (Stochastic
Neural-Analog Reinforcement Calculators). Farley and Clark described another neural-
network learning machine designed to learn by trial and error. In the 1960s, the terms
“reinforcement” and “reinforcement learning” were used in the engineering literature
for the first time in [48-50]. Minsky’s paper “Steps Toward Artificial Intelligence” [51]
was particularly influential.

The third thread to the history of reinforcement learning is related to temporal-
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difference learning. Temporal-difference learning methods are distinctive as they are
driven by the difference between temporally successive estimates of the same quantity.
This thread is smaller and less distinct than the other two, but it has played a particularly
important role in the field. It is partially because temporal-difference methods seem to
be new and unique to reinforcement learning.

Finally, in 1989, Chris Watkins’s [52] development of Q-learning fully brought to-
gether the temporal-difference and optimal control threads. This work extended and
integrated all three main lines of prior efforts in reinforcement learning research. In 1987,
Paul Werbos [53] also contributed to this integration by arguing for the convergence of
trial-and-error learning and dynamic programming. By the time Watkins was working,
reinforcement learning research had evolved significantly, primarily within the ML sub-
field of Al, but also more broadly within neural networks and Al Over the past few
years, the Q-learning Q-table learning algorithm has become increasingly popular due to
its success in addressing challenging sequential decision-making problems. Previous Q-
learning Q-table learning algorithm approaches faced a difficult design issue in terms of
feature choice. However, the Q-learning Q-table learning algorithm has been successful
in complicated tasks with lower prior knowledge due to its ability to learn different levels
of abstractions from data. This opens up the possibility to mimic some human problem-
solving capabilities, even in high-dimensional space which, only a few years ago, was
difficult to conceive.

Reinforcement learning (RL) has gained attention due to its low computation cost and
excellent energy-saving performance. However, the potential of RL has not yet been fully
realized in computational fluid dynamics (CFD) applications because it can be difficult
to design targets. This paper presents a study on the use of less dissipative interface
variable reconstruction to solve the Euler equations via the Q-learning method with op-
timized parameters. The aim is to accurately capture discontinuous planes. In the recent
years, Q-learning has been used to solve various problems, including the simultaneous
online optimization of energy efficiency and battery life in battery/ultracapacitor electric
vehicles (Xu et al. [58]), prediction of wind speed (Kosana et al. [59]), and permutation
flow shop scheduling problems (He et al. [61]). Suratkar et al. [62] also presented a hon-
eypot system that conducts a severity analysis of adversaries who attack it. Q-learning
show its effectiveness in solving these problems, so it is a promising method to consider
for use in CFD applications. In the following section, the paper would compare the accu-
racy of MUSCL, THINC, and the proposed three versions of ATM (Average of Thinc and
MUSCL) methods. In the numerical verification, the Q-learning of the enforce learning
was used to decide the weighing parameter in the proposed ATM method on the reso-
lution of one-dimensional blast wave problem as compared to the reliable results. Then,
the optimized weighting factor in the proposed ATM methods will extend to compute the
benchmark test case of a two-dimensional detonation tube. Finally, the single-tube and
multi-tube pulse detonation problems would be performed for complicated simulation
of complex shock waves, slip lines and detonative waves in the unsteady state.
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2 Governing equations

2.1 Numerical models

The problem of the detonation tube in the current study can be described by an ideal gas,
unsteady, compressible fluids. The 2D stiff Euler equation with source term as in [1, 2]

can be written as:
dQ OJE OJF 1

§+$+@=8—¢(U), (21)
where
P pu
pu pu’+p
U=|pv |, EU)= puv ,
per (per+p)u
Z Z
P P (2.2)
0o 0
puv 0
F)=| p?+p |, p(U)= 0 ,
(et +p)o 0
pvZ —LpzH(T-Tp)

where U, E, F and 1 denote the column vectors of the conserved variables, convective
flux vectors E and F, and source term, respectively.
The pressure p can be obtained through equations of state:

1 1
p=(v=1)(pe;- Sput == pv° ~q0pZ), (2.3)

where p is the fluid density, u is fluid velocity, e; is the energy, Z is the fraction of un-
reacted fluid, g is the chemical heat release, € is the reaction time, r is the specific heat
ratio, Ty is ignition temperature, p is the pressure, T is the temperature. The p fluid den-
sity is chosen as the main parameter for computing the reward in connection with the
Q-learning Q-table algorithm. The method of setting the reward score will vary depend-
ing on the specific case and goal, and will be explained in more detail in the following
chapters.
Where H(x)=1 for x>, and H(x) =0 for x <0. More detail can be found in [15].

2.2 Numerical method

For the sake of simplicity, the numerical procedure is presented in one dimension. How-
ever, this method can be easily extended to multi-dimensions on structured grids through
a dimension-wise reconstruction process. It is well-known that the numerical simulation
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of the considered flows not only requires the avoidance of spurious numerical oscilla-
tions, but also accurate resolution of stationary contact discontinuities. In this study, we
compare three different sharp interface algorithms: MUSCL, THINC-EM, and the pro-
posed method, ATM. The proposed ATM method aims to reconstruct the solution func-
tions so that the jumps at cell boundaries are minimized, which effectively reduces the
numerical dissipation in the resulting schemes. Before the spatial discretization, the time
evolution is replied on the Strang splitting suggested in [13]. In the current numerical
simulation inside a PDE’s single and multiple nozzle tubes, the primary challenge in the
simulation of the detonation waves inside a nozzle tube is due to the chemical time scale
problem and the detonation velocity initial condition. The chemical time scale may be
orders of magnitude faster than the fluid dynamical time scale, making the problem nu-
merically stiff. To solve it, we apply the Strang Splitting Method which is by Yee [13] to
overcome the time scale problem in the detonation wave problem. The Strang splitting
takes the form as

U™ =5, (k)S¢(k)Sy(k/2)U™. (2.4)

To maintain second-order accuracy, the Strang splitting can be used, in which the U"*1 is
computed from U" by

U™ =8y (k/2)Ss(k)Sy(k/2)U". (2.5)

A split version of the method studied might take the form:

N A L1 :
Sp(k/2): [I—Zkz,b <Uj>]All =Sk (U]), (2.6)
U =ur+AaUs, 2.7)
k * *
Spk): AU == (F(U) = f(UF)), (28)
u =ur+au, (2.9)
k
AU == (fufn)-fu), (210
@ _ o LA )
U = U+ (AU +au), 2.11)
oY@ 2 1 2
Sy(k/2): [1 Jkw (uj )]AU = Sky(Up), (2.12)
st =u®+au?, (2.13)

where U is the conservation value, and the S, (k/2) is the operator means to calculate
the source term in a half of time step, and S¢(k) is to calculate the flux term. The main
ideal to calculate the flux by S (k) is using the MacCormack’s method. The method is
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easily modified to include source terms in an explicit manner and maintain second-order
accuracy.

First, the extended Euler equations in conservation form and source term can be
solved by the explicit conservative scheme as

At [ sl nsd
upet—up— 22 (BB ) vy, (214)

Then, we can perform the third-order accurate Runge-Kutta (RK) methods with a con-
stant time step. It can be

ut=ur—crL(um), (2.15)
3 n 1.1 1
2__ Y - - 1
w=2u +3U 4cL(LI), (2.16)
1." 2.2 2
uUrtl=-u +zu —=ZcL(U?), 2.17
U +3U —3cL (W) (2.17)

where L is the calculation of the flux and source term defined by

1 1
L(F,H)= (P;f; —F."+12> — AxH!. (2.18)

And,

At CFL
=— - == 2.19

Ax  max|u+a| (2.19)
where CFL is the Courant Friedrichs Lewy number and a is the speed of sound. In addi-
tion, the CFL number must be set less than 0.1.

For the spatial discretization of F, Y the primitive variables on the cell interface

are determined through the second-order or third-order spatial accurate type MUSCL,
THINC-EM, and ATM method. In this study; it is found that there is no noticeable dif-
ference between solutions obtained from second- or third-order schemes. Only results
obtained via the interpolation with the third-order spatial accuracy are presented. The
three-order accurate MUSCL, THINC-EM and ATM methods to reconstruct the conser-
vation term and resolve discontinuous solutions with more numerical dissipation effects.
Once the primitive variables on the left side and the right side of the cell interface are
determined. Interpolation methods are used to determine the values of left and right

side at interface UiL+1 and Uﬁ , from primitive variable for reconstruction by U. Then it
2 7

uses those values to calculate the flux. The values of left and right side at interface Uﬁr 1
2

and LIl.R_ , at cell interfaces are computed from the reconstruction functions in cell C;. The

detail formula of each schemes will be presented in the following sections.



S.-I. Huang et al. / Commun. Comput. Phys., 36 (2024), pp. 160-199 169

In the first part, we introduce the MUSCL scheme which the simplest possible recon-
struction of the data is piecewise constant. The interfacial values at meshes by MUSCL
function can be appeared as

uiLJ;A;/;usCL:ui—i—i [(1—;7)0(%%,@*%) +(1+n)a(Ai+%,Ai7%>}, (2.20)

uB'Af”SCL:ui—i [(1—q)a(Ai+%,Ai_%) +(1+17)0<Ai+%,Ai_%>], (2.21)

=3
where 7 is the value defined the spatial order of accuracy, ¢ is the function of a slope

limiter defined at

(8 ) 8 v

i+’ i*%) B (A2, +A7 | +20)] ’

(2.22)

with
Ay =Ui=U;, Ay =Ui=Uy, (2.23)

and w=10"°. We use a constant value of three-order upwind-biased scheme 17 =1 to sim-
ulate the example and calculate the function. In addition, when # = —1 the second-order
upwind bias scheme can be obtained. We denote the reconstructed value at cell inter-
faces from MUSCL reconstruction as uzL+ lMUSCL and LIiIi’ lMUS L. The MUSCL scheme
has more numerical dissipation and is pai‘tial to smear out flow structures despite use
widely in various numerical models. It is maybe a fatal fault in solving interfacial multi-
component flows.

In the THINC-EM method as in [20], the tangent hyperbola function is used as a
model function for a discontinuous volume fraction within a mesh cell. In principle,
however, any model function U(x) that can connect two states U;_1 and U; 1 in a mono-
tone, compact fashion, such that

L /x"*% U(x)dx, (2.24)
Ax X

2

can be used. The THINC-EM model proposed is considered, the function of the volume
fraction is represented as:

Ui(x) = u;ax [1+'ytanh (ﬁ(u—fD] (2.25)

Xiy1/2—Xi—1/2

where f3 is chosen by Q-learning in order to localize the discontinuity to be approximately
in one cell. One can determine the left / right state interpolations by considering the
integrated average value of the flux of material crossing a cell boundary, rather than just
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the end-states. This leads to another representation for left and right states, defined as
follows using THINC-EM:

1 x. 1—u., 1At

) — ity i+35 ) ‘ >

Uivy wi 1Bt Jx Hix)dx, tiyy 20, (2.26)
2

u 1 'xi+% 7”i+%At u P 507

R,i+%__ui+%At /x'+1 i+1(x)dx, ui+%<0. (2.27)
*3

Generalizing to an arbitrary cell interface, we have:

1
1 _
uR,Z._% =Upmin+ 5 Umax (1+7D7), (2.29)
with
1 tanh(p)+C .
+_ _ . _——_—— :
D" = ‘B(‘/i+% s In <cosh ([3Vl+%) T+ Ctanh(B) sinh (,BVZJF;>> , (2.30)
L 1 .
D= mln (cosh (fsm%) + Csinh (,BVFQ), (2.31)
(Ui —Umin+e€) >} 12
B=ex 22—~ 1|, e=1x10%, 2.32
p{vﬁ( (U t€) (2.32)
(cosﬁ( _1)
_ B)
= anh(3) " (2.33)
W11
Viti2= | 71+1/2 —l>+1/2‘ At, AX =X eiv1i— X (2.34)
|AX 1001 40|
and
Umin =min(Uj4q,Uj_1), (2.35)
umax = max(ui—l—l/ ui—l) - umin/ (236)
'y:sgn(lliﬂ—uz-_o. (237)

The pure THINC method may cause spurious pressure oscillations. In order to avoid
unnecessary numerical oscillations for detonation problem:s, it is essential to reconstruct
the solution functions in such a way that the jumps at cell boundaries are minimized.
This effectively reduces the numerical dissipation in the resulting schemes.

Here, we proposed a blend of an average of THINC-EM and MUSCL (ATM) differ-
ence to determine the right and left interfacial data, based on the weight functions, to
achieve reconstructed interfacial variables at cell interface. The weight functions of the
ATM method can be expressed in many ways as followings:
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ATM1:
C—
Uy, s ]—aJUﬁquL—l—(l—w)LIiTgT EM (2.38)
Pi1,j—2P;j+Pit1, )
w=MAX|1—« : - =1,0); 2.39
< Pi1j+2P;j+Piiq,) (2:59)
ATM2:
V=lo,u,0,p, (2.40)
THINC—EM
U, s ]—wuﬁuj@+(1— ;s , (2.41)
Vi1 —2Vi i+ Vigr e
w:MAX<1—oc‘ e M A7) ,0), (2.42)
Vie1,j+2Vij+ Vi1 +e

where w is a weighting factor of primitive variable gradients, when it is close to zero it
means the system is more like THINC-EM. Conversely when it is close to 1, it means the
system is more like MUSCL.

In addition, the ATM 3 suggested by Chiu et al. in [57] is evaluated. The ATM3 is
employed only when the following condition is satisfied:

ATM 3:

(Ui —U;)(U;—U;—1) >0. (2.43)

The face values evaluated by this scheme are modified as

u{;z wUPf%”SCL+ (1— )uf+7;H1NC, (2.44)
2 2

where UR , and llR ' are the face values reconstructed using MUSCL and THINC, re-

spectlvely, and the welghted function w is defined with a near zero parameter ¢ as

uL,MUSCL_uR,I}/IUSCL_'_S uL MUSCL uR MUSCL+

—1—mi T " i i3 . 2.46
“ mm Ui —Uj+e U—U;_1+e€ ( )

After deciding the interpolation method, the reconstructed values at cell boundaries are
used to evaluate the AUSMD Riemann solver [54-56]. The flux extrapolation of F" Y
2

based on AUSMD, is utilized to discretize the hyperbolic fluxes of mass, momentum, en-
ergy, and volume fraction equations. In this method, a primitive variable Riemann solver
in the AUSMD form is used to calculate the numerical fluxes across the interfaces of dis-
continuous flow structures. It is well-known that the basic idea behind the AUSM type
scheme is to split the numerical flux into a convection flux and a pressure flux. he pro-
posed flux difference method, used to evaluate the mass flux of the convection flux, can
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eliminate this surplus numerical dissipation at contact discontinuities. We applied the
Advection Upwind Splitting Method (AUSMD) without any additional dissipative terms
to simulate the numerical flux around the interfaces. The “D” denotes a flux-Difference-
splitting-biased scheme, which is used to calculate the correct flow velocity in each time
step.

It is possible to capture discontinuities in the form of weak solutions for hyperbolic
equations using high-resolution algorithms for conservation. However, it is important
to maintain high accuracy in spatial differences in these algorithms, as second-order ap-
proximations often result in spurious oscillatory solutions. This is especially relevant in
the simulation of fluid dynamics problems, where it is necessary to avoid entropy de-
crease in expansion waves due to the second law of thermodynamics. Linear numerical
dissipation terms with adjustable parameters have historically been used to address this
issue, but they are not effective when discontinuities are present, as they can cause nu-
merical instability and oscillations.

The original numerical flux of AUSMD is defined as

1
Evja=5[(et)r/2 (Y +¢r) = ()1 2] (Yr = 1) ]+ P12, (247)

where

1 1 0

u u

l/]L: Hi s l/]R: HI; 7 P1/2: plO/Z s

YL Yr 0
and

(pu)1/2=m1/2=0a1/2M1 /201 /R- (2.48)

The subscript “L/R” means the variables are chosen in an upwind manner. For example,
if M% >0, then p; /g =pr; otherwise p; /g =pr. The a1/, mean the speed of sound. Here

we simply use simple average as

ai/2 = (LZR—EIL). (249)

NI~

The Advection Upwind Splitting Method (AUSMD) has been demonstrated to possess
favorable properties such as high resolution for contact discontinuities and shock waves,
and conservation of enthalpy for single-phase flows in recent years. Based on this idea,
we propose that an analytic solution of a one-dimensional Riemann problem can be ap-
plied to the mass flux in AUSMD without the addition of any extra dissipative terms to
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simulate the numerical flux

[Crpr+Crpr+CrCr(ur—ur)],

|
I

1
Cr+Cr

u

C.aCx [CLur+Crur+(pL—pr)l, (2.50)

PL=pu+(P=pr)/aL,
Pr=pr+(P—pr)/a%.
Notice that in this linearized solution we only need to specify constant values for p and
a. Selecting some average of the data values pr,pr,ar,ar appears sensible
_ 1, _ _ 1
p=5L—Pr), =5 (ar—ag). (2.51)

In this approximation, we do not need to make a choice for the averages p and 7; their
values are replaced by data values at the foot of the corresponding characteristics. If
Cp = Cgr = pa, the approximations for the primitive variables on the both sides of the
material interface becomes

p*=5[pL+pr+(uL—ur)/pal,

=N

' =sur+ur+(pL—pr)/pal, (2.52)

pr=pL+(p"—pL)/aL,
Pr=Pr+(P"—Pr)/ag-
Based on the original AUSMD and the approximated Riemann solution of star region, a

hybrid flux splitting of the mass flux can be proposed to modify for the computation of
flows around the wave interface as
mf/z, if OS SL,
pru*, if Sy <0<S,,
= 2.53
(pu)% P?{“*/ if S*SOSSR, ( )

m;/z, if 0> Sg,
where
+ 1
m1/2:§(m1/2i’m1/2’)- (2.54)

And the pressure flux in hybrid flux splitting can be proposed by

pr, if 0<Sg,

* if §,<0<8S,,
(pr={ P DOm0 (2.55)
2 P*/ if S*SOSSR/

pr, if 0>Sg,
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where the pressure at the star region can be represented by

p= % [PL+Pr+p1(Sp—ur) (S« —ur)+pr(SR—ur) (S« —ur)], (2.56)

and

_ PL+PR+pLML<SL—ML)+PRMR(SR—L£R)

> pL(SL—ur)+pr(Sk—ur) (257
The lower and upper bounds of the fastest signal velocities are calculated by
Sp=min{uy —ar,u—a}, (2.58)
and
Sgr=min{ug+ag,u+70}, (2.59)
where a;, and ag are the mixture sound speeds at the cell face
= VPLULT PRUR (2.60)
VPLF VPR
[ (a- 3]
f— VPLHL T VPRHAR (2.62)

VPLE /PR

2.3 Reinforcement learning

For optimization, the Q-learning Q-table learning method in reinforcement learning was
used to optimize the parameters « and B of the ATM1 to ATM3 in order to improve the
numerical accuracy of the ATM methods. The whole procedure is described in Fig. 1.

The concept of Q-learning Q-table was first proposed by Watkins [52] as a model-
free reinforcement learning method. The model can only wait for feedback from the
real-world step-by-step and then take the next action based on the feedback. Q-learning
Q-table uses behavioral values as the basis for outputting the next decision It is a single-
step update learning method, allowing for the update of behavioral criteria at each step
of the process rather than waiting until the end.

The Q-table is a data structure that is used to store the values of the Q function of ev-
ery possible state and action in the environment. The Q function represents the expected
return (or reward) that an agent will receive for taking a given action in a given state.
The Q-table is updated as the agent takes measures in the environment and receives re-
wards. The Bellman equation is used to update the values in the table. The Q-learning
algorithm updates the Q-table by considering the expected rewards for taking different
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Figure 1: The procedures of optimization flow chart.
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actions in the current state, as well as the expected rewards for taking different actions in
future states. As the agent takes actions and receives rewards, the values in the Q-table
are updated, allowing the agent to learn which actions tend to lead to higher rewards in
different states.

The necessary steps to converge the Q-value eventually to an optimal Q-value, Q, are
as followed. For the given state-action pair, the Q-value should be as close to the right-
hand side of the Bellman Optimality Equation as possible. For this, the loss between the
Q-value and the optimal Q-value for the given state-action pair was compared iteratively.
Each time the same state-action pair was encountered, the Q-value would be updated
again to reduce the loss. The loss can be given as Q (st4+1,4r+1) —Q(sr,ar)

NewQ (s7,ar) < Q(sr,ac) +17[r+ymaxQ (sci1,8c11) — Q(s7,87)], (2.63)

where NewQ (sr,a.) is the new Q value for that state and the action, maxQ (s¢y1,a¢41) is
the maximum expected future reward given the new state (sr1) and all possible actions
(ar41) at that new state, Q(sr,a;) is the current Q value, s;m is the current state, s-1 is
the new state, a. is the current action, a, is the new action, 7 is the learning rate, vy is
the discount rate and r is the reward for taking that action at that state.

Eq. (2.63) shows that the Q-Learning Q-Table would receive a reward or penalty for
every action taken in state s;. In each iteration, the Q-Learning Q-Table would select an
action with the maximum Q-value at state, s;(exploitation), and then evaluate reward
function when moving to the next state. In order to prevent the algorithm from being
trapped inside a certain region, a greedy probability,e was introduced. The greedy prob-
ability provides a probability to randomly choose an action from the action space which
does not have the highest Q-value. Therefore, the agent may have a chance to explore
a new environment (exploration). The newly computed Q-value could not be overwrit-
ten with an older value. Instead, a parameter called learning rate, as denoted by 7, was
used to determine the amount information from the previously computed Q-value for
the given state-action pair had been retained over the newly computed Q-value calcu-
lated for the same state-action pair at a later time step. The range of the learning rate and
discounting factor was between 0 and 1. The higher the learning rate, the more quickly
the model adopted the newly computed Q-value. Therefore, the trade-off between new
and old Q-value should be taken care of using the appropriate learning rate.

It is common to set the learning rate to a value between 0.01 and 0.1, the discount rate
to a value between 0.8 and 0.95, and the greedy probability to a value between 0.1 and 1.0.
The specific values to be chosen will depend on the particular problem and the desired
behavior of the agent. In general, it is a good idea to try out different hyperparameter
values to see how they affect the results. 1. This study the learning rate, discount rate,
and greedy probability, were set as 0.1, 0.9, and 0.9, respectively, and the number of time
steps were declared as the states of the Q-learning algorithm. The actions in Q-learning
algorithms were ones that enable the algorithm to do exploration within the states of
Q-learning. Each action would lead the algorithm from the current state to the other
states. The actions available for the developed Q-learning algorithm in this study were



S.-I. Huang et al. / Commun. Comput. Phys., 36 (2024), pp. 160-199 177

the action, and the actiong. In the a range of 200-500, action, was chosen an integer
between 0 and 30, and then converted to the « parameter in Eq. (2.64). In addition, in the
« range of 1000-1500, action, is chosen as an integer between 0 and 50, and then converted
to the « parameter in Eq. (2.65). At the same time, actiong is selected as an integer between
0 and 100, and then converted to the B parameter in Eq. (2.66) as followed

a =200+action, x 10, (2.64)
a« =1000+action, x 10, (2.65)
B=1.2+actiong x0.01. (2.66)

Rewards were given to the actions when there is a small error in the simulated peak
value of the density calculated by ATM as compared to the simulated peak value of the
reference density. The optimization procedures can be seen clearly in the flow chart as
shown in Fig. 1.

In this study, the error between the wave peak of the simulation results and the wave
peak of the exact solutions was calculated. The value was used as the basis to judge the
simulation results accuracy of each ATM method.

Initially, we attempted to guess the two factors using a range of values, which proved
to be helpful for the Q-learning test. To avoid the local extremum problem, we imple-
mented a condition to check for this case and handle it appropriately, such as by throw-
ing an error to alert the user of an invalid input. It is important to anticipate and address
these edge cases in order to ensure that the program functions correctly.

We employed an epsilon-greedy strategy, which is a simple method used in reinforce-
ment learning to balance exploration and exploitation. This approach allows the agent
interacting with the environment to occasionally choose a random action with a proba-
bility, known as epsilon, rather than the action that is believed to maximize the reward.
The epsilon-greedy strategy is often used when the agent must learn about its environ-
ment and determine the optimal actions to maximize its reward. By introducing a small
probability of random exploration, the agent can try out new actions and gather more in-
formation about the environment, potentially improving its performance over time. An
error is a measure of the degree of inaccuracy on a measurement. The error in this essay
is defined as the average difference between the optimal value and the reference value.

3 Result and discussions

3.1 Two interacting blast waves problem

This is a 1D benchmark test including more complicated interactions and discontinuous
structures. Initially we set the following condition for state variables,
(1,0,1000), 0<x<0.1,
(p,u,p)=<¢ (1,0,0.01), 0.1<x<0.9,
(1,0,100), 0.9<x<1.0.
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Figure 2: Numerical results by the MUSCL on 800 grid points. (a) Primitive variables; (b) Conservative
variables.

The reflection boundary is set to the left and right ends of computational domain. This
test involves the multiple interaction of strong shock waves, density discontinuities and
rarefaction waves. A shock refraction problem describes a gas flow with three constant
initial conditions. It is known that two strong blast waves developed and collided, and
then produced complex interactions of the shock wave, rarefaction, and contact disconti-
nuity. Therefore, the blast wave collision problem is often selected to verify the resolution
of the peak of density distribution profile.

In this case, an investigation is conducted to assess the accuracy of three ATM
schemes (ATM1, ATM2, and ATM3) in the computation of the flow behaviors near wave
interfaces. The results of density containing exact solutions are depicted in Fig. 2. The
solid line represents the exact solutions obtained through the MUSCL method, computed
on 12800 meshes. The computed solutions are performed on uniformly grids with 800
cells. The circles represent the ATM solutions. A time step of At/Ax =0.005 is chosen
to ensure numerical stability. We first show the results of the MUSCL values calculated
from the primitive variables and conservative variables respectively.

Next, we present the results of the THINC-EM method using a value of f=1.25
in Fig. 3. We have improved upon the method by combining it with a flux splitting
technique and the MUSCL + THINC-EM cell interface variable reconstruction method.
This improved method, referred to as the ATM method, has been demonstrated to ac-
curately resolve discontinuous solutions such as interfaces and rarefactions, as well as
shock waves, with significantly less numerical dissipation. The results of three different
ATM schemes are shown in Figs. 4, 5, and 6. First, we fix the « =500 and 1500, then fix
the p=1.25 for all ATM method in sequence as follows.

We present the numerical results of ATM1 after optimization in Fig. 4, which are com-
pared with the exact solutions. The results agree with the exact solutions with an error of
0.096 in conservative variables when a =1500, =1.25 (as shown in Fig. (d)). The numer-
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Figure 3: Numerical results by the THINC-EM use the B=1.25 on 800 grid points. (a) Primitive variables; (b)
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a=1160, p=1.3; (d) Conservative variables, x =1360, f=1.3.

ical results of ATM2 after optimization are also presented in Fig. 5, which are compared
with the results of the exact solutions. The results agree with the exact solutions with an
error of 0.1 in conservative variables when a« =1500 and §=1.25 (as shown in Fig. 5(d)).
Finally, we show the comparison of the numerical results of the ATM3 optimization with
the results of the exact solution in Fig. 3.

As can be seen in Figs. 7-10, ATM1 and ATM2 show the great results. In addition,
ATM2 exhibits the most precise capture of the peak of the density profile and the lowest
error factor in both primitive and conservative variables among all of the selected ATM
methods. Furthermore, the density distribution along the rarefaction is well resolved
using approximately four grid points in all versions of the ATM method. Overall, the
resolutions of ATM1 and ATM2 are nearly identical when a =500 and g ==1.25. ATM2
exhibits particularly sharp capturing of the peak of the density profile and achieves a
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Figure 8: The enlarged views of ATML1 after optimization by Q-Learning Q-table algorithm on 800 grid points.
(a) Primitive variables, « =460, p=1.3; (b) Conservative variables, « =500, f=1.3; (c) Primitive variables,
a=1160, p=1.3; (d) Conservative variables, x=1360, f=1.3.

lower error than the other versions of the ATM. All three ATM methods demonstrate
that the density distribution along the rarefaction can be accurately resolved using fewer
grid points compared to the reference scheme using MUSCL.

Subsequently, the Q-learning of the enforcing learning is performed to get the opti-
mized combination of the « and B from the a« =460 to 500 or « =1010 to 1500 and f=1.2
to 1.3 for the ATM methods. In Figs. 7-8, it is shown that the ATM1 method with « =1360
and B = 1.3 demonstrates the most accurate in the case of calculating one-dimensional
blast wave. On the other hand, the ATM2 method with « =1430 and f=1.3 demonstrates
the most accurate in the case of calculating one-dimensional blast wave case between the
in Figs. 9-10. With regard to ATM3 in Figs. 11-12, the error factor of primitive variables
conservative variables is both higher than ATM1 and ATM2. Overall, choosing a = 1430
and f=1.299 could be the optimized for the ATM2 method to calculate one-dimensional
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Figure 9: Numerical results of ATM2 after optimization by Q-Learning Q-table algorithm on 800 grid points.
(a) Primitive variables, ® =480, $=1.299; (b) Conservative variables, =480, =1.298; (c) Primitive variables,
a=1010, p=1.299; (d) Conservative variables, a =1430, $=1.299.

blast wave case. To perform further verification of the ATM2 with « =1430 and p=1.3,
a grid independence study is using 400, 800, 1600, and 3200 grid points. In Fig. 13, it is
seen that the results on 1600 grids is identical to the results of the 3200 grids, so we can
understand that the required grid size about this model is 0.0.00625cm.

Upon comparing the error factors of the three ATM schemes (ATM1, ATM2, and
ATM3), we found that ATM3 struggled to accurately capture discontinuous planes. In
contrast, both ATM1 and ATM2 demonstrated better results with minimal error com-
pared to ATM3. Moreover, since ATM2 with a =1430, f =1.299 shows the best ability
to capture discontinuities in the form of weak solutions for hyperbolic equations using
high-resolution algorithms for conservation, we determined that ATM2 had the lowest
error rate. As a result, we used ATM2 for case2 and case3.
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Figure 10: The enlarged views of ATM2 after optimization by Q-Learning Q-table algorithm on 800 grid points.
(a) Primitive variables, « =480, $=1.299; (b) Conservative variables, « =480, =1.298; (c) Primitive variables,
a=1010, p=1.299; (d) Conservative variables, a =1430, $=1.299.

3.2 Two-dimensional detonation waves

Next, we consider the two-dimensional detonation wave problem, which has also been
investigated by [17]. In this experiment case [15], a triangular detonation wave is set up
within a computational domain of [0,0.025] x [0,0.005]. The left side of the detonation
wave is completely burned, while the right side is completely unburned. The upper and
lower boundaries are assigned reflective boundary conditions, while the left and right
boundaries are assigned zero-gradient boundary conditions. The main feature of this
problem is that, due to its triangular shape, the central detonation wave will continue
to move forward and the detonation wave of the upper half will hit the upper wall and
bounce back. Similarly, the lower half of the detonation wave will hit the lower wall
and bounce back, leading to the formation of two symmetrical vortices on the upper
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Figure 11: Numerical results of ATM3 after optimization by Q-Learning Q-table algorithm on 800 grid points.
(a) Primitive variables, =1.278; (b) Conservative variables, $=1.291.
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Figure 12: The enlarged views of ATM3 after optimization by Q-Learning Q-table algorithm on 800 grid points.
(a) Primitive variables, p=1.278; (b) Conservative variables, =1.291.

and lower sides. This makes the overall flow phenomenon very complicated. The state
variables are shown in Fig. 14 as follows:

()= 0.004,
8= 0.005— |y —0.0025|,

if [y—0.0025|>0.001,
if |y—0.0025| <0.001,

where

u;==8.162 x 104 >ucy, P1=pPcj, P1=pcj,
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Figure 13: Computed density profile of the two interacting blast waves problem by the grid independence study.
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if x>g(y).



S.-I. Huang et al. / Commun. Comput. Phys., 36 (2024), pp. 160-199 187

The parameters 7, K, qo, Tp in the Heaviside chemical reaction model can be found
in [15]. We use the CGS units as [15]. The CFL number is set to 0.1. To provide a better
comparison, the reference solution is calculated using the chosen ATM2 type AUSMD
with «=1430, =1.3 scheme with 1600 x 320 grids. The density profiles at different times
are presented in Fig. 15, with the reference solutions shown at the top. The solutions
obtained using the MUSCL method, the ATM2 method, and the THINC method with
800x 160 grid cells are shown below, respectively. The ATM2 method with « = 1430 and
p=1.31is able to produce a sharp detonation front and reflected waves similar to the ref-
erence solution on a coarse mesh, as shown in Fig. 15. However, the MUSCL method and
THINC schemes produce spurious waves in front of the shock, and the THINC methods
produce strong oscillations. The numerical results demonstrate that the proposed Q-
learning approach can help the ATM2 scheme with suitable parameters to achieve sharp
detonation waves with less numerical dissipation on coarse grids.

Due to the inherent blurriness of the internal reflected wave, it is challenging to ac-
curately determine its degree of distortion. As such, we compare the density differences
between the simulated values and the exact values at the centerline in Fig. 16 in order to
evaluate the performance of difference methods.

Upon examining Fig. 16, we can observe that the width of the virtual wave, which is
generated by the MUSCL method at the wavefront, is quite thick. In contrast, the THINC
method creates less virtual error at the wavefront, but it does produce numerical oscilla-
tions. Based on these results, we carefully select the appropriate parameter combination
to use in the next case simulation.

3.3 Single-nozzle tube case

In the third case, we present the numerical simulations of single-tube PDE with a CD
Nozzle, which has been invested by Fuhua Ma et al. in [1]. The configuration of the deto-
nation tube is presented in Fig. 17. The computational domain is discretized into 170,000
grids. Initially, the detonation tube is filled with a stoichiometric hydrogen/air mixture
at the ambient pressure (0.29 atm) and temperature (228 K). The boundary condition at
the head end of the detonation tube are specified according to the engine operation. Dur-
ing the purging stage, the total temperature and total pressure are specified as 428 K and
2.12 atm, respectively. The axial velocity is extrapolated from the interior points, and the
reactant mass fraction is set to zero. During the refilling, the parameters are the same,
except that the reactant mass fraction is set to unity. A non-reflecting boundary condition
is implemented along the open boundary of the external region. Detonation is initiated
by a small amount of driver gas at 2000 K and 30 atm near the head end. This region
spans a small length of 0.02 cm in order to minimize its effect on the assessment of the
engine propulsive performance. For more details on the operation setting, see [1].

The parameters 7, K, qo, To, in the Heaviside chemical reaction model are the same
as mentioned in previous section, and the atmosphere data are as follow:

Patm =1.29x1073(g/cm®),  parm=1.01325x 10° (bar).
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(a) The reference

(b) MUSCL, 800 x 160

(c) ATM2, a=1430, f=1.3, 800 x 160

(d) THINC, B=1.3, 800 x 160

Figure 15: Density of 2D detonation problem. (Left column) time=3x10""s; (middle column) time=0.92 x
1077 s; (right column) time=1.7x107" s.
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Figure 16: Density field along the central line of x-direction at time=1.7x10"" s.
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Figure 17: The configuration of the detonation tube.

The time evolution of the density-gradient field during one cycle of operation of the
single-tube PDE is depicted in Figs. 18 and 19. Two time points, 6.5us and 10.4us, have
been selected to present enlarged pressure maps generated by the MUSCL and ATM2
methods. The primary shockwave, Taylor wave, and secondary shockwave emanating
from the wall are shown in Fig. 16, along with the Prandtl-Meyer expansion fan and the
center of the spiral vortex sheet.

In Fig. 18(a), numerical results computed by the MUSCL scheme with 170,000 grids,
but physical phenomenon are not clear as Fig. 18(b), which computed by the ATM scheme
(x=1430, p=1.3) with 85,000 grids.

The primary shockwave, after being generated, travels downstream and reflects off
the nozzle walls, creating a complex flow structure. Common features of this flow in-
clude the expanding primary shock, shear layers, a Prandtl-Meyer expansion fan that
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Figure 18: The enlarged views of pressure contours at time=6.5us (left column) and at time=10.4us (right
column).
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Figure 19: Time evolution of density-gradient field during one cycle of operation of single-tube PDE of ATM2,
«=1430, p==1.3.

originates from the edge of the nozzle exit at the beginning of the blowdown phase and
oblique or normal shock waves in the later stages of the blowdown process, and nu-
merous reflected shock waves. As seen in Figs. 18 and 19, the ATM method with the
two parameters calculated through the Q-Learning method is able to simulate the results
while incorporating the advantages of both the MUSCL method and the THINC method.
This suggests that the combination of the ATM method and the Q-Learning method can
be highly effective under the conditions of a coarse grid for various topics in the future.
The selection of appropriate parameters can be adjusted for different problems and sim-
ulations to achieve accurate results.

3.4 Three-tubes PDE with CD nozzle

In this case, the three-tubes PDE system is configured as shown in Fig. 20. The computa-
tional domain is discretized into 170,000 grid cells. Initially, the bottom tube is partially
filled with a quiescent stoichiometric hydrogen/air mixture at ambient pressure (0.29
atm) and temperature (228 K), while the rest of the region is filled with ambient air. The
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Figure 20: Configuration of three-tubes PDE.

operation cycle is the same as in the two-tubes PDE, and the weighting parameters used
are x =1430 and p=1.3.

At t=0.225 ms, the detonation wave in the bottom tube reaches the reactant/air in-
terface located 38 cm from the head end and degenerates into a non-reacting shock wave,
known as the primary shock wave. At the same time, a series of expansion waves are
generated at the interface and propagate downstream along with the Taylor wave to the
tube exit and upstream to the head end. These expansion waves interact with and pass
through the Taylor wave, reducing the length of the uniform region. As the expansion
waves reflect off the head end, another series of expansion wave form and propagate
downstream toward the tube exit, further reducing the pressure in the bottom tube. The
primary shock wave reaches the bottom tube and diffracts at the tube exit, reflecting off
the nozzle walls and causing complex waves to propagate upstream into all three tubes
and downstream into the nozzle, as shown in the snapshot of t=0.75 ms in Fig. 21(b). The
middle tube begins the ignition process at this time. At t=0.975 ms, the primary shock
wave has emerged from the nozzle into the external region, creating vortices near the
edges of the nozzle exit. The external flow field is similar to that of the single-tube case,
except for an asymmetrical pattern. At t=1.5 ms, the top tube begins the ignition pro-
cess, while the middle and bottom tubes are in the blowdown process. At t=1.725 ms, the
detonation wave in the top tube interacts with the detonation waves in the bottom tube,
making the flow field even more complex. At t=2.25 ms, the shock wave has moved
out of the nozzle to interact with the local flow field in the external region. We can also
observe upstream-traveling reflected shock waves in all three tubes. At t=3.0 ms, the
end of the first cycle, the bottom tube is in the ignition process and the top and middle
tubes are in the blowdown process.

To demonstrate the capability of the proposed method, a close-up view of the flow
developments and the flow interactions among the tubes and nozzle are presented in
Figs. 21 and 22. It is clear that the proposed methods can capture the flow structures in
the detonation tube. In Fig. 21, the diffracted and reflected shock waves have propagated
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Figure 21: Snapshots of pressure field showing flow interactions among tubes and nozzle during the first cycle
at time=6.5us (left column) and at time=10.4us (right column).
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(a) Time=0.225ms (b) Time=0.75ms

(e) Time=1.725ms (f) Time=2.25ms

Figure 22: Time evolution of density-gradient field during the first cycle of operation of three-tubes PDE of
ATM2 of a=1430, p==1.3.

into the middle and bottom tubes, respectively. On the other hand, the upper part of
the leading shock hits the edge connecting the middle and top tubes, while the right
part propagates in the divergent section of the nozzle. Along the curved wall, the flow
behind the leading shock is locally expanded to supersonic, leading to the formation of a
shock wave stemming out from the wall, as evidenced in Fig. 20. The upper part of the
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leading shock then hits and reflects off the upper wall of the nozzle. In the top tube, the
first shock relates to the diffracted part and the second one to the reflected shock from
the lower wall of the nozzle. The shock waves established in all three tubes propagate
upstream and elevate the pressure therein. From Fig. 21, it can be seen that the vortex
sheet, shock wave, and expansion fan are clearly captured by the current ATM2.

Fig. 21(c) can clearly show that starting with THINC, p=1.3, numerical oscillations
will begin to occur. By comparing ATM2 with a« =1430 and = 1.3 in Fig. 21(b), it can
be seen that the ATM method can maintain high accuracy without causing numerical
oscillations. Finally, it is believed that the single-nozzle tube and three-tubes simulations
demonstrate that the combination of the ATM method and the Q-Learning method is
helpful in improving the accuracy of the numerical model for reconstructed boundary
points.

Compressible flows, a common occurrence in various fields, typically comprise two
distinct components: complex, multi-scale structures and discontinuities. These elements
require the utilization of a highly precise numerical technique, particularly in smooth re-
gions, to accurately depict the multi-scale structures. Furthermore, the method must
be able to accurately capture discontinuities such as shock waves without any oscilla-
tions. This requirement has led to the development of high-resolution schemes. High-
resolution schemes for the simulation of compressible flows must possess the following
key characteristics in order to be deemed effective: (1) the capability to capture discon-
tinuities without the presence of oscillations, (2) the maintenance of sharp resolution for
various types of discontinuities, particularly the contact discontinuity, even over pro-
longed simulations, and (3) an acceptable level of accuracy, as determined by the conver-
gence rate, in smooth regions. As seen in [63], our ATM2 method meets these goals.

4 Conclusion

In this study, we propose a hybrid AUSMD flux splitting combined with the average
of the MUSCL and THINC cell interface variable reconstruction (ATM type AUSMD)
method to solve the hyperbolic conservation laws with stiff source terms arising from
chemically reactive flows. This scheme consists of two steps: solving the homogeneous
hyperbolic conservation law by the ATM type AUSMD method and using the Strang
splitting method for the stiff reaction term. The ATM method minimizes the boundary
variations of the characteristic variables and produces a less dissipative resolution. Ex-
tensive numerical examples for one- and two- dimensional detonation waves problems
have been tested, demonstrating the effectiveness of this novel method. We then further
applied this method to simulate the two-dimensional single-, multi-tube- PDE with CD
nozzles. The results show that the proposed method can clearly capture the flow interac-
tions.

In summary, ATM2 type AUSMD with a« =1430, B = 1.3 scheme is an effective and
simple method with great practical significance for simulating stiff detonation problems.
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The accuracy of the simulation has been improved after optimizing the ATM methods.
The optimal combination of the two parameters (¢ and ) can be found simultaneously
and automatically using the Q-learning Q-table. Therefore, it is suggested that the ATM2
method with « =1430 and B =1.3 be used as the main method for simulating stiff, com-
plicated reactive flow problems.
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