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Abstract. Algebraic Multigrid (AMG) is one of the most widely used iterative algo-
rithms for solving large sparse linear equations Ax =b. In AMG, the coarse grid is a
key component that affects the efficiency of the algorithm, the construction of which
relies on the strong threshold parameter 6. This parameter is generally chosen empir-
ically, with a default value in many current AMG solvers of 0.25 for 2D problems and
0.5 for 3D problems. However, for many practical problems, the quality of the coarse
grid and the efficiency of the AMG algorithm are sensitive to 6; the default value is
rarely optimal, and sometimes is far from it. Therefore, how to choose a better 6 is
an important question. In this paper, we propose a deep learning based auto-tuning
method, AutoAMG(#) for multiscale sparse linear equations, which are common in
practical problems. The method uses Graph Neural Network (GNN) to extract ma-
trix features, and a Multilayer Perceptron (MLP) to build the mapping between matrix
features and the optimal 6, which can adaptively predict 6 values for different matri-
ces. Numerical experiments show that AutoAMG(6) can achieve significant speedup
compared to the default 6 value.
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1 Introduction

Solving sparse linear equations Ax =b is ubiquitous in numerical simulations, and is a
major bottleneck affecting computational efficiency. Owing to its good generality and
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optimal computational complexity, the AMG algorithm [1-3] is one of the most widely
used algorithms for large-scale sparse linear equations, which uses only information from
the matrix to construct components, including coarsening, interpolation, and restriction
operators. During the coarsening procedure, a subset of points from the adjacency matrix
A is selected as points in the coarse grid, which is the basis for constructing a coarse
grid matrix A.. Different coarsening strategies will result in different coarse matrices
Ac. In the classical AMG algorithm, points in the subset are selected based on the strong
threshold 6 and the strength of the connectivity between points, which is calculated by
the value of the matrix entries. Hence the value of 6 directly affects the grid coarsening
results, and is a key factor affecting the algorithm’s efficiency.

In the classical AMG algorithm, most coarsening algorithms are based on heuristic
strategies for coarse grid construction. A basic principle is to perform coarsening along
the direction of strong connectivity to accommodate the property that algebraic errors
are smoothed or relaxed along the same direction. If the strong threshold 6 is large,
then the number of points in the corresponding coarse grid is large, which means the
AMG algorithm has high complexity. If 6 is small, although the number of points in the
coarse grid is smaller, the residuals may decrease more slowly, requiring more iterations
to converge. Since there is no strict theoretical guarantee on the size of the optimal coarse
grid, the current value of 6 can only be chosen empirically. For example, in the HYPRE
AMG solver [4], depending on the physical dimension of the sparse matrix, 6 equals 0.25
for 2D problems and 0.5 for 3D problems. However Vakili [5] and Nikola [6] utilize the
incompressible Navier Stokes equation and linear poroelasticity equation, respectively,
as the test cases, both of which show the increase of 6 along with the monotone decrease
of time. Here, we take the diffusion problem as the example, and find that the number
of iterations changes irregularly with the increase of 6. If the diffusion coefficients are
isotropic, the default values of § can achieve the desired convergence rate. If the diffusion
coefficients are anisotropic, which means there are significant differences in the strength
of connectivity between points, then the default values of # maybe far from the optimal.
Notably, small changes in 6 may have a large impact on the construction of the coarse
grid, thus affecting the convergence rate and efficiency of AMG. In particular, we focus
on the so-called multiscale sparse matrices [7]. In some typical test cases, the number
of iterations of the default 0 is 10 times larger than the minimum number of iterations
obtained by grid search (see Section [2.3|for detail).

The above problem can be summarized as follows: how to choose an appropriate
for any given sparse matrix. Considering that the properties of the input matrix may vary
dynamically, the automatic selection of a suitable 8 for different linear systems is a crucial
and challenging task, since there is no theoretical guarantee yet. Machine learning and
deep learning algorithms provide a feasible approach. Paola F [8] used a Convolutional
Neural Network (CNN) to extract matrix features, and built a regression model with
those features. The inputs of the regression model are matrix features, strong threshold
8, and —log,h (h is the edge length in the mesh), and the output y is an approximated
convergence factor. After training, the regression model is used to optimize 6. There are
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