Commun. Comput. Phys. Vol. 36, No. 1, pp. 200-220
doi: 10.4208/ cicp.OA-2023-0072 July 2024

AutoAMG(0): An Auto-tuned AMG Method Based
on Deep Learning for Strong Threshold

Haifeng Zou'?, Xiaowen Xu®*, Chen-Song Zhang* and Zeyao Mo®

1 Graduate School of China Academy of Engineering Physics, China Academy of
Engineering Physics, P.R. China.

2 Shenzhen International Center for Industrial and Applied Mathematics, Shenzhen
Research Institute of Big Data, P.R. China.

3 Laboratory of Computational Physics, Institute of Applied Physics and
Computational Mathematics, P.R. China.

4 Academy of Mathematics and Systems Science, Chinese Academy of Sciences,

PR. China.

Received 8 March 2023; Accepted (in revised version) 30 November 2023

Abstract. Algebraic Multigrid (AMG) is one of the most widely used iterative algo-
rithms for solving large sparse linear equations Ax =b. In AMG, the coarse grid is a
key component that affects the efficiency of the algorithm, the construction of which
relies on the strong threshold parameter 6. This parameter is generally chosen empir-
ically, with a default value in many current AMG solvers of 0.25 for 2D problems and
0.5 for 3D problems. However, for many practical problems, the quality of the coarse
grid and the efficiency of the AMG algorithm are sensitive to 6; the default value is
rarely optimal, and sometimes is far from it. Therefore, how to choose a better 6 is
an important question. In this paper, we propose a deep learning based auto-tuning
method, AutoAMG(#) for multiscale sparse linear equations, which are common in
practical problems. The method uses Graph Neural Network (GNN) to extract ma-
trix features, and a Multilayer Perceptron (MLP) to build the mapping between matrix
features and the optimal 6, which can adaptively predict 6 values for different matri-
ces. Numerical experiments show that AutoAMG(6) can achieve significant speedup
compared to the default 6 value.

AMS subject classifications: 65F08, 65F10, 65N55, 68T05
Key words: AMG, strong threshold, graph neural network, auto-tuning, multiscale matrix.

1 Introduction

Solving sparse linear equations Ax =b is ubiquitous in numerical simulations, and is a
major bottleneck affecting computational efficiency. Owing to its good generality and

*Corresponding author. Email addresses: zou haifeng@foxmail.com (H. Zou), xwxu@iapcm.ac.cn (X. Xu),
zhangcs@lsec.cc.ac.cn (C.-S. Zhang), zeyaomo@iapcm. ac.cn (Z. Mo)

http:/ /www.global-sci.com/cicp 200 ©2024 Global-Science Press

H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220 201

optimal computational complexity, the AMG algorithm [1-3] is one of the most widely
used algorithms for large-scale sparse linear equations, which uses only information from
the matrix to construct components, including coarsening, interpolation, and restriction
operators. During the coarsening procedure, a subset of points from the adjacency matrix
A is selected as points in the coarse grid, which is the basis for constructing a coarse
grid matrix A.. Different coarsening strategies will result in different coarse matrices
Ac. In the classical AMG algorithm, points in the subset are selected based on the strong
threshold 6 and the strength of the connectivity between points, which is calculated by
the value of the matrix entries. Hence the value of 6 directly affects the grid coarsening
results, and is a key factor affecting the algorithm’s efficiency.

In the classical AMG algorithm, most coarsening algorithms are based on heuristic
strategies for coarse grid construction. A basic principle is to perform coarsening along
the direction of strong connectivity to accommodate the property that algebraic errors
are smoothed or relaxed along the same direction. If the strong threshold 6 is large,
then the number of points in the corresponding coarse grid is large, which means the
AMG algorithm has high complexity. If 6 is small, although the number of points in the
coarse grid is smaller, the residuals may decrease more slowly, requiring more iterations
to converge. Since there is no strict theoretical guarantee on the size of the optimal coarse
grid, the current value of 6 can only be chosen empirically. For example, in the HYPRE
AMG solver [4], depending on the physical dimension of the sparse matrix, 6 equals 0.25
for 2D problems and 0.5 for 3D problems. However Vakili [5] and Nikola [6] utilize the
incompressible Navier Stokes equation and linear poroelasticity equation, respectively,
as the test cases, both of which show the increase of 6 along with the monotone decrease
of time. Here, we take the diffusion problem as the example, and find that the number
of iterations changes irregularly with the increase of 6. If the diffusion coefficients are
isotropic, the default values of § can achieve the desired convergence rate. If the diffusion
coefficients are anisotropic, which means there are significant differences in the strength
of connectivity between points, then the default values of # maybe far from the optimal.
Notably, small changes in 6 may have a large impact on the construction of the coarse
grid, thus affecting the convergence rate and efficiency of AMG. In particular, we focus
on the so-called multiscale sparse matrices [7]. In some typical test cases, the number
of iterations of the default 0 is 10 times larger than the minimum number of iterations
obtained by grid search (see Section [2.3|for detail).

The above problem can be summarized as follows: how to choose an appropriate
for any given sparse matrix. Considering that the properties of the input matrix may vary
dynamically, the automatic selection of a suitable 8 for different linear systems is a crucial
and challenging task, since there is no theoretical guarantee yet. Machine learning and
deep learning algorithms provide a feasible approach. Paola F [8] used a Convolutional
Neural Network (CNN) to extract matrix features, and built a regression model with
those features. The inputs of the regression model are matrix features, strong threshold
8, and —log,h (h is the edge length in the mesh), and the output y is an approximated
convergence factor. After training, the regression model is used to optimize 6. There are

202 H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220

other ways to enhance the robustness of iterative methods with machine learning and
deep learning. For example, a variety of classification algorithms are used to select opti-
mal iterative methods based on the input matrix features [9-12]]; deep learning algorithms
are utilized to optimize the prolongation matrix P, restriction matrix R, and smoother S
in AMG [13H16].

Our target is optimizing 6 adaptively according to the input matrices, and our contri-
butions are as follows:

¢ Classical graph convolution networks such as GCN [17], GIN [18] are used to ex-
tract matrix features, but they didn’t work well. Therefore, a new variant of graph
convolutional network is proposed in this paper as the feature extractor (see Section

for detail).

¢ We utilize MLP to directly build the mapping between matrix features and the op-
timal 6, avoiding optimizing the regression model.

The strong threshold 6 auto-tuning method is called AutoAMG(f), and its effectiveness
is verified by matrices from the diffusion equations, radiation diffusion equations [7,
19], and time-harmonic Maxwell’s equations [20-22]. Numerical experiments show that
AutoAMG(0) can achieve acceleration by a factor of 4.47 compared to the default 0 in
diffusion equations, a factor of 11.63 compared to the default § in radiation diffusion
equations, and a factor of 1.69 compared to the default 6 in time-harmonic Maxwell’s
equations.

The rest of this paper is organized as follows. Section [2| briefly introduces the ra-
tionale behind AMG and shows how 6 affects iteration. Section 3| explains the details
of AutoAMG(f). Section [presents numerical experiments and results of AutoAMG(6).
Section 5l summarizes our work.

2 Sensitivity of strong threshold

21 AMBG algorithm

The AMG algorithm can be divided into two phases: SETUP and SOLVE, as described in
Algorithms [I|and |2} respectively. Considering the complexity of AMG, we introduce its
simplified version, the Two-Grid (TG) algorithm.

In the SETUP phase, the TG algorithm constructs a coarse-level grid, an interpola-
tion matrix P, and a restriction matrix R based on the matrix A. In the SOLVE phase, it
performs a standard multigrid cycle based on the matrices generated in SETUP phase,
including pre-smoothing, restricting residuals to the coarse grid, solving residual equa-
tions in the coarse grid, interpolating the error back to the fine-level grid for correction,
and post-smoothing. In particular, if the TG algorithm is called recursively to solve linear
equations in the coarse-level grid (line 6, Algorithm 2), it becomes a multigrid algorithm.

H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220 203

Algorithm 1: SETUP phase

1 Coarsening: Construct the fine-level grid based on the matrix A and let () be the
set containing all fine-level variables. Split the set () into set C containing all
coarse-level variables and set F containing the remaining fine-level variables,
according to the strong threshold 6. In addition, FNC=0, FUC=Q.

2 Computing A.: Based on the coarse variable set C, compute the interpolation
matrix P and restriction matrix R. Then compute the coarse-level matrix A, by
A.=RAP.

Algorithm 2: SOLVE phase

1 Pre-smoothing: smoothing y; times on Ax =1, get the approximate solution x¢
2 if deepest level then

3 | Solve Ax=b directly

4 else

5 Restricting residuals into coarse grid: b, = R(b— Axy)

6

7

8

9

Solving the coarse grid equation: A.x.=b,
Interpolating and correcting: xf=2x7+Px,

end

Post-smoothing: smoothing i, times on Ax=b, update x¢

In the SETUP phase of the classical AMG, the algorithm will split all variables into
a coarse variable set C and fine variable set F (C/F splitting), which is the first step in
Algorithm 1} More specifically, let N;= {j | a;;#0, j#i} be the dependency set of variable
i,i.e., i strongly depends on j (or j strongly influences 7). If

|aij] ZGkg\l]%éi\ﬂikL (2.1)

where 0 <6 <1 is the strong threshold, then we can define the strong dependency set S;
and strong influence set SiT of variable 7,

Si:{j
s,r:{;

According to the definitions, a basic principle of coarsening is that the larger |ST| is,
the more important the variable i is, and the more likely it is to be selected as a coarse
variable. Following this principle, the result of grid coarsening is closely related to the
strength of connectivity between variables, i.e., it relies on the strong threshold 0 in

Eq. 2.1).

|aij] Zlerllf\l,?]}#!ﬂik|, jGNi},

iESj,jENi}.

204 H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220

2.2 Multiscale matrix

Multiscale matrices are common in practical problems. Factors such as multimedia (e.g.,
anisotropy, discontinuity, oscillating coefficients), large deformations, strong nonlineari-
ties, and multiphysics coupling all lead to the multiscale property of matrices obtained
by discretization. Define the matrix A€R"*", and let 0={0,1,2,---,n} be the set contain-
ing all row indices of the matrix. Given a multiscale threshold § >0, define the multiscale

set
QMS:{i

If Qps #Q, then A is defined as a multiscale matrix (under the threshold é). If Q5 =0,
then A is a single-scale matrix.

A detailed definition of the multiscale matrix and how the multiscale property affects
the AMG algorithm can be found in [7]. From Eq. (2.2), the multiscale property reflects
the strength of the numerical difference between the maximum and minimum absolute
values of the nondiagonal elements in the same row of the matrix.

icO 1o (maxkeNi,k¢i|ﬂz‘k\> >4 (2.2)
#0810 mingen, kilai] / —) '

2.3 Impact of 0

The effect of 6 on the efficiency of the AMG algorithm is illustrated by the diffusion
equation below,

—V-(«xVu)="f1, €Q),
(£Vu)=h, x (2.3)
M:fz, x€0Q),

where « is the diffusion coefficient. In a two-dimensional (2D) diffusion problem, we
define the diffusion coefficient as
. {1048 o]
0 1|’
where 0<&g<1 is a random number.

We theoretically verify the effect of 6 based on a specific small matrix whose inverse
we can compute. The matrix comes from diffusion equation (2.3), with a random dif-
fusion coefficient x and a mesh size of 12 x12. We gradually drop the element with the
minimum absolute value in the matrix to obtain a “boundary” matrix that is one step
from a single-scale matrix. Then the matrix is solved by the TG algorithm, with results
as shown in Fig. (1, where the x-axis is 6, in the interval (0,1), with a common difference
of 0.01, and the y-axis is the number of iterations (upper limit 500). This shows that there

is a critical value 6* =0.26 in the matrix, where the number of iterations is 8 when 6 < 6%,
and 74 when 0 > 6*.

H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220 205

704
60 -

50 1

| 6=026

iterations

201

10 A

00 01 02 03 04 05 06 07 08 09 10

6

Figure 1: "Boundary” matrix with 144 rows, 218 nonzeros.

Table 1: Theoretical and computed convergence factors.

6 | Theoretical | Computed
0.26 0.2500 0.2498
0.27 0.9477 0.9477

Based on the analysis of the convergence factor in the TG algorithm [23]], we compare
the theoretically estimated and computed convergence factors in Table 1, The theoret-
ical results remain consistent with the computed results, which indicates that the phe-
nomenon of an oscillating number of iterations is caused by the algorithm itself, and is
an essential feature of the algorithm. Such results further illustrate the necessity of opti-
mizing 6.

Furthermore, the numbers of iterations based on two random seeds are depicted in
Fig. 2, where the mesh size is 1024 x 1024, with 1048576 degrees of freedom (DoF). The
iterative method is GMRES, with AMG as the precondition and PMIS [24] as the coars-
ening algorithm. Fig. |2| shows that first, for both random coefficients, the number of
iterations changes irregularly with 6, and second, different random seeds have different
behaviors.

Table 2] shows the maximum and minimum number of iterations for these cases, as
well as the number of iterations corresponding to the default §. The maximum and min-
imum number of iterations for both cases are 500 and 7, which means there is a large gap
between the maximum and minimum. Moreover, the values of 6 corresponding to the
maximum are not the same (0.68 and 0.94). Concerning the default value 6 =0.25, the
number of iterations is 35 and 95 in two cases, which are 5 and 13 times larger than the
corresponding minimum. These results also imply that for random diffusion coefficients,

206 H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220

60 40

a
=
S
I
=
5

40

»
o
o
»
o
o

20

»
o
S
»
o
=3

S
w
&
g
S
w
&
g

0 0
05 06 07 08 09 06 07 08 09

w
S
S
w
S
S

iteration
g g8
iteration
g g8

-
1)
S
-
o
S

o
o

o ull |I| Il
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 1.0

0

I
o o

Figure 2: Two random seeds with the same DoF=1048576.

Table 2: Min, Max, Default iterations and corresponding 6

Min/9 Max/0 Default (6 =0.25)
Left | 7/0.68 | 500 / 0.01 35
Right | 7/ 0.94 | 500 / 0.01 95

the number of iterations is sensitive to the value of 8, and the value of 6 corresponding to
the minimum is different for different matrices.

3 AutoAMG(0): Auto-tune 0 for multiscale matrices

3.1 AutoAMG(6) procedure

The comprehensive AutoAMG(0) procedure is depicted in Fig. The input of
AutoAMG(0) is the matrix, which is treated as the adjacent graph. GNN based on mes-
sage passing is utilized to extract graph features. Subsequently, AutoAMG(6) establishes
a mapping between these extracted features and the optimal value of 8,,;. Note that 6,
pertains to the 6 value yielding the fewest iterations during grid search.

The key step in AutoAMG(0) is feature extraction. Considering matrices discretized
from the same equation, their sparsity patterns exhibit a degree of similarity, differing
in the number of rows and element values. Notably, the comparison depicted in Fig.
illustrates that conventional structural and numerical matrix features (e.g., dimensions,
sparsity patterns) fall short of adequately capturing the intricate influence of 6 on the it-
erations across diverse matrices. Besides, the calculation of spectral attributes (e.g., con-
dition number, eigenvalue distribution) is time-consuming, sometimes even surpassing
the time required for solving the linear equation. In AutoAMG(f), GNN is utilized to
extract node features in graphs, then graph features are derived based on the extracted
node features.

H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220 207

Matrix Features

Matrix — GNN Features L— MLP

Y
Q

i
&

Figure 3: AutoAMG(6) procedure.

3.2 GNN

GNN is one of the deep learning algorithms specifically designed for the analysis of
graph data structure. Nowadays, GNNs are utilized in diverse domains such as so-
cial recommendation, traffic prediction, and molecular structure prediction, et al. [25].
A graph G is represented as G = (V,E), where V is the set of nodes and E is the set of
edges in the graph. The number of nodes is | V| and the number of edges is |E|. Let v; €V
denote the i-th node and ¢;; = (v;,v;) € E denote the directed edge from node v; to node v;.
Let N(v) denote all neighbor nodes of the node v. Since every node and edge may have
features, let X, € RIV*4 denote feature matrix of all nodes and X, € RIEI*¢ denote feature
matrix of all edges, where X,, € R? is the feature vector of the i-th node and Xe; €RC is
the feature vector of edge ¢;;. Let X, denote the feature vector of the graph.

The standard operation of a GNN involves the following process: commencing with
the initial node feature vector XZ(JO) and edge feature vector Xgo), diverse GNN variants
employ distinct strategies to iteratively update these feature vectors for nodes and edges.
This evolution is often visualized as a mechanism of message passing that transpires
among the nodes within the graph, whose formula i{]

k k— k k— k—
X = ®) (Xz(;i N Aggr](>N(i) PO (X x ¢ 1),Xeﬁ)), (3.1)

where p), Aggr and y(¥) are three kernel functions of the GNN algorithm:

e ¢ is the message function that dictates the content of messages propagated by the
neighboring nodes and edges of node v;;

o Aggr¥ is the aggregation function that defines the approach taken to process the
sent messages;

e () is the update function that specifies how the node feature vector ngl) and the

aggregated messages are combined to derive the updated node feature vector Xz(f)

thttps:/ /pytorch-geometric.readthedocs.io/en/latest/ tutorial / create_gnn.html

208 H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220

These three functions can either be differentiable functions or MLPs. Each message pass-
ing step corresponds to a GNN layer, and these functions may vary across different lay-
ers. After K steps, the resultant node feature vector Xz(,lK) is used for downstream tasks,
such as node classification. It’s worth noting that Eq. focuses on the nodes within

the graph, while there exist GNNs that involve the updating of the edge feature vector
Xe, [26]. Utilizing Xz(f) , the computation of the graph feature vector Xy is facilitated via a

Readout function. A variety of Readout functions are available for selection, such as the
SUM function

\4
X, =Y x5, (3.2)
i=1
which is the sum of all nodes features; or MEAN function
1)4 K)
Xo= mZ;XU,. i (3.3)
1

=1

which is the average of all nodes features, et al.
At first, we tried to use GCN [17] and GIN [18] to extract graph features. According
to Eq. (3.1), a single GCN layer is defined as

Xg’j)MLPW(y D X(“)), (3.4)

0
A A]
U]'GN('U,')UU,' \/ DlD]

where wj; is the weight of edge ej;, if the graph is unweighted, then w;; =1; D is the
diagonal degree matrix and D; is the degree of node v; in the graph. In GCN, ¢® is
the feature vector of neighbor nodes, Aggr®) is weighted average, and y*) = MLP®).
MEAN function (Eq. (3.3)) commonly serves as the Readout function of GCN. Besides,
the corresponding matrix form of one layer of GCN is

xP=p2aD":xF Ve, (3.5)
where matrix @) is the weight matrix of the MLP(*) that needed to be optimized during
training. If the number of node features is d*~1) in the (k—1)-th layer and d®) in the k-th
layer, then X\ e RIVIxd® A c RIVIXIVI peRIVIXIVI, XD e RIVIxd*Y gk g rd* Y xd®
Based on Eq. , it is evident that the weight matrix ©® is related to the number of
features per node and remains independent of the number of nodes | V| within the graph.
Therefore, GCN can handle graphs with different sizes.

A single GIN layer is defined as

X =MLP® [wy(14+e®)-xF V4 ¥ wpxiTY |, (3.6)
ZJ]‘EN(U,')

H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220 209

where w;; is the weight of node v;’s self loop, wj; is the weight of edge ¢j;, and €®) can be
a trainable parameter or a fixed constant number. Compared to Eq. (3.4), the aggregation
function A ggr(k) is summation. Similarly, The matrix form of one layer of GIN is

X — [A+ (1 +e<k>)] xDek), (3.7)

The authors of GIN demonstrated that in specific scenarios, the MEAN and MAX func-
tions would impair the expressiveness of the GNN. Consequently, both the aggregation
and Readout functions in GIN are summation rather than average. The recommended
Readout function for GIN is

X, =CONCAT <SUM (x) ' k=0,1,-- -K> ,
» (3.8)

sum (x{) =y x{F,
i=1

where CONCAT is the concatenation function that concatenate several vectors into a long
vector.

3.3 GCIN

We choose GCN and GIN from the existing GNNSs for matrix feature extraction due to
their low computational complexity (O(N)). Moreover, each layer can be implemented
using Sparse Matrix-Vector Multiplication (SpMV) operations, facilitating integration of
these GNN s into existing iterative software frameworks.

However, our experimental results revealed that GCN and GIN did not yield satisfac-
tory outcomes. The issue with GCN was the occurrence of NAN (Not A Number) errors
during the training phase. Upon conducting a thorough debugging process, we identi-
fied the source of these NAN errors to be the degree matrix D in Eq. (3.4). These matrices
in the data set originate from the PDE discretization. Therefore, some row-sums are equal
to 0, indicating that certain Di =0, which results in le 172 being “INF” and “NAN" in the
following computation. When |a;;| was utilized as the edge weight and matrices from
2D diffusion equations (Section [4.1.T)) were used as data set, the training process of GCN
finished without issues. However, in the test set, the computational efficiency of the 6
predicted by GCN was inferior to that predicted by GCIN.

The problem encountered with GIN pertained to the absence of a reduction in the
loss value during training, as shown in Fig. 4l This phenomenon is plausible given the
nature of this problem, where the absence of normalization in GIN (refer to Eq. and
Eq. (3.8)) allows values to accumulate, consequently impeding the convergence process.

The experiments of GIN reveal that normalization is essential for our problem.
Nonetheless, improper normalization can lead to NAN errors during training. After
testing and analyzing, we introduce the Graph Convolutional Isomorphism Network

210 H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220

0.425 4

0.400 4

0.375 4

0.350 4

loss

0.325 4

0.300 4

0.2754

0.250 4

o 1 2 3 a 5 & 7 8 9
epoch

Figure 4: The training process of GIN.

(GCIN), which amalgamates the attributes of both GCN and GIN. A single layer of GCIN
is defined as

XW=MLP® | Y wpxEV, (3.9)
U]'EN(U,')UUZ'
and the matrix form is
xP = axYag®. (3.10)

The Readout function is

K 1 \4 *)
k=1 i=1

Notably, normalization is integrated within the Readout function rather than being in-

corporated into the message passing process.

3.4 Optimizing strong threshold 6

Following the extraction of matrix features, the subsequent phase involves the optimiza-
tion of the strong threshold 6. A conventional approach encompasses training a regres-
sion model, where matrix features and 6 are inputs, and the performance metric (such as
computation time, iteration count, or convergence factor) serves as the output. Then the
optimization of 0 relies on this regression model. Here, let the graph feature vector X,
denote the matrix features, y denote the performance metric, and f denote the regression
function. Consequently, the regression model is expressed as follow

y=f(Xs, 0). (3.12)

H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220 211

Upon completion of the training phase, the regression function f is established. Given
any matrix, the optimization problem can be written as

max y=f(X,, 0),

ol 0?1() y=f(Xg, 0)
which is a black-box optimization problem. To circumvent the need for solving this prob-
lem, we forego the creation of a regression model like Eq. (3.12), opting to establish a
direct mapping between matrix features and the optimal 6:

eopt :g(Xg>/

where g is the mapping constructed through MLP. Let 0,,, denote the predicted value of
8 by AutoAMG(0), and 6,; denote the optimal value of 6. We use MSE (Mean Squared
Error) [27] function as the loss function, then the loss is defined as

Loss= MSE(eoptz Gauto)
14 5
=37 Z(eopt,i _Guuto,i) ’ (313)
i=1

where M is the batch size, 6, is the optimal 6 value of the i-th matrix in the batch and
Oauto,i is the predicted 6 value of the i-th matrix in the batch. The program of GCIN and
optimization are implemented by PyTorch Geometric [28]].

4 Numerical experiments

We validated the effectiveness of AutoAMG(f) based on three types of problems: the
diffusion equations (in Section [4.I), the 3D radiation diffusion equations from inertial
confinement fusion (in Section , and the 3D time-harmonic Maxwell’s equations (in
Section . The matrix generation programs are available on githublﬂ

The optimal 0 for each matrix is determined through grid search. We calculate the
number of iterations by considering values of 6 in increments of 0.01 within the range
of [0.01,0.99]. The optimal 6 is chosen as the one that results in the minimum number
of iterations. The linear equations are solved using the JXPAMG software [29], utilizing
the GMRES algorithm with the AMG preconditioner. The coarsening algorithm in AMG
is PMIS. We set an upper limit of 500 iterations, and the stopping criterion is that the
relative residual is less than 10~8.

In the experiments, the GCIN model comprises three layers. The initial node features
have a dimension of 1, representing the node degrees. Then the input feature dimension
is equal to 1 in the first layer of GCIN, and the output feature dimension is set to 32. The
input and output feature dimensions for the second and third layers are also both set to

Fhttps:/ / github.com /zhf-0/autoamg-matrix

212 H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220

iterations

Figure 5: The matrix is from 2D diffusion equation with 9409 rows. Histogram is the number of iterations with
left y-axis, and red line is the elapsed time with right y-axis.

32. Consequently, the matrix features extracted by GCIN have a dimensionality of 32.
Furthermore, the MLP used to approximate the mapping between matrix features and
the optimal 6 consists of only one hidden layer. It has an input dimension of 32 and an
output dimension of 1.

Remark 4.1. The number of iterations is selected as the performance metric. While con-
sidering the operator complexity of AMG is closely related to the value of 0, the elapsed
time may seem like a preferable alternative. However, after plotting the number of itera-
tions and time in the same picture (Fig.5), it is evident that their trends are quite similar.
Furthermore, given the matrix sizes in our experiments, some elapsed times are too short
for precise measurement and are susceptible to the runtime environment. In contrast, the
number of iterations remains unaffected by the environment. Hence, we have decided to
utilize the number of iterations as our primary metric.

The meaning of notations in the following tables are similar. Take Table |3|as an ex-
ample, the first column “nrow” is the average number of rows of matrices in the test set;
“iter” is the average number of iterations; “time” is the average time used to solve linear
equations in the test set. In the column of “AutoAMG(6)”, the “iter” and “time” corre-
spond to the average number of iterations and average time based on the 6 predicted by
AutoAMG(0). The column “speedup” is the average time of default 6 (6 =0.25 in 2D,
6 =0.5in 3D) divided by the average time of AutoAMG(9).

4.1 Diffusion equations

Diffusion equations (Eq.) include the 2D and 3D cases. The domain is [0,1]%(d=2,3),
and the diffusion coefficients are

H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220 213

By By

Bs DBy

Figure 6: An example of bx=>by=2 blocks (B;, i=1,2,3,4) with equal size. Diffusion coefficient x is the same
in each block, when B; #B;, &; #k;.

10M0 0 0
Mi‘o
":[100 1024“], k=| o 1oMn o |, 4.1)
0 0 10M»

where 19, r1, and r, are random numbers in the interval (0,1), and M € N} is the param-
eter that influences the multiscale property of the matrix. A larger value of M generally
leads to a more pronounced multiscale property within the generated matrix. The com-
putational domain is uniformly divided into blocks or subdomains with equal size, as
shown in Fig. @ While the diffusion coefficient ¥ remains consistent within each block,
it differs between different blocks. Therefore, even with identical mesh size and block
count, different random seeds can generate distinct matrices.

When discretizing Eq. (2.3), matrices with varied properties and sizes can be gener-
ated by selecting different random number seeds Seed, mesh sizes nx,ny,nz in each axis
direction, block counts bx,by,bz in each axis direction, and the parameter M. More specif-
ically, the matrix data used in experiments are obtained from the following two cases:

e 2D diffusion equations: nx =ny € (50,100), bx = by € (10,20), M =5, and random
seed Seed is equal to the index of the matrix.

e 3D diffusion equations: nx =ny =nz € (30,40), bx =by =bz € (10,20), M =5, and
random seed Seed is equal to the index of the matrix.

4.1.1 2D diffusion equations

The training and test sets consist of 80 and 20 matrices respectively. The mesh size nx =
ny € (50,100) and the number of blocks bx=by € (10,20) are both random values. The test
results are shown in Table[3

Our objective is to assess the solving efficiency of the 6 predicted by AutoAMG(0) in
comparison to the default 0. Given that the default value of 8 for 2D problems is 0.25,

214 H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220

Table 3: Test results of 2D diffusion equations.

optimal 0=0.25 AutoAMG(0)
nrow - - - - - - speedup
iter time(s) iter time(s) iter time(s)
5659 185.25 0.15 496.20 038 257.30 0.21 1.81

Table 3 presents the number of iterations and time corresponding to § =0.25. Despite the
improved solving efficiency achieved by AutoAMG(6), a noticeable gap remains between
the attained performance and the optimal one.

4.1.2 3D diffusion equations

The training and test sets consist of 80 and 20 matrices respectively. The mesh size nx =
ny =nz € (30,40) and number of blocks bx = by = bz € (10,20) are random values. The
results of the test set are shown in Table |4, and the notations used are similar to those
in Table 3l In 3D equations, The number of iterations and time tuned by AutoAMG(0)
are close to the optimal ones, which is a significant improvement over the default value
6=0.5.

Table 4: Test results of 3D diffusion equations.

optimal 6 0=0.5 AutoAMG(0)
Nnrow - - - - - : speedup
iter time(s) iter time(s) iter time(s)
40515 34.00 029 233.20 1.52 4275 0.34 447

4.1.3 Mixed 2D and 3D diffusion equations

A more common scenario arises when the origin of a matrix is unknown, making it chal-
lenging to determine whether it was discretized from a 2D or 3D problem. In such cases,
AutoAMG(0) is required to process the input matrix without additional information. Ma-
trices from 2D and 3D diffusion equations are combined to make up the training and test
sets, comprising 160 and 40 matrices respectively. To ensure a balanced distribution of
matrix data, half of the data originates from 2D problems and the remaining half from
3D problems, both in the training and test sets. Since the dimension is unknown, we cal-
culate the average number of iterations and computation time for all matrices in the test
set at 0 =0.25 and 6 =0.5, as displayed in Table

From Table 5} it is evident that the predicted 6 by AutoAMG yields higher solving
efficiency compared to default values of 6§ =0.25 and 6 =0.5. However, training with
mixed matrices results in a less robust model. The speedup over § =0.25 and 6 =0.5 is
1.34 and 3.10, whereas the speedup in Table [3|and] are 1.81 and 4.47. Consequently, it is
advisable to train the model using matrices from the same dimension.

H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220 215

Table 5: Test results of the mixed problems.
optimal 6 0=0.25 6=0.5 AutoAMG(0) speedup
iter time(s) iter time(s) iter time(s) iter time(s) 0.25 05
109.63 0.22 273.83 0.39 291.00 0.90 179.88 0.29 1.34 3.10

4.2 3D radiation diffusion equations

The matrices employed in the previous sections originate from diffusion equations, con-
taining fewer than 5x 10 rows. To ascertain the generalizability of AutoAMG(6), we em-
ploy all matrices from Section [4.1.2]for training and 10 matrices discretized from 3D radi-
ation diffusion equations (with approximately 6.29 x 10° rows) for testing. Experimental
results confirm that AutoAMG(f) can be trained on smaller matrices and subsequently
applied to larger matrices.

The formulas of 3D radiation diffusion equations [7,30] are

oT, 1 B

Cvrﬁ - ;v (KrVTr) —wer(Te Tr)/
JaT, 1

Cveﬁ_;v(Keng) :w€1(T1_TQ)+WQr(Tr_Tg), (42)
oT, 1

Cvig_ﬁv'(KiVTi) =wei(Te=Ti),

where p is the density; T;,T,,T; are the temperatures of photons, electrons, and ions, re-
spectively; cyr,Coe,Cyi are the specific heat at constant volume of photons, electrons, and
ions, respectively; K, = f,(p,T;), K. = fe(p,Te) and K; = fi(p,T;) (fy, fe, fi are functions) are
diffusion coefficients; and w,; and w,, are the respective energy exchange coefficients
between electrons and ions, and electrons and photons. Eq. is a nonlinear partial
differential equation. It is discretized in time by the backward Euler method, then the
nonlinear problem is transformed into a linear problem by the coagulation coefficient
method, and the linear problem is discretized by the finite volume method. The sparse
pattern of the discretized matrix is

Ar Dge 0
A= |Dgr A Dgp]. (4.3)
0 D A

The block matrices Ag, Ag, Ay in Eq. have the same sparse pattern, and the block
matrices Dgg, D are diagonal matrices.

The training set consists of 100 matrices from 3D diffusion equations (Section [4.1.2),
while the test set includes 10 matrices from Eq. (4.2). The results are shown in Table[e| The
number of iterations and computation time based on the 6 predicted by AutoAMG(0) are
close to optimal ones, which is a substantial improvement compared to the default §=0.5.

216 H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220

Table 6: Test results of 3D radiation diffusion equations.

optimal 6 0=0.5 AutoAMG(H)
iter time(s) iter time(s) iter time(s)
6291456 31.50 31.52 48420 399.00 3540 34.27 11.63

nrow

speedup

0.30

0.261 Y e A X e 36 X e = = X

0.25 v v T T T T T T T T
o 1 2 3 4 5 6 7 8 9
index

Figure 7: The inference time of each matrix in the test set.

Moreover, in contrast with the speedup shown in Table[d, AutoAMG(6) demonstrates the
capability to achieve even greater speedup. Such results illustrate the benefit of tuning 6
in practical problems.

In terms of the overhead induced by AutoAMG(6)), we measure the inference time of
each matrix in the test set, and the results are shown in Fig.[7l The x axis in the figure
is the index of the matrix, and the y axis is the inference time. Note that the average
inference time is 0.26 s, which is negligible compared to the average solving time of 34.27
s in Table[f} In fact, according to Eq. (3.9), the message-passing process of GCIN can be
effectively realized through the SpMV operation, hence it’s conceivable that the overhead
of GCIN would be inconsequential.

4.3 3D time-harmonic Maxwell’s equations

The time-harmonic Maxwell’s equations are derived from the original Maxwell’s equa-
tions, which describe the behavior of electromagnetic fields in the time domain. The time-
harmonic Maxwell’s equations are particularly useful when dealing with electromag-
netic waves and phenomena at a single frequency, such as those found in radio waves,

H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220 217

Table 7: Test results of 3D time-harmonic Maxwell's equations.

optimal 6 6=0.5 AutoAMG(0)
nrow - - - - : - speedup
iter time(s) iter time(s) iter time(s)
60508 234.45 770 53595 1354 24550 @ 8.02 1.69

microwaves, and optical frequencies. Solving Ax =b from the discretization of time-
harmonic Maxwell’s equations can be significant challenges due to the ill-conditioning
associated with high wave numbers.

The formulas of the 3D time-harmonic Maxwell’s equations [20-22] are:

2
Vx(VXE)—kE=f, E€Q, (4.4)
nxE=g, E€dQ,
where E € R is the electric field, k2 is the wave number, 7 is the outer normal vector, fis
the source item and g is the Dirichlet boundary condition. Eq. are discretized using
the Nédélec finite element method [31] on a tetrahedral mesh. The mesh size is defined
as nx =ny=nz € (10,40), then the number of rows in the matrices varies between 7930
and 462520. The wave number k? is within the range of (1,15).

Solving linear algebraic equations derived from time-harmonic Maxwell’s equations
is more challenging than those stemming from diffusion equations. As a result, in this
experiment, we set the upper limit of iterations to 1000 and the relative residual to be less
than 10~7. The experiment employed training and test sets comprising 80 and 20 matri-
ces, respectively. Table [/]displays the results of the test set. While the speedup achieved
by AutoAMG(f) may not be exceptionally significant, its efficiency closely approaches
the optimal performance.

5 Summary

In this paper, we propose AutoAMG(0), an auto-tuning method designed to adaptively
adjust the strong threshold 6 in the AMG algorithm for matrices from different problems.
The effectiveness of this method is verified through a variety of numerical experiments.

An innovative contribution of this paper is the introduction of the GCIN algorithm
for extracting matrix features. In diffusion problems, when compared to default 6, the
AutoAMG(0) method based on GCIN demonstrates a speedup by a factor of 1.81 in 2D
diffusion problems and 4.47 in 3D diffusion problems. Furthermore, AutoAMG(0) dis-
plays versatility by effectively handling matrices from both 2D and 3D problems. Al-
though it shows superior efficiency compared to default values, the speedup is only 1.34
in 2D problems and 3.10 in 3D problems.

Notably, in 3D radiation diffusion problems, AutoAMG(0) effectively tunes the num-
ber of iterations and time that are close to the optimal results, achieving an impressive

218 H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220

acceleration by a factor of 11.63 over the default 6 = 0.5. The experiments reveal that
AutoAMG(0) generalizes well to new large matrices after training on small matrices.

AutoAMG(0) can also be used to accelerate computation in 3D time-harmonic
Maxwell’s equations, achieving an acceleration by a factor of 1.69 over the default =0.5.
Additionally, the number of iterations of the predicted 6 closely approximates the opti-
mal result, indicating that AutoAMG(0) has the potential to attain optimality in different
problems.

AutoAMG(0) serves as a proof of concept, which illustrates the applicability of GNN-
based feature extraction methods for optimizing parameters of iterative methods. This
strategy can be applied to different equations and different iterative methods.

Our future research will continue to focus on AMG algorithm optimization, using
GNN to optimize the smoothing, interpolation, restriction, and other operators in AMG.

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China
(62032023).

References

[1] John W Ruge and Klaus Stiiben. Algebraic Multigrid. In Multigrid methods, pages 73-130.
SIAM, 1987.

[2] K. Stiiben. A Review of Algebraic Multigrid. J. Comput. Appl. Math., 128(1):281-309, 2001.
Numerical Analysis 2000. Vol. VII: Partial Differential Equations.

[3] Jinchao Xu and Ludmil Zikatanov. Algebraic Multigrid Methods. Acta Numer., 26:591-721,
2017.

[4] Robert D Falgout and Ulrike Meier Yang. HYPRE: A Library of High Performance Precon-
ditioners. In International Conference on Computational Science, pages 632—-641. Springer, 2002.

[5] S Vakili and M Darbandi. Recommendations on Enhancing The Efficiency of Algebraic
Multigrid Preconditioned GMRES in Solving Coupled Fluid Flow Equations. Numer. Heat
Transf. Part B Fundam., 55(3):232-256, 2009.

[6] Nikola Kosturski, Svetozar Margenov, Peter Popov, Nikola Simeonov, and Yavor Vutov. Per-
formance Analysis of Block AMG Preconditioning of Poroelasticity Equations. In Large-Scale
Scientific Computing: 10th International Conference, LSSC 2015, Sozopol, Bulgaria, June 8-12,
2015. Revised Selected Papers 10, pages 377-384. Springer, 2015.

[7] Xiaowen Xu and Zeyao Mo. Algebraic Interface-Based Coarsening AMG Preconditioner for
Multiscale Sparse Matrices with Applications to Radiation Hydrodynamics Computation.
Numer. Linear Algebra Appl., 24(2):e2078, 2017.

[8] Paola F Antonietti, Matteo Caldana, and Luca Dede. Accelerating Algebraic Multigrid Meth-
ods via Artificial Neural Networks. Vietnam Journal of Mathematics, pages 1-36, 2023.

[9] America Holloway and Tzu-Yi Chen. Neural Networks for Predicting The Behavior of Pre-
conditioned Iterative Solvers. In International Conference on Computational Science, pages 302—
309. Springer, 2007.

H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220 219

[10] Sanjukta Bhowmick, Victor Eijkhout, Yoav Freund, Erika Fuentes, and David Keyes. Appli-
cation of Machine Learning to The Selection of Sparse Linear Solvers. Int. |. High Perform.
Comput. Appl., 2006.

[11] Paul R. Eller, Jing Ru C. Cheng, and Robert S. Maier. Dynamic Linear Solver Selection for
Transient Simulations Using Multi-Label Classifiers. In Procedia Computer Science, volume 9,
pages 1523-1532. Elsevier B.V., 2012.

[12] Pate Motter, Kanika Sood, Elizabeth Jessup, and Boyana Norris. Lighthouse: An Automated
Solver Selection Tool. In Proceedings of the 3rd International Workshop on Software Engineering
for High Performance Computing in Computational Science and Engineering, pages 16-24, 2015.

[13] Alexandr Katrutsa, Talgat Daulbaev, and Ivan Oseledets. Deep Multigrid: Learning Prolon-
gation And Restriction Matrices. arXiv preprint arXiv:1711.03825, 2017.

[14] Daniel Greenfeld, Meirav Galun, Ron Kimmel, Irad Yavneh, and Ronen Basri. Learning to
Optimize Multigrid PDE Solvers. arXiv preprint arXiv:1902.10248, feb 2019.

[15] Ilay Luz, Meirav Galun, Haggai Maron, Ronen Basri, and Irad Yavneh. Learning Algebraic
Multigrid Using Graph Neural Networks. arXiv preprint arXiv:2003.05744, mar 2020.

[16] Yuyan Chen, Bin Dong, and Jinchao Xu. Meta-Mgnet: Meta Multigrid Networks for Solving
Parameterized Partial Differential Equations. J. Comput. Phys., 455:110996, 2022.

[17] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

[18] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful Are Graph
Neural Networks? arXiv preprint arXiv:1810.00826, 2018.

[19] Xu Xiaowen, Mo Zeyao, and An Hengbin. Algebraic Two-Level Iterative Method for 2-D
3-T Radiation Diffusion Equations. Chinese |. Comput. Phys., 26(1):1, 2009.

[20] M El Bouajaji, Victorita Dolean, Martin] Gander, and Stephane Lanteri. Optimized Schwarz
methods for the time-harmonic Maxwell equations with damping. SIAM Journal on Scientific
Computing, 34(4):A2048-A2071, 2012.

[21] Ana Alonso and Alberto Valli. An optimal domain decomposition preconditioner for low-
frequency time-harmonic Maxwell equations. Mathematics of Computation, 68(226):607-631,
1999.

[22] Chen Greif and Dominik Schotzau. Preconditioners for the discretized time-harmonic
Maxwell equations in mixed form. Numerical Linear Algebra with Applications, 14(4):281-297,
2007.

[23] Robert D Falgout, Panayot S Vassilevski, and Ludmil T Zikatanov. On Two-Grid Conver-
gence Estimates. Numer. Linear Algebra Appl., 12(5-6):471-494, 2005.

[24] Michael Luby. A Simple Parallel Algorithm for The Maximal Independent Set Problem. In
Proceedings of the seventeenth annual ACM symposium on Theory of computing, pages 1-10, 1985.

[25] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip.
A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Netw. Learn. Syst.,
32(1):4-24, 2020.

[26] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics
(TOG), 38(5):1-12, 2019.

[27] Peter J Bickel and Kjell A Doksum. Mathematical Statistics: Basic Ideas and Selected Topics,
Volumes I-II Package. CRC Press, 2015.

[28] Matthias Fey and Jan E. Lenssen. Fast Graph Representation Learning with PyTorch Geo-
metric. In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[29] Xiaowen Xu, Xiaoqgiang Yue, Runzhang Mao, Yuntong Deng, Silu Huang, Haifeng Zou, Xiao

220 H. Zou et al. / Commun. Comput. Phys., 36 (2024), pp. 200-220

Liu, Shaoliang Hu, Chunsheng Feng, Shi Shu, et al. JXPAMG: A Parallel Algebraic Multigrid
Solver for Extreme-Scale Numerical Simulations. CCF Trans. HPC (2022), pages 1-12, 2022.
[30] Silu Huang, Xiaowen Xu, et al. aSetup-PCTL: An Adaptive Setup-Based Two-Level Precon-
ditioner for Sequence of Linear Systems of Three-Temperature Energy Equations. Commun.
Comput. Phys., 32(5):1287-1309, 2022.
[31] Jean-Claude Nédélec. Mixed finite elements in R®. Numerische Mathematik, 35:315-341, 1980.

	Introduction
	Sensitivity of strong threshold
	AMG algorithm
	Multiscale matrix
	Impact of

	AutoAMG(): Auto-tune for multiscale matrices
	AutoAMG() procedure
	GNN
	GCIN
	Optimizing strong threshold

	Numerical experiments
	Diffusion equations
	2D diffusion equations
	3D diffusion equations
	Mixed 2D and 3D diffusion equations

	3D radiation diffusion equations
	3D time-harmonic Maxwell's equations

	Summary

