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Abstract. In this paper, we develop and analyze two stabilized mixed virtual element
schemes for the Stokes problem based on the lowest-order velocity-pressure pairs (i.e.,
a piecewise constant approximation for pressure and an approximation with an accu-
racy order k = 1 for velocity). By applying local pressure jump and projection stabi-
lization, we ensure the well-posedness of our discrete schemes and obtain the corre-
sponding optimal H1- and L2-error estimates. The proposed schemes offer a number of
attractive computational properties, such as, the use of polygonal/polyhedral meshes
(including non-convex and degenerate elements), yielding a symmetric linear system
that involves neither the calculations of higher-order derivatives nor additional cou-
pling terms, and being parameter-free in the local pressure projection stabilization.
Finally, we present the matrix implementations of the essential ingredients of our sta-
bilized virtual element methods and investigate two- and three-dimensional numeri-
cal experiments for incompressible flow to show the performance of these numerical
schemes.
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1 Introduction

Incompressible Stokes flow, as one of the most important and valuable problems, in-
volves many practical applications, such as oil exploration, pipeline transportation, sed-
imentation, modeling of bio-suspensions, construction of efficient fibrous filters, and de-
velopment of energy efficient micro-fluidic devices. Due to the limitations of fluid ex-
periments, using computer-based numerical simulation remains an effective and flexible
method in practical applications. The classical finite element method, especially with the
lowest-order conforming pair (i.e., piecewise linear/bilinear C0 velocities and piecewise
constant pressures) with convenient construction (i.e., simpler shape functions) and fast
implementation (i.e., fewer degrees of freedom), has become the preferred solution for
such problems; see, e.g., [1–4] and the references cited therein. However, an important
fact is that the lowest-order velocity-pressure pairs violate the LBB [5] (inf-sup) stability
condition, which often leads to unphysical pressure oscillations. To overcome this diffi-
culty, a series of methods have been developed, such as penalty methods [6–8], consis-
tently stabilized methods [9, 10], pressure gradient projection methods [11–13], related
local pressure gradient stabilization methods [14], offset pressure stabilization meth-
ods [15], and projection-based stabilized methods [16, 17], among others.

As an extension of the classical finite elements to general polygonal elements, the
virtual element method (VEM) has gained widespread attention since its theory [18]
and matrix implementation [19] were proposed. Then the authors in [20] enhanced a
discrete space and gave a specific process in calculating an L2-projection operator for a
three-dimensional reaction-diffusion problem. By combing the ideas of VEM with other
methods, the Hα-conforming VEM [21, 22], the nonconforming VEM [23, 24], and the
H(div)/H(curl)-VEM [25, 26] were designed. Due to the advantages of the virtual ele-
ment method in mesh flexibility and structure-preserving spatial construction, the VEM
has been widely used in adaptive mesh refinement [27], elliptic bulk-surface PDEs [28],
structural mechanics elasticity [29, 30] and incompressible fluid problems [31–36].

Combining the widespread practical applications of the lowest-order elements with
the advantages of the virtual element method, it is crucial to construct the lowest-order
virtual element pair, which, in fact, not only faces a similar situation to the lowest-order
mixed finite elements (that is, the pair fails to satisfy the inf-sup stability condition), but
also needs to consider the computability of additional stabilization terms introduced to
meet this stability condition (since the VEM lacks explicit expressions of basis functions).
About these challenges, the authors in [37] have developed the ’equal-order’ stabilized
virtual element pairs for the Stokes problem on polygonal meshes, utilizing a projection-
based stabilization to circumvent the discrete inf-sup condition. In addition, the authors
in [38] have proposed a least-squares type stabilization VEM for the Stokes problem,
which is suitable for arbitrary combinations of velocity and pressure. Also, there is some
research on stabilized virtual element methods for other problems, such as the Navier-
Stokes [39], Oseen [40], advection-diffusion-reaction [41–43] problems, among others.
Furthermore, it is worth mentioning that [31] has also provided a lowest-order virtual el-
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