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Abstract. A moving mesh finite element method is studied for the numerical solution
of Bernoulli free boundary problems. The method is based on the pseudo-transient
continuation with which a moving boundary problem is constructed and its steady-
state solution is taken as the solution of the underlying Bernoulli free boundary prob-
lem. The moving boundary problem is solved in a split manner at each time step:
the moving boundary is updated with the Euler scheme, the interior mesh points are
moved using a moving mesh method, and the corresponding initial-boundary value
problem is solved using the linear finite element method. The method can take full
advantages of both the pseudo-transient continuation and the moving mesh method.
Particularly, it is able to move the mesh, free of tangling, to fit the varying domain
for a variety of geometries no matter if they are convex or concave. Moreover, it is
convergent towards steady state for a broad class of free boundary problems and ini-
tial guesses of the free boundary. Numerical examples for Bernoulli free boundary
problems with constant and non-constant Bernoulli conditions and for nonlinear free
boundary problems are presented to demonstrate the accuracy and robustness of the
method and its ability to deal with various geometries and nonlinearities.
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1 Introduction

Bernoulli free boundary problems (FBPs) arise in ideal fluid dynamics, optimal insula-
tion, and electro chemistry [17] and serve as a prototype of stationary FBPs. They have
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been extensively studied theoretically and numerically; e.g., see [2,7,9,10,12,15,17,36,42].
To be specific, we consider here a typical Bernoulli FBP

−∆u=0, in Ω,
u=1, on Γ1,
u=0, on Γ2,
− ∂u

∂n =λ, on Γ2,

(1.1)

where Ω is a connected domain in R2 (see Fig. 1), λ is a positive constant, Γ1∪Γ2 = ∂Ω,
Γ1 is given and fixed, and Γ2 is unknown a priori and part of the solution. We emphasize
that the numerical method studied in this work can be applied to more general FBPs
without major modifications, and several such examples are presented in Section 5.

The Neumann boundary condition in (1.1) is called the Bernoulli condition. This con-
dition can be shown to be equivalent to |∇u|=λ (with the help of the Dirichlet boundary
condition on Γ2). Moreover, the problem is called an exterior (or interior) Bernoulli prob-
lem when Γ2 is exterior (or interior) to Γ1 (cf. Fig. 1). It is known [2, 5, 17] that an exterior
Bernoulli problem has a solution for any λ>0 and such a solution is unique and elliptic
when the domain enclosed by Γ1 is convex. Loosely speaking, a solution is said to be
elliptic (or hyperbolic) if Γ2 is getting closer to (or moving away from) Γ1 as λ increases.
On the other hand, an interior Bernoulli problem has a solution only for λ large enough
and such solutions are not unique in general. Both elliptic and hyperbolic solutions can
co-exist for the same value of λ for interior problems.

While the differential equation and boundary conditions are linear, the problem (1.1)
is actually highly nonlinear due to the coupling between u and Ω. A number of numer-
ical methods have been developed for solving Bernoulli FBPs; e.g., see a summary of
early works for general FBPs [12, Chapter 8], the explicit and implicit Neumann meth-
ods [17], a combined level set and boundary element method [31], shape-optimization-
based methods [14, 15, 21, 36], the cut finite element method [9], the quasi-Monte Carlo
method [7], the comoving mesh method [40], and the singular boundary method [11]. A
common theme among those methods is trial free boundary and thus iterating between
the update of the free boundary and the solution of the corresponding boundary value
problem. Challenges for this approach include how to choose the initial guess for Γ2 to
make the iteration convergent and to re-generate or deform the mesh to fit the varying
domain.

In this work we shall present a moving mesh finite element method for the numer-
ical solution of Bernoulli FBPs. The method is based on the pseudo-transient continu-
ation (e.g., see Fletcher [16, Section 6.4]) with which we construct an equivalent time-
dependent problem (a moving boundary problem or an MBP), march it until the steady
state is reached, and take the steady-state solution as the solution of Bernoulli FBP (1.1).
The pseudo-transient continuation is widely used for difficult nonlinear problems in sci-
ence and engineering because it can be made convergent for a large class of initial solu-
tions. Another advantage of using the pseudo-transient continuation is that the corre-
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