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Abstract. We elaborate a numerical method for a three-dimensional hydrodynamic
multi-species plasma model described by the Euler-Maxwell equations. Our method is
inspired by and extends the one-dimensional scheme from [P. Degond, F. Deluzet, and
D. Savelief, Numerical approximation of the Euler-Maxwell model in the quasineutral limit,
Journal of Computational Physics, 231 (4), pp. 1917–1946, 2012]. It can cope with large
variations of the Debye length λD and is robust in the quasi-neutral limit λD→0 thanks
to its asymptotic-preserving (AP) property. The key ingredients of our approach are (i)
a discretization of Maxwell’s equations based on primal and dual meshes in the spirit
of discrete exterior calculus (DEC) also known as the finite integration technique (FIT),
(ii) a finite volume method (FVM) for the fluid equations on the dual mesh, (iii) mixed
implicit-explicit timestepping, (iv) special no-flux and contact boundary conditions at an
outer cut-off boundary, and (v) additional stabilization in the non-conducting region
outside the plasma domain based on direct enforcement of Gauss’ law. Numerical
tests provide strong evidence confirming the AP property of the proposed method.
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1 Introduction

The starting point for this work was the desire to numerically simulate the formation
and evolution of electric arcs at atmospheric pressures. Following common practise, we
rely on a mathematical description by means of a hydrodynamic multi-species plasma
model, which boils down to an extended Maxwell-Euler system. The arc phenomenon
covers a wide range of plasma regimes and, thus, the design goal was a numerical model
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capable of dealing with all of them seamlessly and simultaneously. Thus, in this work, as
in [11], the focus is on asymptotic-preserving (AP) discretization in the quasi-neutral limit
λ → 0, where λ is the rescaled Debye length, see Section 2.2 for the underlying scaling
arguments and [9,11] for a discussion of the importance of the AP property of numerical
plasma models.

Our approach is inspired by [11], but goes beyond that work in various directions:

• We supplement the Maxwell-Euler system by inter-species friction terms.

• We extend the spatially one-dimensional scheme of [11] to three spatial dimensions
using discrete exterior calculus (DEC) to discretize Maxwell’s equations combined
with a low-order finite volume method for Euler’s equations.

• We propose a stabilization in non-conducting regions which is essential for the ef-
ficacy of our method.

We stay close to [11] in terms of discretization in time employing semi-implicit time-
stepping and base our illustration on the model situations shown in Fig. 1. Yet, we would
like to remark that the mesh-based numerical scheme proposed in this paper can in prin-
ciple be adapted to settings more general than those of Fig. 1. In particular, we do not
assume any rotational symmetry, which would allow reduction to two spatial dimen-
sions [35].

The quasi-neutral limit of the Maxwell-Euler system leads to a singularly perturbed
problem, that is, the limiting PDE system changes its type†. This poses a challenge for
simulations in settings encompassing different regimes. Beside the quasi-neutral limit,
we remind that singularly perturbed problems occur in extensively many physical mod-
els, e.g., in the case of vanishing viscosity problem [3, 28, 48], the zero-relaxation-limit of
kinetic-type equations [1, 43], and the incompressible limit of compressible flows [29].
Throughout, it is essential that numerical schemes remain valid even if crucial model
parameters approach the limit. These schemes are then said to be asymptotic-preserving
(AP): Let us assume that we discretize a parameter (denoted by λ) dependent model
Pλ, which converges to a limit P0 as λ → 0, by the scheme Pλ

h where h denotes some
discretization parameter, e.g., the mesh size. The AP property amounts to uniform con-
vergence of Pλ

h to the Pλ as λ→ 0. The concept is effectively depicted by a commuting
diagram in [27, Fig. 1]. AP schemes have been extensively studied for various prob-
lems, e.g., the diffusive limit of kinetic equations [26, 34], the low Mach-number limit of
compressible flow models [10,19], magnetohydrodynamics [8], the quasi-neutral limit of
drift-diffusion equations [2, 5]. For more information readers are referred to the compre-
hensive reviews [9, 27].

The content of this paper is organized as follows: In Section 2, we give a full descrip-
tion of the underlying equations of the Maxwell-Euler system and its rescaling proce-
dure. Meanwhile, the boundary conditions in our setting is elaborated. A reformulation

†The type of the Maxwell-Euler system switches from hyperbolic to mixed for λD →0.
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