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Abstract. Hypersonic vehicles create high-temperature environments, thus causing
air molecules to undergo chemical reactions. As a result, the nonlinearity of the map-
ping relationship between heat flux and inflow condition is strengthened. Accurately
predicting the heat flux of real gases using machine learning methods relies on an
amount of training data of real gas, but the computational cost is often unacceptable.
To solve the issue stated, we propose a novel neural network named Physically Guided
Neural Network based on Transfer Learning (TL-PGNN). We design a new network
architecture to depict physical laws and use heat flow data of ideal gases to enhance
the network’s capability to depict heat flow from only a few real gas samples. Exper-
iments of sphere demonstrate that, compared to ordinary DNN and PGNN, applying
TL-PGNN decreases the mean L1 error by 72.66% and 24.53% on the test set, respec-
tively.
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1 Introduction

When the flight vehicle is flying at hypersonic speed, the airflow and the fuselage surface
undergo intense friction, and the air is compressed leading to a sharp rise in air temper-
ature. The air and the fuselage surface produce a huge temperature difference. Part of
the heat energy is transferred to the fuselage. This heating phenomenon is called aero-
dynamic heat. Aerodynamic heat causes the surface temperature of the airframe to rise
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sharply, affecting gas flow and structural protection [1–3]. Therefore, accurate prediction
of the aerodynamic heat distribution at hypersonic speeds is essential for the optimiza-
tion of the aerodynamic shape of the vehicle and the design of thermal protection [4].
Traditional aerodynamic heat prediction methods include numerical computation, ap-
proximate estimation, ground-based wind tunnel experiments, flight experiments, etc.
However, they still face many difficulties in practical applications. High-fidelity numer-
ical computation methods are widely used in the simulation of aerodynamic heat and a
series of engineering computation software is integrated on this basis. A series of engi-
neering calculation software, such as AEROHEAT, LATCH, and LARUA etc [5–7]., have
been integrated to perform full-scale numerical simulation of the vehicle with high ac-
curacy. But the numerical computation needs a lot of time and requires high-quality
accurate mesh, which makes it difficult to optimize quickly in the design stage of the
vehicle. In approximation methods, theoretical formulations are designed to provide
reasonably accurate results quickly [8–10], most of which are based on Plandtl’s bound-
ary layer theory. For example, Fay and Riddle obtained a stagnant heat flux formulation
under the equilibrium boundary layer assumption. Similar methods for stagnant heat
flux prediction include the Kemp-Riddle method, the Lees method, the Scala method,
and the Romig method [8–10]. Ground-based wind tunnel experiments can predict the
aerodynamic heat distribution pattern relatively accurately, but there is a lack of aerody-
namic/thermal correlation theories and correlation methods that can accurately reflect
the hypersonic flow characteristics11. Flight experiments can specifically monitor the
aerodynamic heat of the design conditions, but they are very costly and are limited by
experimental cycle time [11–13].

In recent years, machine learning methods have advanced rapidly, achieving accurate
prediction of previously unknown data using existing samples. These techniques have
achieved excellent generalization performance and are widely used in various fields,
including image recognition [14], natural language processing [15], partial differential
equation solving [16], aerodynamic modelling [17], and scientific data prediction [18].
Machine learning has also been extensively used to analyze hypersonic heat. Gang Dai
[19] has established a mapping relationship between wall heat fluxes and extreme tem-
perature points of the grid. This allows for the accurate prediction of the heat fluxes
corresponding to coarse grids on the wall-normal vectors. Ren Haijie [20] used flight test
data and RANS test data to establish a relationship between the average strain/rotation
rate tensor and the experimental heat flux. This relationship was then used to predict
heat flux under various heat flow conditions. Schouler Marc [21] used both kriging
and artificial neural networks to predict pressure and heat flux stagnation coefficients,
along with pressure, friction, and heat flux coefficient distributions of re-entrant thin-
ning segments of any aerodynamic profile. These methodologies address the problem
from physical data to data algorithms, and finally to physical prediction. However, there
is a weak correlation between physical data and physical prediction, and the resulting
predictions lack physical interpretability. Besides, there are some interesting work us-
ing transfer learning in fluids science, which aims to solve unknown problems based on


