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Abstract. This paper is concerned with high moment and pathwise error estimates for
fully discrete mixed finite element approximations of stochastic Navier-Stokes equa-
tions with general additive noise. The implicit Euler-Maruyama scheme and standard
mixed finite element methods are employed respectively for the time and space dis-
cretizations. High moment error estimates for both velocity and time-averaged pres-
sure approximations in strong L? and energy norms are obtained, pathwise error es-
timates are derived by using the Kolmogorov Theorem. Unlike their deterministic

. . _1
counterparts, the spatial error constants grow in the order of O(k™2), where k denotes
time step size. Numerical experiments are also provided to validate the error estimates
and their sharpness.
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1 Introduction

We consider the following time-dependent stochastic Navier-Stokes equations:

du=[vAu—u-Vu—Vp+f|dt+g(t)dW(t) a.s. in Dr, (1.1a)
divu=0 a.s. in Dr, (1.1b)
u(0)=muy a.s.in D, (1.1c)
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where D = (0,L)% C R? represents a period of the periodic domain in R?, u and p stand
for respectively the velocity field and the pressure of the fluid, {W(t);t>0} denotes real-
valued Wiener process and f is a body force function. In addition, g is the diffusion
coefficient (see Section 2.3 for its precise definition). Here we seek periodic-in-space so-
lutions (u,p) with period L, that is, u(t,x+Le;) =u(t,x) and p(t,x+Le;) = p(t,x) almost
surely and for any (t,x) € (0,T) xR? and 1 <i<d, where {e;}{ ; denotes the canonical
basis of RY.

Numerical analysis of (1.1) has been studied by several researchers. In [6] the authors
established stability and convergence of the standard mixed finite element method of
(1.1). Later in [8] the authors proved the rates of convergence in probability for the veloc-
ity approximation in the case of multiplicative noise. The main difficulty for establishing
a strong convergence for any numerical approximation of (1.1) is the interplay between
the nonlinearity and stochasticity of the equations. To compute or estimate quantities of
stochastic interests such as the expectation and moments, all the norms must have an-
other layer of integration which is the main reason why the classical Gronwall inequality
argument fails. To overcome this difficulty, in [8] the authors introduced a sequence of
sub-sample spaces that converge to the sample space under the probability measure. The
error estimates on these sub-sample spaces are computed with partial expectations and
are considered as weak convergence, and some improved error estimates of the same type
were recently obtained in [18]. In [1,2] the authors showed the strong L?-convergence of
the mixed finite element method for (1.1) by estimating the error estimates on the com-
plements of these sub-sample spaces, which then leads to the strong convergence with a
logarithmic rate. Moreover, the authors were able to establish in [3] strong convergence
with a polynomial rate in the case of a divergence-free additive noise. We note that all
the above-mentioned error estimates for (1.1) are second-moment estimates and most
are only for the velocity approximation. No high moment and pathwise error estimates
have been reported in the literature so far. These missing error estimates are important
to know because they provide different quantities of stochastic interests in practice.

The primary goals of this paper are to fill such a void in the case of general additive
noise and to develop the analysis techniques for deriving high moment and pathwise er-
ror estimates for numerical nonlinear stochastic PDEs in general. It should be noted that
the desired high moment and pathwise error estimates will be obtained for both the ve-
locity and pressure approximations of the fully discrete mixed finite element method for
(1.1). Our main ideas are to obtain the former based on an exponential stability estimate,
which is inspired by a similar idea first introduced in [3], and a bootstrap technique, and
to obtain the latter by using the Kolmogorov Theorem (see Theorem 2.1).

The remainder of this paper is organized as follows. In Section 2, we present some
preliminaries including the definition of variational solutions to (1.1) and the assump-
tions on the diffusion function g. In Section 3, we introduce the time discretization for
(1.1) in Algorithm 1 and establish some stability estimates for its solution, including an
exponential stability estimate which plays a crucial role in our error analysis for the ve-
locity approximation in Theorems 3.1, and 3.2, and the error estimates for the pressure



