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Abstract. In this paper, we further extend the derivative-based finite-volume multi-
resolution Hermite weighted essentially non-oscillatory (MR-HWENO) scheme pro-
posed in our previous article (Li, Shu and Qiu, J. Comput. Phys., 446:110653, 2021) to
simulate the steady-state problem. When dealing with the steady-state problem, the
process of updating and reconstructing the function values is similar to the previous
scheme, but the treatment of the derivative values is changed. To be more specific, in-
stead of evolving in time, in the sense of cell averages, the scheme uses the derivative
at the current time step and the function at the next time step to reconstruct the deriva-
tive at the next time step by direct linear interpolation. There are two advantages for
this approach: the first is its high efficiency, when handling the derivative, neither the
update on time nor the calculation of nonlinear weights is required; in the meantime,
the CFL number can still be taken up to 0.6 as in the original scheme; the second is
its strong convergence, the corresponding average residual can quickly converge to
machine accuracy, thus obtaining the desired steady-state solution. One- and two-
dimensional numerical experiments are given to verify the high efficiency and strong
convergence of the proposed MR-HWENO scheme for the steady-state problems.
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1 Introduction

In this paper, we apply the derivative-based finite-volume multi-resolution Hermite
weighted essentially non-oscillatory (MR-HWENO) scheme [22] to solve the following
steady-state problem:

V.F(U)=s(U,X), (1.1)

where U is the unknown variable to be determined, F(U) is the (usually nonlinear)
flux function, s(U,X) is the given source term and X = (x1,---,x4). Only one- and two-
dimensional cases are considered in this paper, i.e. d=1 or 2, accordingly, we use x to
denote x1, and y to denote x».

The steady-state problem is an important mathematical model, which is widely used
in a variety of fields such as compressible fluid dynamics, wave motion, advective trans-
port of matter and so on. However, it is not easy to obtain the solution of these problems
either theoretically or numerically. One way to solve Eq. (1.1) numerically is to solve the
corresponding unsteady hyperbolic balance law by adopting an appropriate time march-
ing method

{Ut+V-P(Ll):s(LI,X), 12)

U(X,0)=Uy(X).

With the advance of time, when the residual of the above unsteady hyperbolic balance
law (1.2) is sufficiently small, the corresponding solution is considered acceptable as the
steady-state solution of (1.1). In this way, we transform the steady-state problem into a
time-dependent hyperbolic balance law problem. But in this case, especially for those
equations with a nonlinear flux function, discontinuities may appear even if the ini-
tial condition is smooth enough. To address this issue, there have existed many works
devoted to designing efficient numerical methods to solve these problems with strong
shocks or contact discontinuities. A partial list includes essentially non-oscillatory (ENO)
schemes in [19,35,36], weighted ENO (WENO) schemes in [21,28] (see also [8]) and Her-
mite WENO (HWENO) schemes in [30,31,40,43-45].

When solving the steady-state problem using the classical WENO schemes [21, 28]
with an appropriate time discretization method [11], we must address the problem that
slight post-shock oscillations may propagate downward from the region near the shock
to the smooth region, causing the residual to hang at a high truncation error level rather
than to stabilize to machine accuracy, see [42]. Although reconstructing the numerical
flux using a limiter or an upwind-biased interpolation technique can improve the con-
vergence of the numerical solution to steady-state as shown in some later papers [33,41],
the residual still fails to converge to machine accuracy for many two-dimensional test
cases. For steady-state simulations of Euler equations, Wan and Xia proposed a new hy-
brid strategy for the fifth-order WENO scheme in [37], which performs better in steady-
state convergence property with less dissipative and dispersive errors compared with



