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Abstract. This paper is devoted to a new neural particle method (NPM) based on
physics-informed neural networks (PINNs) for modeling free surface flows. Utiliz-
ing interface tracking techniques and machine learning (ML) modeling, the new NPM
approach with interface tracking and adaptive particle refinement (NPM-LA) is sug-
gested. This method encompasses properties of tracking the interface particles and en-
suring the preservation of the designated distribution pattern for interior fluid (com-
putational) particles. The determination of the corresponding physical quantities at
these particles is accomplished through the process of inference, a distinctive feature
facilitated by ML. The proposed NPM-LA effectively provides solutions for both ap-
propriately tracking the morphology of complex flow surfaces and enhancing the ac-
curacy by dynamically redistributing particles into desired patterns within the com-
putational domain. Two testing cases (the 2D Poiseuille flow problem and a rotating
square patch of inviscid fluid) are adopted to examine the performance of the proposed
NPM-LA method. The applications to experiments of dam break and wave breaking
problems are explored for demonstrating the capability of capturing the complex de-
forming flow surface.
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1 Introduction

Hydrodynamic simulations play a crucial role in understanding and predicting the be-
havior of fluids in various domains, including environmental modeling, coastal engi-
neering, and offshore structures. Many practical applications such as flood propagation
of dam break and wave breaking [24,50], mitigation and prevention of tsunami [36], de-
sign of offshore wind turbines [4], and control and maneuverability of floating objects
in ocean [9], often involve complex flow physics with the needs for precisely tracking
motions of free surface, deformable boundaries and moving objects.

Traditional mesh-based numerical methods for hydrodynamic simulations, such as
finite difference, finite volume, and finite element methods, which have been fully devel-
oped and advanced in the past, often face significant challenges in accurately capturing
complex flow physics, handling free surface flows, and efficiently adapting to chang-
ing boundary and interfacial conditions. Meshless methods or so-called particle-based
methods, on the other hand, have been developed by removing the mesh dependency
burden from mesh-based methods. These meshless methods such as the Smoothed Par-
ticle Hydrodynamics (SPH), Moving Particle Semi-Implicit (MPS), and Discrete Element
methods (DEM) [8, 12, 25] essentially employ a Lagrangian formulation that solve the
Navier-Stokes equations by tracking the fluid motion with discrete particles and omit-
ting the convective effects. The SPH is one of the most popular meshless methods that
has been widely used in many hydrodynamic applications, including the dam breaking,
wave breaking, and fluid-structure interaction problems [44,49]. However, this type of
meshless method still requires to overcome intrinsic disadvantages associated with the
lack of connectivity of neighboring particles to address challenging issues including so-
lution convergence, accuracy and model stability, boundary conditions enforcement, as
well as the adaptive mesh strategy that allows for a domain discretization with proper
particle spacing to be able to solve practical industrial problems [37].

Recently, the Physics-Informed Neural Networks (PINNs) method has emerged as a
promising approach for CFD simulations, combining the strengths of deep learning mod-
eling with the governing equations of fluid dynamics and known physical laws. Raissi et
al. [39] proposed the PINNs method, which embedded physical equations, boundary and
initial conditions as well as ground truth data into an artificial neural network structure
through automatic differentiation (AD) to construct loss functions and further minimiz-
ing the loss functions to obtain approximated solutions of governing physical equations.
By incorporating physical equations and constraints into the training processes, the neu-
ral network can achieve favorable accuracy with much less training data while avoiding
the need for explicit meshing and discretization schemes. In addition, the PINNs method
is also suitable to solve inverse problems, such as extracting physical parameters from
predicted and experimental results. With the aid of its powerful computing capability
by graphics processing unit (GPU) acceleration and deep learning modeling flexibility,
the PINNs approach quickly draws great attentions in the CFD community and has been
utilized to solve many fluid mechanics problems [6,20].



