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Abstract. Using neural networks to solve partial differential equations (PDEs) is gain-
ing popularity as an alternative approach in the scientific computing community. Neu-
ral networks can integrate different types of information into the loss function. These
include observation data, governing equations, and variational forms, etc. These loss
functions can be broadly categorized into two types: observation data loss directly con-
strains and measures the model output, while other loss functions indirectly model the
performance of the network, which can be classified as model loss. However, this al-
ternative approach lacks a thorough understanding of its underlying mechanisms, in-
cluding theoretical foundations and rigorous characterization of various phenomena.
This work focuses on investigating how different loss functions impact the training of
neural networks for solving PDEs. We discover a stable loss-jump phenomenon: when
switching the loss function from the data loss to the model loss, which includes differ-
ent orders of derivative information, the neural network solution significantly deviates
from the exact solution immediately. Further experiments reveal that this phenomenon
arises from the different frequency preferences of neural networks under different loss
functions. We theoretically analyze the frequency preference of neural networks under
model loss. This loss-jump phenomenon provides a valuable perspective for examin-
ing the underlying mechanisms of neural networks in solving PDEs.

AMS subject classifications: 68T15, 68Q01
Key words: Loss jump, frequency bias, neural network, loss switch.

1 Introduction

The use of neural networks for solving partial differential equations (PDEs) has emerged
as a promising alternative to traditional numerical methods in the scientific computing
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community. By incorporating various types of information into the loss function, such
as observation data, governing equations, and variational forms, neural networks offer
a flexible and powerful framework for approximating the solution of PDEs. These loss
functions can be broadly classified into two categories: data loss, which directly con-
strains and measures the model output using observation data, and model loss, which
indirectly models the performance of the network using equations and variational forms.

Despite the growing interest in this approach, a comprehensive understanding of
the underlying mechanisms governing the behavior of neural networks in solving PDEs
is still lacking. While several works have explored the capabilities and limitations of
physics-informed learning [5, 6,10, 12,13, 23,33] and the challenges in training physics-
informed neural networks (PINNSs) [8,25,29,33], the impact of different loss functions on
the training dynamics and convergence properties of neural networks remains an open
question.

Recent studies have shown that the derivatives of the target functions in the loss func-
tion play a crucial role in the convergence of frequencies [18,32,33]. A key observation is
that neural networks often exhibit a frequency principle, learning from low to high fre-
quencies [24,32-34]. This phenomenon has inspired a series of theoretical works aimed
at understanding the convergence properties of neural networks [1,2,4,19,20].

Moreover, the development of deep learning theory and algorithms has greatly ben-
efited from the accurate description of stable phenomena. For instance, it has been ob-
served that heavily over-parameterized neural networks usually do not overfit [3, 35],
neurons in the same layer tend to condense in the same direction [21,37,38], and stochas-
tic gradient descent or dropout tends to find flat minima [7,14,26,31,37,39]. Additionally,
a series of multiscale neural networks have been developed for solving differential equa-
tions [11,16,17,28,30,36] and fitting functions [22,27].

Motivated by these findings, we aim to investigate the impact of different loss func-
tions on the training dynamics and convergence properties of neural networks for solving
PDEs. We focus on the interplay between data loss and model loss, which incorporate
different orders of derivative information. We discover a stable loss-jump phenomenon:
when switching the loss function from the data loss to the model loss, which includes
different orders of derivative information, the neural network solution significantly de-
viates from the exact solution immediately. Additionally, the fitted curve often exhibits
an overall shift relative to the target function.

From a convergence perspective, there is a simple analysis for the sudden jump in
the loss function: L? convergence of u does not imply the L” convergence of Vu and in
general Lu where L is any differential operator. However, this analysis does not explain
why the fitted curve undergoes an overall shift relative to the target function rather than
making minor adjustments to the details of the original fitted curve. We note that the
overall shift is often caused by changes in the low-frequency components of the function.
Therefore, it is reasonable and valuable to explain and analyze this phenomenon from
the perspective of frequency preference.

In this work, we analyze the training process and the dynamics induced by different



