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Abstract. In this study we present a universal nonlinear numerical scheme design
method for nonlinear conservation laws, enabled by multi-agent reinforcement learn-
ing (MARL). Unlike contemporary approaches based on supervised learning or rein-
forcement learning, our method does not rely on reference data or empirical design.
Instead, a first-principle-like approach using fundamental computational fluid dynam-
ics (CFD) principles, including total variation diminishing (TVD) and k-exact recon-
struction, is employed to design nonlinear numerical schemes. The third-order finite
volume scheme is employed as the workhorse to test the performance of the MARL-
based nonlinear numerical scheme design method. Numerical results demonstrate
that the new MARL-based method can strike a balance between accuracy and numeri-
cal dissipation in nonlinear numerical scheme design, and outperforms the third-order
MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws) with the van
Albada limiter for shock capturing. Furthermore, we demonstrate for the first time that
a numerical scheme trained from one-dimensional (1D) Burgers’ equation simulations
can be directly used for numerical simulations of both 1D and 2D (two-dimensional
constructions using the tensor product operation) Euler equations. The framework of
the MARL-based numerical scheme design concepts can incorporate, in general, all
types of numerical schemes as simulation machines.
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1 Introduction

Hyperbolic conservation laws, governed by nonlinear partial differential equations
(PDEs), have extensive applications across numerous fields of science and engineer-
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ing, such as aero-hydrodynamics, astrophysics, plasma physics, advanced manufacture
and transportation engineering [1]. One feature of nonlinear hyperbolic conservation
laws is that their solutions admit singularities (e.g., shock waves and contact discon-
tinuity), which can be developed in finite time from smooth initial data. This poses
grand challenges on numerical simulations as nonlinear numerical schemes need to be
developed to take both scheme stability and numerical resolution into consideration; see
Godunov’s pioneering work on numerical methods for shock capturing [2]. As a re-
sult, many nonlinear numerical scheme construction methods have been developed dur-
ing the last half century, such as high-resolution schemes with TVD slope limiters [3],
weighted essentially non-oscillatory (WENO) methods [4-6], total variation bounded
(TVB) discontinuous Galerkin methods [7], hierarchical multi-dimensional limiting pro-
cess (MLP) [8,9], moving discontinuous Galerkin finite element method with interface
condition enforcement (MDG-ICE) [10,11] and localized artificial viscosity and diffusiv-
ity methods [12-14], just to name a few. However, many nonlinear numerical schemes
developed so far have to introduce empirical components, such as the use of limiter func-
tions in the MUSCL scheme and smoothness indicators in the WENO schemes.

1.1 Supervised learning of shock capturing schemes

To reduce the dependence on empirical designs in numerical methods, researchers have
increasingly turned to machine learning techniques to develop data-driven models.
These models differ from traditional approaches by replacing many empirical compo-
nents with neural networks. For instance, Ray et al. [15,16] developed a data-driven
troubled-cell indicator by training an artificial neural network (ANN) and tested it on 1D
grids and 2D unstructured grids. Beck et al. [17] developed a data-driven shock indicator
by using image-based edge detection methods on 2D grids. Bezgin et al. [18] developed
a data-driven nonlinear weight function for WENO3. Numerical results showed that
these data-driven models can perform better than the empirical ones and do not need
problem-dependent parameter tuning. However, one common issue shared by the afore-
mentioned works is that special numerical treatments, such as certain auxiliary equations
and their corresponding analytical solutions, needs to be used to encode desired numer-
ical features into the machine learning model. The choice of specific equations is still
largely based on the authors” experience and analytical solutions may not be available.
Researchers have also leveraged the tool of machine learning to design new flux lim-
iters [19] and learn discretizations for PDEs directly [20]. Nguyen et al. [19] designed
a framework to derive an optimal flux limiter for the coarse-grained Burgers’ equation
by learning from high-resolution data. Numerical results demonstrated that the trained
flux limiter achieves better results than standard limiters, but only in Burgers” equation
simulations. Therefore, the model’s generalizability to different physics is questionable.
Bar et al. [20] designed a data-driven discretization method to learn the optimal approx-
imations to PDEs on a coarse grid directly from the solutions on a finer grid. Numerical
results demonstrated that their proposed method outperforms the standard numerical



