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Abstract. We present two improved randomized neural network methods, namely
the RNN-Scaling and RNN-Boundary-Processing (RNN-BP) methods, for solving el-
liptic equations such as the Poisson equation and the biharmonic equation. The RNN-
Scaling method modifies the optimization objective by increasing the weight of bound-
ary equations, resulting in a more accurate approximation. We propose the boundary
processing techniques for the rectangular domain that enforce the RNN method to sat-
isfy the non-homogeneous Dirichlet and clamped boundary conditions exactly. We
further prove that the RNN-BP method is exact for solutions with specific forms and
validate it numerically. Numerical experiments demonstrate that the RNN-BP method
is the most accurate among the three methods, with the error reduced by up to 6 orders
of magnitude for some tests.
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1 Introduction

Elliptic partial differential equations (PDEs) model the steady-state conditions in various
physical phenomena, including electrostatics, gravitational fields, elasticity, phase-field
models, and image processing [1, 10, 30]. For instance, the Poisson equation character-
izes the distribution of a scalar field based on boundary conditions and interior sources.
In contrast, the biharmonic equation is employed to model phenomena such as the de-
flection of elastic plates and the flow of incompressible, inviscid fluids. Solving these
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equations is essential for understanding and predicting system behavior in various ap-
plications. Traditional numerical methods for solving elliptic equations, such as finite dif-
ference methods [2,3,21,32], finite element methods [6,19,20,22,23,34,35], finite volume
methods [14, 26, 27] and spectral methods [4, 7, 18] have been well studied and widely
used. However, these methods often require careful discretization to obtain numerical
solutions with high accuracy. Moreover, they may face challenges in handling mesh gen-
eration on complex domains and boundary conditions.

In recent years, deep neural network (DNN) methods have been greatly developed
in various fields, such as image recognition, natural language processing, and scientific
computing. One area where DNN has shown promise is in solving PDEs, including el-
liptic equations. The DNN-based method transforms the process of solving PDEs into
optimization problems and utilizes gradient backpropagation to adjust the network pa-
rameters and minimize the residual error of the PDEs. Several effective DNN-based
methods include the Physics-Informed Neural Networks (PINNs) [24], the deep Galerkin
method [28], the deep Ritz method (DRM) [9], and the deep mixed residual method [17],
among others [8,33]. The main difference between these methods lies in the construction
of the loss function.

PINNs offer a promising approach for solving various types of PDEs. However, they
still have limitations. One major limitation is the relatively low accuracy of the solu-
tions [11], the absolute error rarely goes below the level of 10−3 to 10−4. Accuracy at such
levels is less than satisfactory for scientific computing, and in some cases, they may fail
to converge. Another limitation is that PINNs require high computational cost and train-
ing time, which makes them less practical for large-scale or complex problems. PINNs
require substantial resources to integrate the PDEs into the training process, especially
for the problems involving high-dimensional PDEs or those requiring fine spatial and
temporal resolutions.

RNN has recently attracted increasing attention for its application in solving partial
differential equations. The weights and biases of the RNN method are randomly gen-
erated and fixed, and do not need to be trained. The optimization problem of PINNs is
usually a complicated nonlinear optimization problem, requiring a great number of train-
ing steps. For the RNN method, the resulting optimization problem is a least-squares
problem, which can be solved without training steps.

For deep neural networks, the exact imposition of boundary and initial conditions
is crucial for the training speed and accuracy of the model, since it may accelerate the
convergence of the training process and improve overall accuracy. For instance, the inex-
act enforcement of boundary and initial conditions severely affects the convergence and
accuracy of PINN-based methods [29]. Recently, many methods have been developed
for the exact imposition of Dirichlet and Neumann boundary conditions, which leads to
more efficient and accurate training. The main approach is to divide the numerical ap-
proximation into two parts: a deterministic function satisfying the boundary condition
and a trainable function with the homogeneous condition. This idea was first proposed
by Lagaris et al. in [12, 13]. The exact enforcement of boundary conditions is applied in


