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Abstract. We critically compare the practicality and accuracy of numerical approxima-
tions of phase field models and sharp interface models of solidification. Here we focus
on Stefan problems, and their quasi-static variants, with applications to crystal growth.
New approaches with a high mesh quality for the parametric approximations of the re-
sulting free boundary problems and new stable discretizations of the anisotropic phase
field system are taken into account in a comparison involving benchmark problems
based on exact solutions of the free boundary problem.
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1 Introduction

The solidification of a liquid or the melting of a solid lead to complex free boundary
problems involving many different physical effects. For example, latent heat is set free
at the interface and a competition between surface energy and diffusion leads to insta-
bilities like the Mullins-Sekerka instability. The resulting model is a Stefan problem with
boundary conditions taking surface energy effects and kinetic effects at the interface into
account, see e.g. [37,51]. Crystals forming in an undercooled melt lead to very complex
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patterns and, in particular, dendritic growth can be observed since the growth is typically
diffusion limited, see [20].

The numerical simulation of time-dependent Stefan problems, or variants of it, is
a formidable task since the evolving free boundary has to be computed. Hence, di-
rect front tracking type numerical methods need to adequately capture the geometry of
the interface and to evolve the interface approximation, often with a coupling to other
physical fields. This coupling, in particular, represents a significant initial hurdle to-
wards obtaining practical implementations, and thus numerical simulations for the prob-
lem at hand. Examples of the implementation of such direct methods can be found in
e.g.[1,3,6,13,53,54,57,72-75,81, 86].

A further drawback of direct front tracking methods has been the inability of most
direct methods to deal with so-called mesh effects, or to prevent them altogether. When
a discrete approximation of an interface, for example a polygonal curve in the plane,
evolves in time, then in general it is possible for the approximation to deteriorate or to
break down. Examples of such pathologies are self-crossings and vertex coalescence.
While for simple isotropic problems in the plane these issues can be dealt with, for ex-
ample by frequent remeshings or by using clever formulations that only allow equidis-
tributed approximations, see e.g. [57,81], until very recently there has been no remedy
for fully anisotropic problems in two and three space dimensions.

However, building on their work for isotropic problems in [8,9,11], the present au-
thors recently introduced stable parametric finite element schemes for the direct approx-
imation of anisotropic geometric evolution equations in [10, 12], for which good mesh
properties can be guaranteed. In particular, even for the simulation of interface evolu-
tions in the presence of strong anisotropies, no remeshing or redistribution of vertices is
needed in practice. These schemes, in which only the interface without a coupling to bulk
quantities is modelled, have been extended to approximations of the Stefan problem with
fully anisotropic Gibbs-Thomson law and kinetic undercooling in [13]. The novel method
from [13] can be shown to be stable and to have good mesh properties. We remark that
these approaches extend earlier ideas from [39,73,74]. Here we recall the pioneering
work of Schmidt [73,74], where the full Stefan problem in three dimensions was solved
within a sharp interface framework for the first time.

Phase field methods are an alternative approach to solve solidification phenomena in
the framework of continuum modelling. In phase field approaches a new non-conserved
order parameter ¢ is introduced, which in the two phases is close to two different pre-
scribed values and which smoothly changes its value across a small diffuse interfacial re-
gion. A parabolic partial differential equation for ¢ is then coupled to an energy balance,
which results in a diffusion equation for the temperature taking latent heat effects into
account. We refer to [27,36,59,70,83] and to the five review articles [25,33,62,77,79] for
further details. In particular, it can be shown that solutions to the phase field equations
converge to classical sharp interface problems, see e.g. [2,28,29,78] and the references
therein.

The popularity of phase field methods, often also called diffuse interface methods,
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can be explained by two characteristic features that they share with the level set method,
which is another sharp interface computational tool. Firstly, phase field methods nat-
urally allow for changes of topology. And secondly, computing simulations for phase
field models only requires the solution of partial differential equations on standard Carte-
sian domains. The fact that these can usually be implemented and solved in a relatively
straightforward way makes the phase field method particularly appealing. For complete-
ness we mention that it is also possible to include topological changes in front tracking
methods, even though topological changes represent a singularity for the sharp interface
model itself. Here one possible approach is to draw up a list of heuristic criteria which
trigger a topological change. In contrast to diffuse interface methods, this gives some
active control over the topological changes; see e.g. [26,54]. An alternative approach is to
employ a diffuse interface method as a computational tool within a front tracking algo-
rithm, which allows the algorithm to integrate through topological changes. An example
for such a coupling in the level set context can be found in [68].

It is the aim of this article to investigate the practical merits of phase field models
compared to the recently introduced sharp interface algorithm for the approximation of
Stefan problems from [13], see also [14, 15], in the absence of topological changes. Of
particular interest will be the relative accuracy of the two methods, in situations where
a true solution to the sharp interface problem is known. In a phase field simulation the
observed error is made up of contributions from

e the asymptotic error,
e the spatial and temporal discretization errors,

e rounding errors and solver tolerances.

Here the asymptotic error is induced by the choice of interfacial parameter ¢ > 0. In
general one can formally show that the asymptotic error converges to zero as ¢ — 0, see
e.g. [27]. For certain phase field models and under certain conditions it can be rigorously
shown that the asymptotic error vanishes as ¢ — 0, see e.g. [29]. In computations for
sharp interface approximations, on the other hand, the observed error is made up of the
latter two contributions only, i.e. of discretization and rounding errors. A disadvantage
of phase field models is that the resulting PDEs become stiff for decreasing ¢, leading to a
requirement for very fine spatial and temporal discretizations. Hence it becomes compu-
tationally challenging to produce very accurate phase field simulations. In any case, the
available computational resources will often set a limit on the smallest interfacial param-
eter e that one can compute for. Hence another aspect that needs to be taken into account
in an objective comparison between phase field simulations and sharp interface approx-
imations is the overall CPU time that is needed to obtain the results. While it can often
be formally shown that phase field computations can attain an arbitrarily high accuracy,
the existing limitations on computer hardware often mean that in practice very fine com-
putations cannot be performed. In addition, as discussed in [55], the early computational
approaches were limited as they could only be used in the presence of interfacial kinetics
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in the Gibbs-Thomson law.

Historically these limitations of the phase field model have long been known, and as
a result a different underlying interpretation of the model, the so-called “thin interface
limit”, has been introduced and analyzed by Karma and Rappel [55,56]. Their approach
made it possible to do efficient computations with a smaller capillary length to inter-
face thickness ratio, and to study the physically relevant case of small or zero kinetic
coefficients. Later the findings of Karma and Rappel were reinterpreted as second order
convergence with respect to the interfacial thickness, see [4,34,47]. Of course, one can ask
the question whether phase field models, in their own right, already represent a correct
description of phase transition phenomena, rather than just being an approximation to a
free boundary problem. In this context, though, one has to decide what value should be
chosen for the interfacial parameter. For models of solidification the true length scale of
the real-world interfacial region between the two phases is accepted to be orders of mag-
nitude smaller than what is currently (and in the foreseeable future) computable with
phase field models. In that sense sharp interface models are currently better approxima-
tions of the true physics. In conclusion we stress that both phase field models and sharp
interface models are continuum approximations of real phenomena. However, in this
paper we view the presented phase field models as approximations of the sharp interface
limit, to which they converge as ¢ 0. This enables us to objectively compare numerical
solutions within the two frameworks.

The first successful phase field computations of dendritic growth were performed by
Kobayashi [58], and his computations demonstrated the importance of anisotropy for
dendritic growth. Since then many successful improvements with respect to numerical
simulations have appeared in the literature. We refer to [43,55, 65,71, 84] and the refer-
ences therein.

Finally, we would like to mention work on the numerical analysis of phase field and
sharp interface approaches. Numerical analysis of discretizations of phase field models
can be found in e.g. [18,31,35,45,46,60,85]. Numerical analysis of discretizations of sharp
interface models can be found in [13, 15, 82]. We also remark that level set methods are
another possible way to solve Stefan problems and related free boundary problems. We
refer to [69, 76] for more details on how the level set method can be used to solve free
boundary problems.

The remainder of the paper is organized as follows. In Section 2 we state the sharp
interface formulation of the two phase Stefan problem with kinetic undercooling and
an anisotropic Gibbs-Thomson law. In Section 3 we state the corresponding phase field
model and recall the finite element algorithms from [17]. In Section 4 we numerically
compare the sharp interface method from [13] with the phase field algorithms from Sec-
tion 3 for some isotropic benchmark problems with known true solutions. Computations
for a phase field model with a correction term, for which a second order convergence
property can formally be shown, are presented in Section 4.3. Finally, we compare the
sharp interface and phase field methods for a variety of anisotropic model problems in
Section 5.
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2 Sharp interface problem

In this paper we concentrate on interfacial problems in materials science in which one
driving force is due to capillary effects. In applications the interface often separates a
solid and a liquid phase, say, or a solid phase and a gas phase. Let I'(t) CR?, d=2,3,
denote this sharp interface. Then the surface energy of I'(t) is defined as

/r(t)'y(n) ds, (2.1)

where n denotes the unit normal of I'(t), and where the anisotropic density function
v:RY — R with v € C2(R?\ {0}) NC(R?) is assumed to be absolutely homogeneous of
degree one, i.e.

YAp)=[Alv(p) VpeR,VAER = +/(p).p=7(p) VpeR\{0},

with 9/ denoting the gradient of <. For all the considerations in this paper we assume that
7 is of the class of anisotropies first introduced by the authors in [10,12]; see also [13,17].
Relevant for our considerations is the first variation, —x,, of (2.1), which can be com-
puted as
Ky i= _vs-'}’,<n)}

where V. is the tangential divergence of I', see e.g. [12,13,32]. Note that «,, reduces to «,
the sum of the principal curvatures of I', in the isotropic case, i.e. when <y satisfies

v(p)=lp| VpeR” (2.2)

2.1 Stefan problem

Then the full Stefan problem we want to consider in this paper is given as follows, where
QCRY is a given fixed domain with boundary 9Q and outer normal v. Find u:Q x [0, T]—
R and the interface (I'(t)),c[o,r) such that for all t € (0,T] the following conditions hold:

du—K_Au=0 inQ_(t), dup—KiAu=0  inQ,(f), (2.3a)
ou

IC—} =—AV onTI(t), (2.3b)
[ on ()

eV

———=aK,—au onT(t), (2.3¢)
‘5(1’1) v < )

ou

a—yzO on dx(), U=1up on dp(), (2.3d)
r0)=ry, du(-,0)=9%uy inQ. (2.3e)

In the above u denotes the deviation from the melting temperature Ty, i.e. Ty is the
melting temperature for a planar interface. In addition, Q_(t) C Q) is the solid region,
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with boundary I'(t) =9Q_(t), so that the liquid region is given by Q) (¢) :=Q\Q_(¢).
Moreover, here and throughout this paper, for a quantity v defined on (), we use the
shorthand notations v_:=v|q  and v :=v|q, . The parameters # >0, A >0, 0>0, a >0,
a >0 are assumed to be constant, while K > 0 is assumed to be constant in each phase.
The mobility coefficient 3:IRY — R is assumed to satisfy B(p) >0 for all p #0 and to be
positively homogeneous of degree one. We note that in the isotropic case (2.2) it is often
also assumed that

Bp)=lpl VpeR? = PB(n)=1. (2.4)

In addition [K g_ﬁ]r(t) (z):=(K+ ag’—n* —K_ ag’—n*) (z) forall zeI'(t), and V is the velocity of T'(t)
in the direction of its normal n, which from now on we assume is pointing into Q (f).
Finally, 002 =0dnQUIpQ with oNyQNIp =0, up €R<( is the applied supercooling at the
boundary, and I C Q) and up: Q) — R are given initial data. Here we use the convention
that up =0 if 0Q) =N Q.

The model (2.3) can be derived for example within the theory of rational thermody-
namics and we refer to [50] for details. We remark that a derivation from thermodynamics
would lead to the identity a= % We note that (2.3b) is the well-known Stefan condition,
while (2.3¢) is the Gibbs-Thomson condition, with kinetic undercooling if p > 0. The case
#>0, p>0, a>0 leads to the Stefan problem with the Gibbs-Thomson law and kinetic
undercooling. In some models in the literature, see e.g. [61], the kinetic undercooling is
set to zero, i.e. p=0. Setting ¢ =p =0 but keeping « > 0 leads to the Mullins-Sekerka
problem with the Gibbs-Thomson law, see [64].

We recall from [13] that for a solution u and T to (2.3) it can be shown that the follow-
ing equality holds

d Ap [ V2
- = — e — < *
dt]—"(l“,u) (KVu,Vu) 2 Jro B ds <0, (2.5)
where
1% ) A
]—'(F,u):zilu—uD]O—i——/ y(n)ds—Aup | ()] (2.6)
a Jr

and where (-,-) denotes the L2-inner product over (), with the corresponding norm given
by |- |0, and where [Q (t)]:= f0+(t)1dx.

2.2 Parametric method PFEM

Traditional front tracking methods for sharp interface problems had a major drawback,
in that the meshes used to describe the interface seriously deteriorated during the evo-
lution. In addition, introducing mesh smoothing during the evolution is difficult, see
e.g. the discussion in [74]. For interfaces in the plane it is possible to formulate a non-
trivial method such that mesh points are nearly equally distributed during the evolution,
see [52,63]. The present authors introduced a novel parametric finite element method
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for problems involving curves and surfaces evolving in time, which has a simple varia-
tional structure and which leads to good mesh properties, see [8,9,11]. In fact, for curves
a semi-discrete variant leads to equally distributed mesh points in the isotropic case,
while in the general anisotropic setting equidistribution with respect to some anisotropic
weight function is obtained, see [10]. For surfaces the resulting meshes have also good
properties, which in the isotropic case can be explained by using ideas from conformal
geometry. In particular, no remeshing is needed during the evolution, even in the gen-
eral anisotropic situation. An example triangulation obtained during the simulation of
dendritic growth in three space dimensions can be seen in Fig. 21, below. In addition, as
the mesh for the parameterization of the interface is decoupled from the bulk mesh, no
deformation of the bulk mesh is required in order to contain the interface at predefined
locations on it.

The novel and stable parametric finite element approximation of (2.3) in the case
K+ = K- >0 has been introduced by the present authors in [13], and this scheme has
been extended to the more general case K+ >0 in [15]. Throughout this paper we will
refer to these variants as PFEM. The algorithm PFEM features the discretization param-
eters hr, h s he and T. Here hr refers to the fineness of the triangulated approximation
of I'(t), for which isoparametric piecewise linear finite elements are employed. In par-
ticular, a simple mesh refinement strategy allows for the natural growth of the interface,
i.e. elements of the triangulated approximation of I'(¢) are refined when they become too
large. Moreover, the temperature in the bulk is approximated with standard continuous
piecewise linear finite elements, and /iy and h, refer to bulk mesh parameters for fine
regions close to the interface and coarser regions far away from it. For all the computa-
tions presented in this paper we fix i, =8 and, unless stated otherwise, we let h s ~ hr.
Finally, T denotes a uniform time step size. The linear discrete systems of equations are
solved with preconditioned conjugate gradient solvers of suitable Schur complement for-
mulations. We refer to [13,15] for more details. As indicated earlier, no remeshing of the
discrete interface is necessary for the scheme PFEM, and all the numerical results pre-
sented in this paper for this scheme are performed without any redistribution of mesh
points.

3 Phase field model

We now state the phase field model that we are going to consider in this paper. To this
end, for pe RY, let

A(p)

Il
N[—
=
=
o

-
)

—N—
=
=
\e\
=
<
e

and define

(3.1)
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where ji€Rxg i tant satisfying min, .o L2 < 1 < 1p)
>0 1s a constant satisfying miny, o gy </l SMaxpzo g,y

Moreover, let ¢: Q) x (0,T) — R be the phase field variable, so that the sets {xeQ:

+¢(x,t)>0} are approximations to ()4 (), with the zero level set of ¢(-,t) approximating

the interface I'(f). On introducing the small interfacial parameter € > 0, it can be shown
that

1
~&lp)~ [ () s,
for ¢ sufficiently small, where
1
& ::/é Vo) 4+e 1¥(p)d ith ::/ 2¥(s)ds. 3.2
(@)= | slr(Vo)lP+e ¥(g)dx with cy:=[ 4/2¥(s)ds (32)

Here ¥:R — [0,00] is a double well potential, which we assume to be symmetric and to
have its global minima at 1. The canonical example is

3
2

¥(s):=1(s*-1)> =  ¥(s)=s"—s and cy=122. (3.3)
Another possibility is to choose
1(1-s?), |s|<1
Y(s):={2 ! - = cy=2; 3.4
( ) {OO, ’S| >1, Y 2 ( )

see e.g. [23,24,42,43]. Clearly the obstacle potential (3.4), which in contrast to the smooth
quartic potential (3.3) forces ¢ to stay within the interval [—1,1], is not differentiable at
+1. Hence, whenever we write ¥'(s) in the case (3.4) in this paper, we mean that the
expression holds only for |s| <1, and that in general a variational inequality needs to be
employed.

Our phase field model for (2.3) is then given by the coupled system

dwi+Ao(@)pr—V.(b(¢)Vw)=0  in Qr:=Qx(0,T), (3.5a)
w=1up on dpQ0x(0,T), (3.5b)
b(qo)g—zszo on dNQ % (0,T), (3.5¢)
dw(-,0) = dwy in Q, (3.5d)

with
cwgg((p)w:egy(vwqot—EV.A’(qu)—l—s’l‘I”(qo) in Qr, (3.6a)
g—f:O on 002 (0,T), (3.6b)

¢(-,0) = @o in Q, (3.60)
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where
b(s)= L (14+5)K +1(1-9)K_,
and where the function ¢ € C'(R) is such that

S

1
o(s)>0 Vse[-1,1], [1Q(y) dy=1 and P(s):= [1Q(y) dy. (3.7)
We note that P, which is a monotonically increasing function over the interval [—1,1] with
P(—1)=0and P(1) =1, is often called the interpolation function. In this paper, we follow
the convention from [43], where ¢ =P’ is called the shape function. Possible choices of ¢
that will be considered in this paper are

i) o(s)=3, (i) o(s)=3(1—s), (i) o(s)=F(s*—1)%, (iv) o(s)=3(1—5°). (3.8)

More details on interpolation functions P, respectively shape functions ¢, can be found in
e.g. [30,47,83]. In particular, if one also assumes that ¢ is symmetric, i.e.

o(s)=o0(—s)  VseR, (3.9a)

and that
o(1)=e(=1)=0, (3.9b)
then a faster rate of convergence of the phase field model to the sharp interface limit, as
e — 0, can be shown in the isotropic case (2.2), (2.4) on replacing p in (3.6a) with the first
order correction
p:=p+ep1, (3.10)

where p; is defined in (4.7) in Section 4.3, below. The condition (3.9b) is one motivation
for the latter two choices in (3.8), with the choice (3.8)(iv) also satisfying the stronger
condition (4.9), below, for the quartic potential (3.3). An error analysis for a fully discrete
approximation of the phase field model (3.5), (3.6) with the quartic potential (3.3) and the
shape function (3.8)(i) in the isotropic case (2.2), (2.4) with oNOQY=0Q and Ky =K_ >0
has been performed in [45]. These authors also show convergence of the phase field
discretizations to the underlying sharp interface problem as ¢,h, 7 — 0, where h and 7
denote the discretization parameters in space and time, respectively. However, to our
knowledge, no convergence rates are known for the convergence of discretizations of the
phase field model to the sharp interface problem (2.3). Here we recall that for the much
simpler situation of planar curvature flow, as the sharp interface limit of the isotropic
Allen-Cahn equation, such convergence rates have been obtained in [67]. In particular, it
can be shown that the zero level sets of discretizations of

epi=eNp—e 1Y (¢)

for the obstacle potential (3.4) converge with O(e) to the sharp interface limit moving by
V=xit
T=0(h)=0(e). (3.11)
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While no such result is known for the full phase field model (3.5), (3.6) even in the
isotropic setting, it is natural to expect constraints of the form (3.11) in order to observe
O(e) in practice.

We remark that the phase field analogue of the sharp interface energy identity (2.5) is
given by the formal energy bound

d A
7 9) =—(b(g) Vo Vo) e "E — (u(V g),(9?) <0 6.12)

for the phase field model (3.5), (3.6), where

A 1

9
Fe(p,w):= 5 \w—uD]5—|—7a5g(go)—/\uD/ P(¢)dx. (3.13)

Q

Phase field models that satisfy such an inequality, in analogy to the sharp interface energy
identity (2.5), are often called thermodynamically consistent, see [47,70,83].

3.1 Phase field methods PF°’S-FEM and PFI"*-FEM

Unconditionally stable, fully practical finite element approximations of (3.5), (3.6) with
either (3.3) or (3.4) have been introduced by the authors in [17]. Here stable means that
they satisfy a discrete analogue of the formal energy bound (3.12). Throughout this paper
we will refer to the approximations from [17] for (3.3) and (3.4) as PF4“3-FEM and PF°bs-
FEM, respectively, where the inclusion of a subscript refers to the choice of shape function
in (3.8), e.g. PF‘(’SS—FEM. We recall from [17] that a side effect of the interpolation function

P in (3.13) is that the function
G(s)=a(acye) ¥ (s)—upP(s)

need no longer have local minima at s = £1 if up # 0. This can result, for example, in
undesired, artificial boundary layers for strong supercoolings, i.e. when —up is large. For
the smooth potential ¥ from (3.3), sufficient conditions for s = %1 to be local minimum
points of G(s) are

o(£1)=¢'(£1)=0, (3.14)

which is evidently satisfied by (3.8)(iii). In fact, in applications phase field models for so-
lidification almost exclusively use this shape function; see e.g. [25,33,62]. For the obstacle
potential (3.4) the situation is similar, although there is more flexibility in the possible
choices of ¢. In particular, here a sufficient condition for G(s) to have local minima at
s==1is given by

a(acye) ' +upo(+1)>0. (3.15)

On recalling that up <0 we see that for (3.15) to hold it is sufficient to require that o(1) =0,
which is evidently satisfied by (3.8)(ii), (3.8)(iii) and (3.8)(iv). A major advantage of
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(3.8)(ii) over (3.8)(iii) and (3.8)(iv) is that for (3.8)(ii) it is possible to derive almost lin-
ear finite element approximations that are unconditionally stable. The corresponding
unconditionally stable schemes for the nonlinear shape functions (3.8)(iii) and (3.8)(iv),
on the other hand, turn out to be highly nonlinear. See [17] for more details.

We remark that even when (3.14) and (3.15) are satisfied for the potentials (3.3) and
(3.4), respectively, it is possible that mushy interfacial regions are observed in practice for
approximations of the phase field model (3.5), (3.6); see e.g. Fig. 13, below. That is partic-
ularly the case in situations where the instability of the moving free boundary is strong,
i.e. when —upaa—lis large, recall (2.6) and see e.g. [64]. Then ¢ needs to be chosen small,
recall (3.13), so that the phase field variable ¢ admits well-defined interfacial regions that
approximate the sharp interface I'(t). This gives rise to a formal constraint of the form

£§C1x(—uDa)’1 if up<o, (3.16)

for the choice of the interfacial parameter ¢ in terms of the physical parameters for the
sharp interface problem (2.3), irrespective of the choice of ¢. The reason for this is that in
the estimate (3.12) the double well term ¢! ['¥(¢) dx in &(¢) is for large € not strong
enough to bound the unstable term involving P(¢), which encourages the growth of the
diffuse interface.

The two algorithms PF°*-FEM and PF4“2-FEM, which use continuous piecewise lin-
ear finite elements in space, feature the discretization parameters h s h. and 7. Here h i
and h. are mesh parameters for fine triangulations inside the diffuse interfacial region
and coarser triangulations far away from it. Meaningful phase field simulations need to
resolve the interfacial regions, whose width is of the order ¢, and so a constraint of the
form

hy<Ce (3.17)

needs to be enforced. For (3.4) the asymptotic interface width is 7re in the isotropic case
(2.2), and in this paper we always choose h; < % with h. =8h; < 7re. Unless otherwise
stated we let iy = 7. Finally, T denotes a uniform time step size. Here we recall that
the schemes PF°**-FEM and PFI**-FEM employ a semi-implicit discretization in time,
which utilizes convex/concave splittings of the nonlinearity arising from the potential ¥
and from the interpolation function P. Such a splitting for ¥ was first proposed in [44],
see also [7], and the idea generalizes naturally to P; see Section 3.2, below, for details.
This means that for the shape function choices (3.8)(i) and (3.8)(ii) almost linear schemes
are obtained, while the choices (3.8)(iii) and (3.8)(iv) give rise to more nonlinear finite
element approximations; see [17] for details. The discrete systems of linear equations and
variational inequalities arising from the schemes PF°P>-FEM are solved with the Uzawa-
multigrid solver from [5], while the systems of nonlinear equations arising from PF1"?-
FEM are solved with a Newton method. We refer to [17] for more details.

For completeness we briefly describe the choice of the initial profile ¢g in (3.6¢) in
our numerical computations. Given the initial interface I'y from (2.3e), we let dp: Q2 — R
denote the signed distance function of I'g. Then, on recalling the asymptotic phase field
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profiles from e.g. [42], we define

_1/ SS_%/
po(x)=®(e 'do(x)), where ®(s):={sin(s), |s|<Z, (3.18a)
L s> 7,

for the obstacle potential (3.4), while for the smooth quartic potential (3.3) we use
po(x)=®(e 1do(x)), where ®(s):=tanh(2 s). (3.18b)

For simplicity we use the profiles (3.18) also in the anisotropic setting, where it would be
more appropriate to replace dy with a suitably defined anisotropic distance function d.,
see [38] for details. Finally, if ¢ >0, we fix wo=uj.

3.2 Possible time discretizations

In Section 4 we will investigate the accuracy and the efficiency of several discretizations of
the phase field model (3.5), (3.6) in the isotropic case (2.2), (2.4). In addition to the schemes
PF°bs_.FEM and PF9“2-FEM from [17], which use a semi-implicit discretization in time, we
will also look at a more implicit discretization and at a fully explicit discretization. For
later reference, we now state the three different time discretizations, and for simplicity we
do so on ignoring spatial discretization. A strong formulation of the time discretization
from [17] is given as follows. Let ¥ =¥"+Y~, with ¥ being convex on R and ¥~
being concave, and let P=P"+P~ be a similar splitting that is convex/concave on a
suitable superset of [—1,1], where we recall that ¢ need not remain in [—1,1] for the
quartic potential (3.3). We also define o= := (P*)’. For the schemes PF°®*>-FEM and PFd“2-
FEM we set ¥~ (s) = —1s% and

() o"(s)=0, (i) o"(s)=0, (i) o™ (s)=3s, (iv) ot (s)=2s

for the choices of ¢ in (3.8). The semi-implicit time discretization employed by the schemes
PF°P-FEM and PF9“2-FEM can then be formulated as:

O (wn—wy—1) +A Q" (@) +0 (9u-1)) (@1 —Pu-1) —TV.(b(@n-1) Vwy) =0,  (3.19a)
e = (0" (u) 0™ (@u1)) s
P

114

Pr Pl —engute™ (F4) (9u) + (¥ (9a-1))- (3.19b)

With this time discretization existence of a unique solution (@l,wh) to the fully discrete

scheme can be shown for arbitrary time step sizes T if 0 =0, where w" may not be

unique if ¢ =0 and dy() =09} in very rare circumstances. Moreover, any solution to the
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semi-implicit schemes PF°bs_.FEM and PFI“a-FEM is stable; see [17] for details. The semi-
implicit time discretization in (3.19) can be modified to an implicit time discretization by
replacing (3.19b) with

a _ n-— — —
C‘FE(Q+(§0n)+Q <¢n71))wn:€§%—€A§0n+€ ¥ (@), (3.20)

which then gives rise to a time step size constraint of the form

2 if p>0, (3.21)

< poc_l €
in order to ensure the existence of a unique, stable solution in the case ¢™ =0 and p > 0.
In the situation 9 =p =0 and o(s) = 3, with dyQ =09Q, which has been treated by the
present authors in [16], a stronger time step constraint of the form 7= O(e?) arises for
the implicit discretization (3.20); see also [21,23]. Here we recall that it is often observed
that implicit time discretizations of Allen-Cahn and Cahn-Hilliard type equations yield
a better accuracy in time compared to semi-implicit time discretizations as in (3.19); see
e.g. [21,22,49]. We will present several computations for a variant of PF1"*-FEM with the
implicit time discretization (3.19a), (3.20) in Sections 4 and 5.
Finally, fully explicit approximations, as advanced in e.g. [48,65,66], can also be con-
sidered. Here we replace (3.19) by

O (wn—wn-1)+A0(Pn-1) (@n—@n-1) —TV.(b(pn-1)Vw,_1) =0, (3.22a)

e = 0(gu-1)wn 1 =eE PP _eng, e (F7) (90)+(¥7) (gu1)).  (3:22)

If >0 and p >0, then the above fully explicit time discretization is well-defined, and in
this case stability of the fully discrete scheme can be shown if

T=0(h?). (3.23)

In particular, in the case of the obstacle potential (3.4), if T < %ﬁsp ()\er)_lggéx, then the
solutions to the fully discrete variant of (3.22) are stable if

th 2 <Comin{ 0K koo '}, (3.24)

where gmax 1= max,c|_11]]0(s)], Kmax :=max{K,K_} and where C, is a constant only
depending on the spatial mesh. The advantage of (3.22) over (3.19) is that the discretized
systems of equations now decouple in space, which leads to huge efficiency gains when
the computations are performed in parallel on a large cluster. However, in practice this
advantage is often negated because (3.23), together with e.g. (3.17), enforces that very
small time steps need to be taken. In Section 4.2 and in Section 5 we will present compu-
tations for a variant of PFO’S-FEM with an explicit time discretization as in (3.22).

Of course, parallelizations can also be considered for the more implicit time dis-
cretizations of the phase field model, as well as for the sharp interface method PFEM.
Here we expect the overall speedups for PF*s-FEM, PF4"*-FEM and PFEM to be similar,
and we leave a detailed investigation of this aspect for future research.
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4 Quantitative comparison for isotropic problems

A standard validation used for phase field models in the literature is the comparison of
tip velocities between the computed phase field discretizations and real world measure-
ments from the laboratory, see e.g. [55,71]. Here the physical parameters in the phase field
model have to be chosen appropriately, so that they correspond to the physical proper-
ties of the material in question. However, often the exact values of these parameters are
unknown or they are themselves based on measurements. Here we propose a much sim-
pler quantitative validation, which makes use of known radially symmetric solutions to
the underlying sharp interface problem in the isotropic case. We would argue that such
a simple comparison should be part of the validation of every phase field method to be
proposed in the literature. It gives an indication of the accuracy of the overall method and
it helps to fine-tune the discretization parameters that should be used for the anisotropic
physical applications.

In particular, in this section we consider the following isotropic variant of (2.3). Find
u:Qx[0,T] — R and the interface (I'(t));c[o,r) such that for all t € (0,T] it holds that:

dup—Au=f in Q\T(t), (4.1a)
au]
—| ==V onT(t), (4.1b)
[an I(t)
pV=ax—u onT(t), (4.1c)
g—zzo on dN(), U=1up on dp(), (4.1d)
r(0)=Ty, u(-,0)=0uy inQ. (4.1e)

Here f:[0,T] - R in (4.1a) is a given spatially homogeneous forcing term. In the phase
field approximation (3.5), (3.6) this forcing appears analogously as a right hand side term
f in (3.5a). Note that for f =0 the above system (4.1) corresponds to (2.3) with (2.2), (2.4)
and KL =a=A=1.

4.1 Mullins-Sekerka problem

We first consider the quasi-static case #=p=0. To this end we take the known solution of
an annular region Q)_(t), for which the inner boundary shrinks to a point so that Q_ ()
becomes a disk for sufficiently large t. Here we take « =1 and let oy () =0(). In addition,
I'(0) =T consists of two concentric circles/spheres. It is then not difficult to show that
the two radii r; <7, satisfy the following system of nonlinear ODEs: In the case d =2 we
have

1 1 1 1
1 2+1 1 2+1
L and [r)i=——1 2T Vie[oT), (4.22)

T2
" 2 In " 2
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=N
N/

Figure 1: The true solution from (4.2a) at times t=0,10"3,2x1073.

while for d =3 it holds that

2 r1+17 211+ 1’%
rli=——= d [»mli=— =—=r Vtel0,Ty), 4.2b
[r1]e — and  [ro]; » rg[ 1t [0,To) (4.2b)

where Ty is the extinction time of the smaller sphere, i.e. lim;_,1, 71 () =0, see e.g. [19,80].
Note that the corresponding solution u satisfying (2.3) is given by the radially symmetric
function

—&5 1 1 x| >72(t),
N GRE0) B
0 In RO d=2
u(xt)=4¢" 1 2 ri(t) <|x[<ra(t), (4.3)

al x| <n(t).

As (4.2) does not appear to be analytically solvable, it needs to be integrated numerically
to compute the solution (r1,72)(t), for t € [0,T], where T < Ty. Possible strategies to in-
tegrate (4.2) to a high accuracy are described in [13]. We visualize the evolution of I'(¢)
over the time interval [0,2 x 10~3] in Fig. 1. The above true solution forms the basis of our
first benchmark problem:

Benchmark problem 1: 2d Mullins-Sekerka with ¢ =p=0.

True solution (4.2a), (4.3) to (4.1) with $=p=0 and a=1.

Initial data (r1,72)(0)=(0.24,0.4).

Domain Q= (—%,3)? with INQ=0Q).

Time interval [0,T] with T=10"3 so that (r1,72)(T)~(0.18,0.37).

In Fig. 2 we compare the energy F of the true sharp interface solution, recall (2.6),
to the corresponding energies }"f ~ F, recall (3.13), of the finite element approximations
qua_

from the algorithm PF(i) FEM on the time interval [0,4x 10~3]. Here we recall that for
the given data and the given evolution it holds that

}"(F,u):]F(t)\::/r(t)lds:Zn(rl(t)—i—rz(t)).
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Figure 3: (PF(i) -FEM with the implicit time discretization from (3.20), e ! =87,167,327,6477) Comparison

of the energies F and ]-"sh for the benchmark problem 1 with T=4x1073. The uniform time step sizes are
chosen as T=10"%, k=5,---,7.
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Figure 4: (PFEM) Comparison of the energies F and F" for the benchmark problem 1 with T=4x10"3. The
uniform time step size is chosen as T=10">, while the spatial discretizations are proportional to 2/, j=3,-+,7.

Very similar energy plots can be obtained for the other variants of PF1"?-FEM and those of
PFPS-FEM. We note that for decreasing ¢, the time step size T needs to be chosen smaller
and smaller in order to capture the correct time scaling of the evolution. We compare
this computation for PF?;)Ia-FEM, which uses a semi-implicit discretization in time, now
with one computation for the implicit time discretization as in (3.20). Here we recall that
better accuracy for such discretizations has been reported in [21] for the isotropic Cahn-
Hilliard equation, i.e. (3.5a), (3.6a) for (2.2) with (3.4), (3.8)(i) and with ¢ =p=0. In fact,
here we observe a similar behaviour. See Fig. 3, where even for very large choices of T
the time evolution of the phase field model seems to be captured accurately. Finally, we
show some discrete energies F" ~ F from the parametric scheme PFEM in Fig. 4. Here
we choose rather crude discretization parameters, since otherwise the discrete energies
F" would lie virtually on top of the true energy JF.

In Table 1 we present the errors in r; and in u for the scheme PF?BS-FEM for a se-
lection of interface parameters ¢ and for a range of discretization parameters /iy and T
for the benchmark problem 1. The displayed error quantities are defined as ||w" —u||;2:=
(T Tocnsr /e @ (n0) =) |2 )2 and |7, =1 =maxocusr o |rh, (nT) =11 (n7)],
where ! (t):=inf{s >0: ¢" (se;,t) =0}, with e; = (1,0)T being the first unit vector in R?,
denotes the phase field approximation of the inner radius. We also show the number of
degrees of freedom (DOFs) for the calculation of the discrete solution for the final time
step at time t =T. The presented overall CPU times are for a single-thread computation
on an Intel i7-860 (2.8 GHz) processor with 8 GB of main memory. For the benchmark
problem 1 the remaining variants of PF°”-FEM and PF9“3-FEM exhibit very similar er-
rors to the ones in Table 1, and so we do not present them here. In later computations we
will also employ the stronger norm ||w” —u|| .« :=maxg< <1/ ||w" (-,nT) —u(-,n7) ()
for the temperature error. However, for the experiments in Table 1 no convergence can be
observed in the L®(Qr)-error for the true temperature (4.3) for the phase field approxi-
mations. In fact, for the computations in Table 1 the errors ||w" —u||;~ are in the interval
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Table 1: Benchmark problem 1 for PF?BS—FEM.
el |23/ | o || —nlle | |w"—ul2 | DOFs(T) | CPU time
81 64 107 | 1.3004e-02 | 1.8448e-03 4522 5 secs
64 107 | 1.3154e-02 | 9.9918e-04 4402 39 secs
64 1077 | 1.3175e-02 | 3.2861e-04 4354 6:54 mins
128 | 1077 | 1.4283e-02 | 3.5051e-04 15626 37:22 mins
167t 128 | 1075 | 1.4139e-02 | 2.1678e-03 10378 15 secs
128 | 107° | 2.6476e-03 | 2.5879e-04 10130 1:58 mins
128 | 1077 | 4.9843e-03 | 1.0553e-04 10106 17:06 mins
256 | 1077 | 5.5154e-03 | 1.1024e-04 34682 1:23 hours
32 256 | 1072 | 3.4984e-02 | 5.6999e-03 23362 50 secs
256 | 107° | 6.2022e-03 | 3.4521e-04 21650 6:28 mins
256 | 1077 | 8.8958e-04 | 3.7115e-05 21082 50:03 mins
512 | 1077 | 1.8543e-03 | 3.3740e-05 74322 5:04 hours
6471 512 | 107> | 5.0345e-02 | 8.2731e-03 52602 1:54 mins
512 | 107° | 2.2346e-02 | 1.2118e-03 49370 17:19 mins
512 | 1077 | 4.7000e-03 | 1.1020e-04 46922 2:14 hours
1024 | 1077 | 2.1723e-03 | 3.5938e-05 | 166498 | 15:50 hours
12871 | 1024 | 1072 | 5.6324e-02 | 9.1597e-03 | 122314 7:25 mins
1024 | 107° | 4.2515e-02 | 2.2390e-03 | 118818 1:01 hours
1024 | 1077 | 1.5232e-02 | 2.8138e-04 | 112794 9:50 hours
2048 | 1077 | 1.0919e-02 | 1.8112e-04 | 404962 | 68:23 hours
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[1,16], where we note that the true solution (4.3) itself remains in the range [—2.8,5.6] over
the computed time interval. It is for this reason that we report the weaker error norms
|w" —ul|;2 in Table 1.

A repeat of the computation in Table 1, but now for an implicit time discretization
of PF?Sa—FEM can be seen in Table 2. One clearly observes that, for fixed ¢, the errors

|r% —r1||z~ and ||w" —ul| ;> soon appear to be almost independent of the time step size
7. This indicates that the implicit time discretization from (3.20) manages to eliminate
the temporal discretization error relatively quicker than the semi-implicit discretization
from (3.19). Moreover, for small € and fixed 7, the error in the approximation of the sharp
interface problem (4.1) is in general significantly smaller for the implicit time discretiza-
tion. We remark that the converged errors in Table 2 appear to indicate a convergence of
O(e) in the error || —r1||1~, with a similar convergence rate for the error ||w" —ul| 2, if
discretization errors are neglected.

Finally we note that the numbers in Tables 1 and 2 indicate that refining the mesh
discretization parameters h s and hence F, in general does not reduce the error. Hence
choosing h. =8h; = e appears to be sufficient for classical phase field model computa-
tions, and we will restrict ourselves to this choice from now on in this paper.
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FEM with the implicit time discretization from (3.20).

g1 2%/hf T Hrﬁl—rlHLw |w" —ul|;» | DOFs(T) CPU time
81 64 107° | 3.5385e-02 | 7.8725e-03 5018 10 secs
64 107% | 3.5228e-02 | 2.4832¢-03 5018 1:06 mins

64 1077 | 3.5211e-02 | 7.8429e-04 5018 12:30 mins

128 1077 | 3.6235e-02 | 7.9552e-04 18658 50:07 mins

lé6m 128 1075 | 1.4453e-02 | 2.2343e-03 11514 22 secs
128 107° | 1.4667e-02 | 7.2292e-04 11530 2:20 mins

128 1077 | 1.4675e-02 | 2.2894e-04 11514 27:29 mins

256 1077 | 1.5018e-02 | 2.3527e-04 38858 1:31 hours

327 256 1072 | 5.6651e-03 | 8.2274e-04 24802 58 secs
256 107° | 6.4112e-03 | 2.9604e-04 24290 7:23 mins

256 1077 | 6.4838e-03 | 9.6155e-05 24322 1:06 hours

512 1077 | 6.6777e-03 | 1.0156e-04 83690 5:41 hours

6471 512 1072 | 3.1282e-04 | 1.3540e-04 54298 2:20 mins
512 1076 | 2.5224e-03 | 1.1540e-04 53466 17:31 mins

512 1077 | 2.8135e-03 | 4.4061e-05 53114 3:27 hours

1024 | 1077 | 3.0098e-03 | 4.2577e-05 185410 20:03 hours

12871 | 1024 | 107 | 8.3850e-03 | 1.4662¢-03 128866 15:56 mins
1024 | 107 | 3.3622e-04 | 2.2218e-05 123770 1:17 hours

1024 | 1077 | 8.3440e-04 | 1.5965e-05 | 123402 10:46 hours

2048 | 1077 | 1.1768e-03 | 1.6903e-05 | 437330 | 116:48 hours

We compare these convergence experiments with the corresponding errors for the
sharp interface algorithm PFEM in Table 3. For these sets of experiments we always
choose hr ~Iiy. Here the error quantities [|u" —u||;~ and ||u" —u ;2 are defined as ||w" —
ul|r~ and ||w" —ul|;» as before, but with w" replaced by u". In addition, we let ||/ —
r1||Le F=MaXg<p<T/7MAXperh () ||p|—r1(n7T)|, with T” () denoting the parametric approx-
imation of the inner circle of the true solution I'(#). Note that the norm in the definition of
|74 —71||~ employed here is much stronger than the phase field equivalent ||r? —r||~
introduced earlier, where the difference between the true interface position r; (¢) and the
phase field approximation is measured in the xj-coordinate direction only. All of the er-
ror quantities shown in Table 3 appear to be converging with order at least O(h) if the
time discretization errors are neglected.

The numbers in Tables 1-3 convey a very clear message. Firstly, we recall that the
experiments in Tables 1 and 2 do not converge in the norm ||w" —u||;~, whereas ||u" —u|| =
in Table 3 does appear to converge with O(h). Secondly, we can see that even with
computations that take almost 5 days, the phase field schemes PFE’BS-FEM and PF?;)Ia-
FEM cannot reduce the error in the radius to below 3x10~%. Yet, better accuracies for
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Table 3: Benchmark problem 1 for PFEM.

2%/hf T || —r1e | [0 —ullp> | ||u"—u||;2 | DOFs(T) | CPU time
8 10~* | 3.6782e-02 | 2.8260e-00 | 3.5916e-02 113 0 secs

8 1072 | 4.2433e-02 | 4.8862e-00 | 4.1925e-02 113 0 secs
16 10~ | 1.1028e-02 | 9.5419e-01 | 1.2123e-02 285 0 secs
16 1072 | 1.3394e-02 | 1.7413e-00 | 1.5531e-02 285 0 secs
32 10~% | 3.6288e-03 | 4.3183e-01 | 4.8601e-03 693 0 secs
32 1075 | 5.7298e-03 | 6.3045e-01 | 7.1794e-03 657 1 secs
64 10~% | 7.7318e-04 | 2.9301e-01 | 2.8734e-03 1585 0 secs
64 1075 | 2.4803e-03 | 2.9384e-01 | 3.2140e-03 1473 1 secs
128 | 107* | 5.8266e-04 | 3.1247e-01 | 3.2813e-03 3553 0 secs
128 1072 | 1.1406e-03 | 1.1283e-01 | 1.4618e-03 3213 3 secs
128 107° | 1.3262e-03 | 1.5152e-01 | 1.7016e-03 3173 32 secs
256 10~ | 1.1384e-03 | 3.4935e-01 | 3.6955e-03 8289 1 secs
256 | 1075 | 4.7583e-04 | 5.9495e-02 | 6.7789e-04 6945 7 secs
256 107° | 6.4981e-04 | 7.6398e-02 | 8.4454e-04 6777 1:11 mins
512 | 107* | 1.4098e-03 | 3.6302e-01 | 3.8770e-03 20381 3 secs
512 1072 | 1.3003e-04 | 3.4588e-02 | 3.4619e-04 16109 19 secs
512 1076 | 2.9886e-04 | 3.4579e-02 | 3.9724e-04 15649 3:02 mins
1024 | 107* | 1.4724e-03 | 3.6426e-01 | 3.9180e-03 43133 6 secs
1024 | 1072 | 3.8716e-05 | 3.1143e-02 | 3.2082e-04 41757 57 secs
1024 | 107¢ | 1.3093e-04 | 1.4765e-02 | 1.8090e-04 39493 9:31 mins
2048 | 107* | 1.5121e-03 | 3.6991e-01 | 3.9402e-03 93385 18 secs
2048 | 1075 | 1.1372e-04 | 3.7037e-02 | 3.6346e-04 | 120429 3:35 mins
2048 | 107° | 5.3291e-05 | 6.9988e-03 | 7.7964e-05 | 112285 | 32:22 mins
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the radius can be achieved with the sharp interface approximation PFEM, running on
the same computing hardware, in less than a minute. Hence, for this measurement, the
simulations with PFEM are at least 7000 times faster than the computations with PF°bs-
FEM and PF1"#-FEM. The main reason behind this very slow convergence appears to be
that the biggest contribution to the observed error comes from the interfacial parameter
e. Hence in order to obtain reasonable errors, € needs to be taken very small, which on
recalling (3.17) implies that the discretization parameters need to be chosen very small as
well; recall also (3.11). Unfortunately, phase field computations thus soon reach the limit
of what is computable on today’s computer hardware. As an aside we note that when
comparing CPU times between e.g. PF‘(’SS—FEM and PFEM in terms of degrees of freedom,
then it is crucial to take into account the value of 7, as this will be indirectly proportional
to the number of algebraic systems that need to be solved during the whole simulation.
In fact, for the same number of degrees of freedom and the same value of 7, the CPU
times between the two different algorithms are similar.
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Figure 5: (Benchmark problem 1) Log-log scatter plot of ||r" —r1||1~ and || —r; 1~ against the CPU time
for the entries in Table 1 (PF((’ib)S—FEM, blue rhombi), Table 2 (PF?;;a—FEM, green rhombi) and Table 3 (PFEM,

red circles).

To better visualize the relative performances of PF((’SS—FEM in Table 1, PF((]il)m—FEM in
Table 2 and PFEM in Table 3, we present a plot of the errors in the radius r; against the
necessary CPU time for all the entries in the three tables in Fig. 5. This plot underlines
the superiority of the sharp interface algorithm PFEM over the phase field methods.

For the 3d solution (4.2b), (4.3) it is virtually impossible to perform a meaningful
convergence experiment for the phase field approximations PF°P>-FEM and PF1“2-FEM.
The reason is that for the same values of ¢ and for comparable discretization parameters
as in e.g. Table 1, the simulations in three space dimensions do not finish in a reasonable
amount of time. For an example of a convergence test for the solution (4.2b), (4.3) for the
scheme PFEM we refer to [13, Table 6].

4.2 Stefan problem

In this section we consider the full Stefan problem (4.1) with #=1 and p>0. Here we adapt
the expanding circle/sphere solution introduced in [74, p. 303-304], where the radius of
the circle/sphere is given by r(t) with

r(t)=(r*(0)+t) :. (4.4a)
In particular, we let
_a(d-1)+3%p _ei eV
Z(t)——T, U(S)——?/l de
Then it is easy to see that
z(t), X ST’ t),
u(x,t):{ ®) N Ixl < (1) (4.4b)
z(t)-l—v(m), x| >7(t),
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is the solution to (4.1) with
d a(d—1)+1p
t)=—z(t) = ——=——~—, 4.5
F0= G20 ="507 45

and with up in (4.1d) replaced by u 3,0 on dpQ =0Q).

For the Stefan problem with kinetic undercooling we propose the following bench-
mark problem, where on recalling e.g. (3.16) we note that increasing the parameter £ €IN
leads to the benchmark problem becoming computationally more and more challenging.

Benchmark problem 2(“): 2d Stefan problem with #=1 and p > 0.

True solution (4.4) to (4.1) with (4.5) and with =1 and a=p=10"".
Initial data (0)=1 and ug=u(-,0) from (4.4b).
Domain Q= (—1,1)? with 9pQ=0Q and up =uly, from (4.4b).

Time interval [0,T] with T=1, so that r(T)=3.

For the benchmark problem 2(Y) with £ =1, all of the phase field schemes were able

to compute the necessary evolutions reasonably well. As an example we show the re-
qua

sults for the scheme PF ;;7-FEM in Table 4. Here the definition of [7h —r|~ is the same

Table 4: Benchmark problem 2(0) with £=1 for PFqlilia—FEl\/I.

(iii)

el [25/n | © |l —rlie | [|0" —ulli~ | DOFs(T) | CPU time
47 32 1072 | 2.5442¢-01 | 2.1420e-01 2722 2 secs
32 103 | 3.0555e-02 | 3.6722e-02 4082 37 secs
32 10~ | 1.2407e-01 | 9.6043e-02 4378 4:53 mins
32 1075 | 1.5339¢-01 | 1.3470e-01 4346 47:32 mins
32 107 | 1.5785e-01 | 1.3983e-01 4346 13:38 hours
8 64 1072 | 4.1068e-01 | 2.6415e-01 4082 4 secs
64 1073 | 1.2126e-01 | 1.1494e-01 7074 3:06 mins
64 10~ | 1.6550e-02 | 1.5965e-02 8418 32:17 mins
64 1072 | 3.6656e-02 | 2.7052e-02 8610 3:04 hours
64 107° | 3.8850e-02 | 2.8693e-02 8530 22:05 hours
167 128 1072 | 4.7480e-01 | 2.8186e-01 7786 9 secs
128 1073 | 3.0057e-01 | 2.1518e-01 11386 1:44 mins
128 10~% | 5.5585e-02 | 5.2878e-02 16530 35:19 mins
128 1075 | 4.0354e-03 | 8.8896e-03 17594 4:42 hours
128 107° | 1.1098e-02 | 9.9938e-03 18058 37:23 hours
327 256 1072 | 4.9344e-01 | 2.8715e-01 18970 23 secs
256 1073 | 4.3490e-01 | 2.6236e-01 21346 6:31 mins
256 10~% | 1.8070e-01 | 1.4732e-01 31882 1:22 hours
256 1072 | 2.7810e-02 | 2.6160e-02 38186 13:55 hours
256 107 | 3.2260e-03 | 6.0793e-03 39178 93:40 hours
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qua_

(iii)
el [25/n | © ||l —rlie | |w" —ulli~ | DOFs(T) | CPU time

Table 5: Benchmark problem 2(Y) with £=1 for PF\-FEM with the implicit time discretization from (3.20).

47 32 1072 | 5.6463e-02 | 1.4990e-01 3634 5 secs
32 1073 | 1.0972e-01 | 7.4356e-02 4378 42 secs
32 10~* | 1.5077e-01 | 1.3089e-01 4394 5:29 mins

32 1075 | 1.5750e-01 | 1.3943e-01 4346 47:32 mins
32 107¢ | 1.5834e-01 | 1.4032e-01 4346 8:54 hours
8 64 1072 | 1.8482e-01 | 2.1201e-01 6394 8 secs
64 1073 | 2.0140e-02 | 3.5234e-02 8498 1:20 mins
64 107% | 3.7523e-02 | 2.7306e-02 8578 14:27 mins
64 1075 | 3.8793e-02 | 2.8669e-02 8530 2:02 hours
64 107% | 3.9062e-02 | 2.8841e-02 8530 15:51 hours
161 128 1072 | 3.1725e-01 | 2.5152e-01 11178 18 secs
128 1073 | 2.4690e-02 | 6.9721e-02 16954 4:05 mins
128 1074 | 9.0828e-03 | 1.1014e-02 17698 26:51 mins
128 1075 | 1.1510e-02 | 1.0304e-02 17898 5:02 hours
128 1070 | 1.1842e-02 | 1.0627e-02 17826 38:07 hours
327 256 1072 | 4.1167e-01 | 2.7209e-01 22506 54 secs
256 1073 | 8.5869e-02 | 1.2716e-01 36050 11:59 mins
256 107% | 7.0679e-03 | 1.8667e-02 38938 1:32 hours
256 1075 | 8.7275e-04 | 5.8758e-03 38906 10:39 hours
256 107% | 3.5699e-04 | 5.0530e-03 38922 91:29 hours

as ||, —r1| L~ with r; replaced by r. In order to be able to assess the absolute tempera-
ture errors ||w" —u||;~, we note that for this benchmark problem the true solution (4.4b)
remains in the range [—0.95,—0.15]. The same computation now for the implicit time dis-
cretization from (3.20) is shown in Table 5. In order to visualize the different behaviour
of the two different time discretizations, we plot the scaled phase field approximations
El =&, recall (3.2), together with |T(t)|=27tr(t) in Figs. 6 and 7. Similarly to Section 4.1 it
can be seen that the implicit time discretization eliminates the time discretization error in
the approximation of the phase field equations sooner than the semi-implicit discretiza-
tion. Moreover, for the smallest value of ¢ the absolute errors || —7||;~ appear to be
significantly smaller for the implicit scheme. We remark that the converged errors in
Table 5 appear to indicate a convergence of O(e) in the error ||r? —r||.~, with a similar
convergence rate for the error ||w" —u|| 2, if discretization errors are neglected.

The results for the same benchmark problem for the scheme PFE’ET-FEM with the ex-
plicit time discretization from (3.22) are shown in Table 6. Here the reported CPU times
are given as guidelines only, because we did not employ any parallelization. Recall that
the discrete systems of equations decouple in space, and so a significant speedup of the



J. W. Barrett, H. Garcke and R. Niirnberg / Commun. Comput. Phys., 15 (2014), pp. 506-555 529

0 0.1 0.2 03 0.4 05 ~o 0.1 0.2 03 04 05
true solufop = e — e — true solufiog —— 2— =

~o 0.1 0.2 03 0.4 05 ~o 0.1 0.2 03 04 05
true solufop = e — e — true solufiog —— 2— =

Figure 6: (PF?;‘S-FEM, e~ '=47m,87,167,327) Comparison of |T'(t)| and cy ! £/ for the benchmark problem 2(¢)

with /=1. The uniform time step sizes are chosen as =107k k=2,---,6.
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Figure 7: (PF‘(liLi‘f)-FEM with the implicit time discretization from (3.20), e~! =47,87,167,327r) Comparison

of |T'(#)] and c\}lé'sh for the benchmark problem 2(Y) with £=1. The uniform time step sizes are chosen as
1=10"K k=2,-,6.
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Table 6: Benchmark problem 2(0) with £=1 for PF

(il
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obs_FEM with the explicit time discretization from (3.22).

el 2%/hf T | || —rlli~ | [[w"—ul|~ | DOFs(T) CPU time
47 32 10~% | 4.2499¢-02 | 8.9335e-02 3114 1:02 mins
32 107° | 4.2868e-02 | 8.9236e-02 3114 10:04 mins
32 1070 | 4.2906e-02 | 8.9228e-02 3114 1:39 hours
32 10~7 | 4.2909e-02 | 8.9227e-02 3114 16:29 hours
8 64 104 — — — unstable
64 1075 | 2.6258e-02 | 5.2713e-02 6850 21:47 mins
64 107° | 2.6311e-02 | 5.2678e-02 6850 3:19 hours
64 1077 | 2.6317e-02 | 5.2676e-02 6850 36:27 hours
1677 | 128 | 107 — — — unstable
128 | 1075 | 2.4416e-02 | 3.4926e-02 14706 50:02 mins
128 | 107° | 2.4453e-02 | 3.4777e-02 14706 8:32 hours
128 | 1077 | 2.4458e-02 | 3.4767e-02 14706 84:39 hours
327 | 25 | 107* — — — unstable
256 | 107° — — — unstable
256 | 107° | 3.6152e-02 | 3.5620e-02 33074 22:05 hours
256 | 1077 | 3.6150e-02 | 3.5595e-02 33138 | 220:11 hours

Table 7: Benchmark problem 2

and with a uniform spatial mesh.

() with £=1 for PFobs

(if)

-FEM with the explicit time discretization from (3.22)

el |22/n| t \|T§1—THL°° |w" —u||p~ | DOFs(T) CPU time
4r 32 1075 | 4.7109e-02 | 8.7382e-02 8450 33:11 mins
32 107° | 4.7154e-02 | 8.7376e-02 8450 5:32 hours
81 64 1075 | 2.6105e-02 | 5.0006e-02 33282 3:24 hours
64 107 | 2.6185e-02 | 5.0006e-02 33282 32:59 hours
167 | 128 | 1075 | 1.7399e-02 | 3.0422e-02 132098 14:26 hours
128 | 107° | 1.7520e-02 | 3.0420e-02 132098 | 139:29 hours

computations can be expected if they are run in parallel on a large cluster. Firstly, we see
that the obtained results appear to confirm the stability constraint (3.24), i.e. T < 2C.h?.
Secondly, it can be observed that once the explicit method is stable, there is hardly any
variation in the numerical results when decreasing 7 further. And finally, it is clear from
Table 6 that there is no convergence in the reported error quantities, i.e. the phase field
simulations do not converge to the sharp interface problem (4.1) as ¢, 11y, T—0. We conjec-
ture that this phenomenon is due to the sensitivity of the explicit method to the employed
mesh adaptation strategy, recall Section 3.1. This is confirmed by repeating the simula-
tions for the explicit scheme on uniform grids, see Table 7. Now the errors appear to be
converging, and the absolute errors agree with the corresponding converged errors from
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Table 8: Benchmark problem 25 with £=1 for PFEM.

22 /he | v | "=l | ||W" —ulli~ | DOFs(T) | CPU time
32 1072 | 1.1463e-02 | 6.1188e-02 1193 0 secs
32 1073 | 2.6832e-02 | 1.9387e-02 1181 3 secs
32 1074 | 2.9267e-02 | 2.1448e-02 1193 23 secs
64 1072 | 1.3678e-02 | 6.3622e-02 2585 0 secs
64 1073 | 1.1105e-02 | 8.4213e-03 2441 5 secs
64 1074 | 1.3215e-02 | 1.2807e-02 2457 52 secs
128 1072 | 1.5197e-02 | 6.4894e-02 6153 1 secs
128 1073 | 3.6275e-03 | 6.6864e-03 5513 13 secs
128 10~% | 5.5642e-03 | 4.9862e-03 5401 2:06 mins
256 1072 | 1.7421e-02 | 6.4862e-02 15497 5 secs
256 1073 | 1.0911e-03 | 6.9236e-03 13157 39 secs
256 10~% | 2.2576e-03 | 1.9430e-03 12941 6:04 mins
512 1072 | 1.7903e-02 | 6.4964e-02 37517 12 secs
512 1073 | 1.4352e-03 | 7.2994e-03 35257 2:12 mins
512 10~% | 8.9361e-04 | 8.3770e-04 34157 20:47 mins

1024 | 1072 | 1.8248e-02 | 6.5448¢-02 89437 45 secs
1024 | 1073 | 1.6084e-03 | 7.5361e-03 105857 8:56 mins
1024 | 107% | 3.0915e-04 | 6.5204e-04 101593 1:23 hours

the semi-implicit and implicit variants of PF

(if)

531

OES-FEM, on which we do not report here.

We compare the above phase field errors with the corresponding errors for the sharp
interface algorithm PFEM. Here ||r" —r|| .~ is defined as || —r1 || .=, but with T replaced
by I'" and with r; replaced by r. The errors for the benchmark problem 2() with ¢ =1
are reported in Table 8. Comparing the results in Tables 4-8 reveals once again that the
sharp interface approximations from PFEM are more accurate than the corresponding
computations from the phase field schemes PFOPS-FEM and PF9"2-FEM, and they can be
obtained in a fraction of the CPU time. For example, we see from the Tables 4, 5 and 8
that in order to reduce the error in both I' and u below 1072 requires 13 seconds with
PFEM, but it takes around 5 and 11 hours, depending on the time discretization, with
PF?SS -FEM. In other words, in this measure the parametric front tracking method PFEM
is between 1300 and 2900 times faster than the phase field methods. A visualization of
the numerical results in Tables 4-8 can be seen in Fig. 10, below.

If we increase the parameter ¢ in the benchmark problem 2() to ¢ =3, which on re-
calling (3.16) means that the problem is now computationally more challenging, then
for moderate values of ¢ all of the phase field schemes exhibit mushy regions in which
the phase field approximations ¢" in modulus take on values significantly smaller than
unity. This leads to excessive CPU times, since the adaptive mesh strategy uses fine
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Table 9: Benchmark problem 2(0) with £=3 for PF?E)S-FEM.

el 2%/hf T | || —rlli~ | [[w"—ul|~ | DOFs(T) CPU time
l6m 128 1072 | 3.7529e-02 | 1.3113e-01 15098 12 secs
128 1073 | 1.9000e-02 | 1.7671e-02 15970 2:02 mins
128 10~# | 1.2338e-02 | 1.5085e-02 15746 16:20 mins
128 1075 | 1.1885e-02 | 1.4764e-02 15642 2:03 hours
128 1076 | 1.1836e-02 | 1.4718e-02 15626 18:57 hours
327 | 256 1072 | 2.2627e-01 | 2.1834e-01 26306 31 secs
256 | 1073 | 6.3959e-03 | 3.5178e-02 34642 5:31 mins
256 | 107* | 2.5004e-03 | 7.2381e-03 34906 45:39 mins
256 1075 | 2.6881e-03 | 7.6427e-03 34770 6:08 hours
256 | 107° | 2.7040e-03 | 7.6802e-03 34802 51:18 hours
647 | 512 | 1072 | 3.8556e-01 | 2.5703e-01 58226 2:04 mins
512 1073 | 7.9248e-02 | 1.0625e-01 80330 22:12 mins
512 107* | 1.0521e-02 | 1.3930e-02 85218 2:48 hours
512 107° | 4.1001e-03 | 5.2299e-03 85714 27:46 hours
512 | 107° | 3.3949¢-03 | 6.4424e-03 85842 193:11 hours

meshes in the interfacial regions. In addition, often the mushy interfacial region quickly
reaches the external boundary d(), which creates additional interfaces, so that the phase
field solutions ¢" no longer approximate the radially symmetric sharp interface solution
I'(t). Hence in what follows we present convergence experiments for the benchmark

problem 2(Y) with £=3 only for e =1 >167. See Table 9 for the results for the scheme PFE’ET-

FEM, where we note that for this benchmark problem the true solution (4.4b) remains in
the range [—0.35,0]. Similar results can be obtained for the other variants of the schemes
PF°P>-FEM and PF9“2-FEM that satisfy 0(1) =0, but we omit them here for brevity. In
particular, the scheme PF‘(’E)S—FEM with the implicit time discretization from (3.20) yields

almost identical results to the ones in Table 9 for the step sizes T=10"%, k=5,6. We remark
that for the numbers in Table 9 it is somewhat speculative to infer convergence rates in
terms of ¢, since the errors ||r% —r||;~ and ||w" —ul|~ for the smallest value of ¢ do not
appear to have converged yet in terms of /¢ and 7.

We again compare these numbers with the corresponding errors for the sharp inter-
face algorithm PFEM, see Table 10. The results in Tables 9 and 10 confirm once more that
the sharp interface approximations from PFEM are more accurate. For example, in order
to reduce both the error in ' and in u to below 102 requires about a minute with PFEM,
but 46 minutes with PF?ET-FEM. But crucially, it is clear from the numbers in Tables 4, 5
and 9 that only by decreasing ¢ further can the observed errors for the phase field meth-
ods be reduced. This in turn will lead to enforced reductions in & £ and 7, recall e.g. (3.11),
(3.17), (3.21) and (3.23). Overall this makes it impossible to perform these computations
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Table 10: Benchmark problem 2(0) for =3 for PFEM.

22 /he | v | "=l | ||W" —ulli~ | DOFs(T) | CPU time

32 1072 | 5.9808e-02 | 3.4189e-02 1213 1 secs
32 1073 | 4.2215e-02 | 2.9898e-02 1169 3 secs
32 1074 | 4.1433e-02 | 2.9813e-02 1217 27 secs
64 1072 | 2.7229e-02 | 2.9493e-02 2705 1 secs
64 1073 | 2.5199¢-02 | 1.7501e-02 2505 7 secs
64 107% | 2.6297e-02 | 1.8341e-02 2497 1:06 mins
128 1072 | 1.1307e-02 | 3.0940e-02 6133 3 secs
128 1073 | 1.0799e-02 | 7.7496e-03 5529 21 secs
128 1074 | 1.1358e-02 | 8.4107e-03 5489 2:49 mins
256 1072 | 5.9618e-03 | 3.1694e-02 15781 8 secs

256 1073 | 4.6057e-03 | 3.1840e-03 13165 1:08 mins
256 10~* | 4.9513e-03 | 3.7938e-03 12977 10:08 mins
512 1072 | 8.1252e-03 | 3.2015e-02 37069 21 secs
512 1073 | 1.9929¢-03 | 3.5308e-03 35205 3:44 mins
512 1074 | 2.1894e-03 | 1.7126e-03 34149 33:04 mins
1024 | 1072 | 4.6688e-03 | 3.2259e-02 89301 1:09 mins
1024 | 1073 | 8.9176e-04 | 3.7858e-03 | 105993 | 14:07 mins
1024 | 10~* | 1.0202¢-03 | 7.8635e-04 | 101517 | 2:04 hours

in practice. On the other hand, the presented errors in Tables 8 and 10 for the scheme
PFEM indicate a convergence in the error || —7| 1~ of order at least O(h), if time dis-
cretization effects are neglected. Apart from the run for the finest value of 1 f in Table 8,
where the time discretization error does not seem to have been eliminated yet, the same
can be said about the temperature error ||u" —u|| .

In order to visualize the relative performances of PF‘(’E)S-FEM in Table 9 and PFEM in
Table 10, we present a plot of the errors in the radius r against the necessary CPU time
for all the entries in the two tables in Fig. 8.

Similarly to Section 4.1, it is not possible to perform a meaningful convergence test
for the solution (4.4) in the case d =3 for the phase field approximations PF°**-FEM and
PFI"2-FEM. As an example for such a convergence experiment for the parametric scheme
PFEM we now consider the three-dimensional analogue of the benchmark problem 2(¢).

Benchmark problem 3("): 3d Stefan problem with =1 and p > 0.

Same as benchmark problem 2(9), but on the domain Q= (—1,1)°.

The corresponding errors are shown in Table 11, where we let hir ~ 6hy. Similarly to

the two dimensional benchmark problem, the two errors || —r|| .~ and ||u" —u||;~ appear
to converge with order at least O(h), if time discretization effects are neglected.
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Figure 8: (Benchmark problem 2(*) with £=3) Log-log scatter plot of |2 —r|~ and || —7||;~ against the
CPU time for the entries in Table 9 (PFO2S-FEM, blue rhombi) and Table 10 (PFEM, red circles).
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Table 11: Benchmark problem 3(0) with £=3 for PFEM.

22/ |t | " —rllee | lW"—u|i~ | DOFs(T) | CPU time
32 1072 | 1.0373e-01 | 4.0392e-02 38661 3:06 mins
32 1073 | 1.2020e-01 | 6.0675e-02 38067 23:07 mins
32 10~% | 3.4579¢-01 | 1.0935e-01 39826 3:06 hours
64 1072 | 2.4115e-02 | 3.2858e-02 162161 25:31 mins
64 1073 | 3.0456e-02 | 1.9335e-02 147787 2:33 hours
64 10~% | 4.7083e-02 | 2.7765e-02 148036 17:10 hours
128 1072 | 1.0819e-02 | 3.1504e-02 740635 2:08 hours
128 1073 | 1.1358e-02 | 7.7776e-03 603059 12:43 hours
128 10~% | 1.6654e-02 | 1.0916e-02 593187 65:34 hours
256 102 | 8.2692e-03 | 3.1338e-02 | 3480836 9:19 hours
256 1073 | 5.6216e-03 | 3.7231e-03 | 2577960 47:19 hours
256 1074 | 6.4224€-03 | 4.7100e-03 | 2490788 | 308:35 hours

Our final benchmark problem is the Stefan problem without interfacial kinetics in the
Gibbs-Thomson law. Here we recall from e.g. [55] that often standard, classical phase

field methods are not able to deal with this case in practice.

Benchmark problem 4(); 2d Stefan problem with $=1 and p=0.

Same as benchmark problem 2(6), but with « =10"* and 0=0.

We stress that the approach from [17] for the phase field system has no problems in
dealing with the case without interfacial kinetics, i.e. if p=0. For example, a computation

for the scheme PFO2-FEM can be found in Table 12. We compare these results with the

(ii)
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Table 12: Benchmark problem 40 with ¢=3 for PF?E)S-FEM.
el 2%/hf T | |l —rlli~ | [|[w"—ul|~ | DOFs(T) CPU time
l6m 128 1072 | 3.6341e-02 | 1.2977e-01 15370 13 secs
128 1073 | 1.8831e-02 | 1.8600e-02 16226 2:04 mins
128 1074 | 1.3159e-02 | 1.5797e-02 15818 14:12 mins
128 1072 | 1.2840e-02 | 1.5560e-02 15890 2:09 hours
128 107% | 1.2810e-02 | 1.5510e-02 15890 19:13 hours
32m 256 1072 | 2.2563e-01 | 2.1820e-01 26362 29 secs
256 1073 | 6.1576e-03 | 3.4619e-02 34634 5:04 mins
256 1074 | 2.6943e-03 | 7.5241e-03 34938 53:05 mins
256 1072 | 2.8987e-03 | 7.9607e-03 34754 5:23 hours
256 1076 | 2.9172e-03 | 1.1125e-02 34818 42:28 hours
647 512 1072 | 3.8566e-01 | 2.5703e-01 58146 1:27 mins
512 1073 | 7.9018e-02 | 1.0605e-01 80010 21:39 mins
512 10~% | 1.0560e-02 | 1.3817e-02 85266 2:51 hours
512 1072 | 3.9822e-03 | 5.3896e-03 86002 23:17 hours
512 1076 | 3.1951e-03 | 1.0395e-02 86042 154:02 hours
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Figure 9: (Benchmark problem 4() with £=3) Log-log scatter plot of ||} —7||;~ and || —||;~ against the

CPU time for the entries in Table 12 (PF‘(’S)S—FEM, blue rhombi) and Table 13 (PFEM, red circles).

corresponding computation for the sharp interface algorithm PFEM in Table 13, where
once again it appears that the error quantities converge with O(h) if the time discretiza-

tion errors are neglected. We visualize the relative performances of PF((’E)S—FEM in Table 12

and PFEM in Table 13 in Fig. 9. As before, the performance of PFEM is vastly superior to
the corresponding phase field computations.
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Table 13: Benchmark problem 4 for =3 for PFEM.

2/he |t | " =rlie | W' —u)i~ | DOFs(T) | CPU time
32 1072 | 6.4835e-02 | 3.5949¢-02 1225 0 secs
32 1073 | 4.3505e-02 | 3.0646e-02 1169 5 secs
32 10~% | 4.2440e-02 | 3.0431e-02 1217 45 secs
64 1072 | 2.9889¢-02 | 2.9534e-02 2613 1 secs
64 1073 | 2.6450e-02 | 1.8257e-02 2521 11 secs
64 107% | 2.7699¢-02 | 1.9103e-02 2497 1:40 mins
128 1072 | 1.2103e-02 | 3.1028e-02 6109 4 secs
128 1073 | 1.1158e-02 | 8.0117e-03 5529 27 secs
128 1074 | 1.1813e-02 | 8.7200e-03 5489 4:12 mins
256 1072 | 6.4202e-03 | 3.1800e-02 15805 10 secs
256 1073 | 4.7724e-03 | 3.3036e-03 13221 1:19 mins
256 10~% | 5.1346e-03 | 3.9258e-03 13001 12:16 mins
512 102 | 8.8182e-03 | 3.2129¢-02 37161 24 secs
512 1073 | 2.0921e-03 | 3.5487e-03 35117 4:19 mins
512 1074 | 2.2635e-03 | 1.7705e-03 34165 38:59 mins
1024 | 1072 | 4.7558¢-03 | 3.2373e-02 89269 1:15 min
1024 | 1073 | 9.5286e-04 | 3.8105e-03 105997 16:11 mins
1024 | 107% | 1.0525e-03 | 8.1355e-04 101509 2:25 hours
2048 | 1072 | 4.6014e-03 | 3.2830e-02 295201 6:13 min
2048 | 1073 | 6.7747e-04 | 3.8557e-03 352153 1:16 hours
2048 | 107% | 4.9986e-04 | 3.6634e-04 334785 11:48 hours

4.3 Second order accurate isotropic phase field model

In this subsection we recall a variant of the phase field model (3.5), (3.6) which in the
isotropic setting (2.2), (2.4) yields a second order convergence in ¢ to the sharp interface
limit; see e.g. [4,30, 34,47, 55] for details. In particular, it needs to be assumed that the
shape function ¢, recall (3.7), satisfies (3.9). Clearly, of our examples in (3.8) only the
choices (iii) and (iv) satisfy this.

From now on we assume that (2.2) and (2.4) hold, and that X =X _>0. Then in place
of (3.5a) and (3.6a) we consider

(4.6a)
(4.6b)

dwi+Ao(@) pr=KAw,
cyan'o(p)w=ea""(p+p1e) s —eAp+e ¥ (),

in O, where ¢0:IR — R is a second shape function that satisfies

2920 Vse[-11], a6)=a(-s) VseR, [ a)dy=1
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Here p; in (4.6b) is a correction term that is given by

Aa

where, see e.g. [47, Eq. (35)],

Ki= / [1-P(®(s))|P(®(s))ds  with  P(s):= / 3(y) dy. (4.8)
R ~1
In (4.8) the function ®:R — R denotes the unique solution to

1 / o . _ / _
O (s)—¥/(®(s))=0 VseR,  lim d(s)==1, /Rs@ (s)ds=0.
For the above choices of ¢, 0 and p;, Almgren [4] formally showed second order conver-
gence in the sense that the approximation of the Gibbs-Thomson law is of O(¢?), whereas
in [47] it is formally established that

o the zero level set of the phase field function ¢ approximates the interface I' to O(€?),

e the temperature w in the phase field system approximates the temperature u in the
sharp interface problem to O(&?).

In [34], for the special case ¢(s) = 3, the above second order approximation results are
shown rigorously. In particular, on letting K =a=1, and on recalling that in their notation
G(s) =cyP(s), it holds that the expression in [34, Eq. (1.6)] for the correction term p; is
given by

1 RGO -G@E)]A+@(s)ds 1, [o[1-P(@
Jrl®'(s)]*ds 27 Tl

(5)](1+®(s)) ds

P1 ®/(s)]2ds

2
— %/\/ [1-P(®(s))](1+P(s))ds=AK,
R
and so agrees exactly with (4.7). In addition, on assuming the stronger condition

o(s) =2 1/2¥(s) 4.9)

in place of (3.9), the authors in [34] also show rigorously that the full phase field con-
verges to second order. More precisely, in this case the first order correction to the phase
field function ¢ is zero. Of course, the specific choice (s) = 1 for the interpolation func-
tion in the equation for the temperature means that the overall phase field system con-
sidered in [34] is not thermodynamically consistent. We refer to [4, 34,47] for the precise
statements of these results.

From now on we consider (4.6) in the case that 0 = ¢, which means that we return to
(3.5a), (3.6a) in the isotropic case (2.2), (2.4) with £ =K _. In particular, the phase field
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Table 14: Benchmark problem 200 with £=1 for I/’T:?ili’s-FEM.

el [ 25/h | © | —rli~ | [|w" —ulli~ | DOFs(T) | CPU time

4 32 10~% | 4.3481e-03 | 2.7780e-02 3394 5:12 mins
32 1075 | 1.9588e-03 | 2.4734e-02 3442 39:41 mins

32 1076 | 1.9743e-03 | 2.4425e-02 3474 5:40 hours

64 10~ | 1.5762e-03 | 2.5180e-02 11922 24:35 mins

64 1075 | 3.9787e-03 | 2.1853e-02 11906 2:41 hours

64 1070 | 4.5109e-03 | 2.1533e-02 11970 29:05 hours

V327 64 10~% | 9.3961e-03 | 2.3676e-02 8946 19:06 mins
64 1072 | 9.2783e-04 | 1.7200e-02 9074 2:25 hours

64 1076 | 1.1183e-03 | 1.6723e-02 9186 19:37 hours

128 10~* | 8.5330e-03 | 2.2021e-02 32226 1:46 hours

128 1075 | 9.0354e-04 | 1.6249¢-02 32730 13:02 hours
128 1076 | 1.7709e-03 | 1.5796e-02 32586 104:40 hours

87 64 1074 | 2.3635e-02 | 2.9991e-02 7074 15:49 mins
64 1075 | 6.8162e-03 | 1.6316e-02 7042 1:46 hours
64 107° | 5.0485e-03 | 1.5149e-02 7066 14:08 hours
128 1074 | 1.9116e-02 | 2.5065e-02 24266 1:12 hours
128 1072 | 1.9668e-03 | 1.2975e-02 24746 9:47 hours

128 1070 | 4.8430e-04 | 1.2136e-02 24874 65:32 hours

model (4.6) is now thermodynamically consistent, i.e. it satisfies (3.12) with (2.2), (2.4)
and K} =K_. Since now ¢ =g, it follows from (4.8) that

K:/R[l—P(CD(s))]P(CD(s))ds.

In the case of the obstacle potential (3.4), so that ®(s) =sin(s) for [s| < Z as in (3.18a), we
get that

K= / ¥ [1_P(sin(s))]P(sin(s)) ds.

_n
2

In particular, for the choice (3.8)(iii), when P(s) = % (35 —10s%+155+8), we have that

4817

=— 7= —16 77t~0. . .
cirag T=2 1*48171~0.231 (4.10)

We refer to Table 14 for computations for the benchmark problem 2() with £ =1 for
the phase field model (4.6) with the correction term (4.7) and (4.10). Here we denote by
ﬁ?ﬁf) -FEM the scheme PF%‘;S) -FEM but for the phase field model (3.5), (3.6) with p in (3.6a)
replaced by (3.10).

The numbers in Table 14 show that eight points across the interface are not enough to
see O(e?) convergence in the errors in practice. Here we recall that a similar conclusion
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Table 15: Benchmark problem 2(0) with £=1 for I/’F?:;;—FEM.

el |22/ | © [t =l | |w"—ulli~ | DOFs(T) | CPU time

4 32 1074 | 1.1945e-02 | 4.1523e-02 4066 7:12 mins
32 1075 | 1.7315e-02 | 3.9842e-02 4090 52:56 mins

32 107° | 1.7860e-02 | 3.9682e-02 4082 8:24 hours

64 1074 | 1.1659e-02 | 4.1790e-02 14090 29:48 mins

64 1075 | 1.7071e-02 | 3.9883e-02 14130 4:18 hours

64 107° | 1.7615e-02 | 3.9686e-02 14210 43:32 hours

V327 64 10~* | 5.1351e-03 | 3.2940e-02 10514 18:46 mins
64 1075 | 4.0145e-03 | 2.9244e-02 10578 2:41 hours

64 107° | 5.0498e-03 | 2.8980e-02 10578 25:57 hours

128 10~% | 5.1726e-03 | 3.2286e-02 37194 1:09 hours

128 1075 | 3.7103e-03 | 2.9080e-02 37690 10:37 hours
128 1070 | 4.7916e-03 | 2.8833e-02 37626 109:39 hours

87 64 10~% | 1.9976e-02 | 3.2507e-02 8082 12:14 mins
64 1072 | 3.4097e-03 | 2.2891e-02 8242 2:12 hours
64 1070 | 1.4844e-03 | 2.2330e-02 8306 16:44 hours
128 10~* | 1.9474e-02 | 3.0950e-02 27826 1:15 hours
128 1072 | 2.9987e-03 | 2.2277e-02 28298 7:39 hours

128 107 | 1.0518e-03 | 2.1768e-02 28234 65:58 hours

can be drawn from the results reported in [30, Table 1], where a one-dimensional refor-
mulation of a radially symmetric problem in IR® is considered. With 16 points across the
interface the error || —r| 1~ in Table 14 appears to converge quadratically in ¢, while
only linear convergence can be seen in the error ||w”" —u||;~. We also note that the errors
|r% —r||.~ shown in Table 14 are significantly smaller than the corresponding errors in
Tables 4 and 5 for the classical phase field model, i.e. for p; =0, whereas the improvements
in the temperature error ||w" —u||;~ are less pronounced.

In the case of the quartic potential (3.3), so that ®(s) —tanh(225s) as in (3.18b), we get
that

K=v2 / [1—P(tanh(s))]P(tanh(s)) ds.
R
In particular, for the choice (3.8)(iii) we have that

209+/2
840

while for the choice (3.8)(iv), on noting that P(s) = 1 (2+3s—5?), it holds that

K:%ﬁ ~0.448. (4.11)

We refer to Table 15 for computations for the benchmark problem 2(*) with £=1 for the

phase field model (4.6) with the correction term (4.7) and (4.11). Here we denote by 15??;&;-

K=

~0.352,
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Figure 10: (Benchmark problem 2(Y) with £=1) Log-log scatter plot of Hr';] —7||= and || —7|| L~ against the
CPU time for the entries in Tables 4 and 5 (PF?;S-FEM, blue rhombi), Tables 14 and 15 (PFS?S-FEM and

(iii)
PF?i‘f)-FEM, green rhombi) and Table 8 (PFEM, red circles).

FEM the scheme PF1"#-FEM for the phase field model (3.5), (3.6) with p in (3.6a) replaced
by (3.10), and with ¢ given by (3.8)(iv). A computation for the scheme ISF%?)—FEM with
the implicit time discretization (3.20) yielded very similar error numbers, and so we omit
these results here. What can be clearly seen from Table 15 is that once again we have
convergence of order at least O(€?) in ||} —r||1~.

In order to visualize the performances of all the considered methods for the bench-
mark problem 2(Y) with £=1, i.e. including the computations in Tables 14 and 15 for the
second order accurate phase field model (4.6), we present a log-log plot of the errors in
the radius r against the necessary CPU time for all the entries in the appropriate tables
in Fig. 10. The plot appears to confirm that computations for the phase field model (4.6)
are on average more efficient than computations for the standard phase field model, i.e.
(4.6) with p; =0. However, the finer meshes needed for computations for (4.6), recall
Table 14, mean that due to CPU time constraints we cannot choose ¢ as small as in the
standard phase field computations. Finally, the plot in Fig. 10 once again underlines the
superiority of the sharp interface algorithm PFEM over all the phase field methods.

5 Numerical experiments for anisotropic problems

In this section we present numerical simulations for the anisotropic Stefan problem (2.3).
Here we always let dpQ) =92 and =7, where we recall (3.1). Moreover, we always
choose A =a =1 and, unless otherwise stated, we let £ =1. In order to appreciate the
computational challenges involved with the different experiments, we recall from (3.16),
(3.17) and (3.11) that for accurate phase field calculations the following implications arise:

—uDoc_llarge = esmall = hf,rsmall.
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Moreover, we note that for the fully anisotropic situation a formally second order accu-
rate phase field model similarly to Section 4.3 involves a parameter p; (V ¢) in place of
(4.7) that depends on B, y and on V ¢, see [55,56]. We stress that these approaches are not
well analyzed so far, e.g. in the spirit of [34,47]. In particular, to our knowledge there are
no formal or rigorous results in the literature on the second order convergence of phase
tield models for the fully anisotropic Gibbs-Thomson law. Moreover, our numerical re-
sults in the isotropic case showed that the second order models do not give a large gain in
computational efficiency. That is why all of our phase field computations in this section
are for the standard phase field model (3.5), (3.6).

For the first simulations that we present we choose as anisotropy the regularized I'-
norm

2
AN : 2[52|p|2+p] (1— 52)] , with 6=03.
j=1

The radius of the initially circular seed I'y is chosen as 0.1, while we set # =0,  =0.03 and

p=0.01. The supercooling at the boundary dpQ) =00 of Q= (—8,8)? is set to up = —2.
Three numerical simulations for the scheme PF((’E)S—FEM with the interfacial param-

eter ¢ ! =477 can be seen in Fig. 11. It can be seen that varying the time discretization

parameter T from 10~ ! to 1073 has a significant impact on the observed numerical results.
However, the observed changes for the smallest value of T are small, which indicates that

Figure 11: (PF?S)S—FEM, e l=4ar, ANIL, =0, «=0.03, p=0.01, up =-2, Q:(—8,8)2) Snapshots of the

solution at times t=1,2,4,5,6. From top to bottom T=10"%, k=1,---,3. [These computations took 34 seconds,
7 minutes and 57 minutes, respectively.]
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Figure 12: (PFEM, ANLy, =0, «=0.03, p=0.01, up=-2, Q:(—8,8)2) Snapshots of the solution at times
t=1,2,4,5,6. From top to bottom t=10"% k=1,---,3. [These computations took 1, 6 and 73 seconds,
respectively.]

the simulation appears to be converging. Very similar results can be obtained for PF?;S-

FEM with the implicit time discretization from (3.20), and so we omit them here.

We compare the above numerical experiments for the phase field method with three
simulations for the sharp interface approximation PFEM in Fig. 12, where we fix the

spatial discretization parameters as hr ~ h = %. Here we observe that even for a very
crude time discretization, the evolution is captured remarkably well, and there is very
little variation in the numerical results from PFEM when 7 is decreased. Also note that it
takes (less than) a second of CPU time with PFEM in order to get a good idea about the
evolution of the growing crystal, while the phase field methods PF°*S-FEM and PFd“a-
FEM take at least 400 times as long.

For the next set of numerical experiments we use the hexagonal anisotropy

Nl—

ANIy: v(p)=)_ I(R(E+(Z)p), where l(p)z{p%—l—lO"‘p%} , (5.1)

and where R(0) = ( _‘;?Islz ng;z ) denotes a clockwise rotation through the angle . More-

over, we use the parameters 9 =1, « =5x 1074, p=0.01 and up = —1 on the boundary
dpQ =09Q of O =(—2,2)2. The radius of the initially circular seed is again chosen as
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Figure 13: (PF(()i'g)S-FEM, e 1=16m, ANI, 9=1, x=5x10"%, p=0.01, up=—3, Q=(—2,2)%) Snapshots of

the solution at times +=0.3,0.4,0.5,0.6,0.7. From top to bottom t=10"% k=2,--- 4. [These computations
took 29 seconds, 26 minutes and 381 minutes, respectively.]

Ro=0.1, and we set

0, |X|§R0,
Up _
(%) ={ 77 (1=¢f 1), Ro<|x|<H, (5.2)
up, |X|ZH,

with H:=2.

Three numerical simulations for the scheme PF((’E)S—FEM with the interfacial parameter
¢! =167 can be seen in Fig. 13. Observe that here we use a much smaller value of ¢
than previously, because for larger values of ¢ large mushy interfacial regions develop,
which means that the phase field simulations hold no value for the investigation of the
underlying sharp interface problem. The creation of small localized mushy interfacial
regions can be observed in Fig. 13 for the run with 7=10"3, while the run with T=10"*
shows larger such regions. In addition, in the latter run the phase field approximation
of the growing crystal’s surface reaches the external boundary 9}, which results in the
creation of artificial, nonphysical interfaces. Repeating these simulations for a smaller
interfacial parameter ¢ yields the results shown in Fig. 14. Now for sufficiently small
values of the time step size 7, the numerical results appear to be converging.

We also repeat the last computation for the scheme PF‘(’E)S-FEM with the explicit time

discretization from (3.22). Here any computation with a time step size T > 107> was un-
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Figure 14: (PF(()i'g)S-FEM, e 1=327, ANI, =1, x=5x10"%, p=0.01, up=—4, Q=(—2,2)%) Snapshots of

the solution at times +=0.3,0.4,0.5,0.6,0.7. From top to bottom t=10"% k=2,--- 4. [These computations
took 38 seconds, 8 minutes and 69 minutes, respectively.]

Figure 15: (PF‘(’i?)S—FEM with the explicit time discretization from (3.22), 1 =327, ANIp, 8=1, x=5x10"%,

p=0.01, up=—1, Q=(-2,2)%) Snapshots of the solution at times t=0.3,0.4,0.5,0.6,0.7 for T=10"°. [This
computation took 44 hours.]

stable, and so in Fig. 15 we only show a run for 7=107°. We recall from Section 4.2,
see Tables 6 and 7, that in the interest of accuracy uniform meshes should be employed
for an explicit method. However, the large CPU times associated with a uniform grid
mean that we are unable to complete the evolution within a reasonable amount of time.
Hence in Fig. 15 we use the same adaptive mesh strategy as in Fig. 14 for the semi-implicit
scheme PF‘(’};)S—FEM. Note that while the finest run in Fig. 14 agrees well with the results
shown in Fig. 15, the very small time step size used for the latter means that the explicit
scheme takes about 40 times as long as the semi-implicit scheme to compute the evolu-
tion. Hence, without further code optimizations, the explicit scheme would need to be

run in parallel on a cluster with at least 40 nodes to become competitive.
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Figure 16: (PF°-FEM, e~ 1=327, ANI, #=1, a=5x10"%, p=0.01, up=—1, Q=(-2,2)%) Snapshots of

Lot

(iii)
the solution at times t =0.3,0.4,0.5,0.6,0.7. From top to bottom T=10"% k=2,---,4. [These computations
took 34 seconds, 16 minutes and 101 minutes, respectively.]

When we repeat the simulations shown in Figs. 13 and 14 for the scheme PF;;1-FEM,
then in the run for ¢! =167t large mushy interfacial regions appear, which quickly reach
the boundary Q). Hence we only present the simulations for e "' =327, see Fig. 16, where
we observe similar, but qualitatively quite different, results to the ones shown in Fig. 14
for the scheme PF‘(’Ef-FEM. In particular, the side arms in Fig. 16 appear to be thinner than
in Fig. 14, and the convergence as T gets smaller appears to be slower. We also repeat
the computation from Fig. 16 for the implicit time discretization from (3.20), see Fig. 17.
We observe that, in contrast to the conclusions that could be drawn from the isotropic
experiments in Section 4, for the strongly anisotropic situation treated here there does
not seem to be an advantage in using the implicit time discretization from (3.20) over the
standard semi-implicit discretization (3.19) from [17].

In addition, we present three simulations for the same physical problem for the sharp
interface approximation PFEM in Fig. 18, where we fix the spatial discretization param-

eters as hr &~ hy = g. Here we observe once again that even for a very crude time dis-
cretization, the evolution is captured remarkably well, and there is very little variation in
the numerical results from PFEM when T is decreased. We also draw particular attention
to the differing CPU times between the sharp interface calculations in Fig. 18 and the
phase field simulations in Figs. 14-17.

In the remainder of this section we consider two simulations for the scheme PFEM,
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Figure 17: (PF?;S—FEM with the implicit time discretization from (3.20), e 1=327, AN, #=1, x=5x107%,
p=0.01, uD:—%, Q=(—2,2)?) Snapshots of the solution at times t=0.3,0.4,0.5,0.6,0.7. From top to bottom
t=10"% k=2,--- 4. [These computations took 43 seconds, 23 minutes and 119 minutes, respectively.]

which on present computer hardware are virtually impossible to repeat to a desirable ac-
curacy with the phase field method. The first experiment is with the physical parameters
from [14, Fig. 7], and so is for the one-sided quasi-stationary problem (2.3) with ¢=K_=0
and with < as in (5.1). The remaining parameters are chosen as a =105, p=1.42x10"3
and up = —0.04 on the boundary dpQ =00 of Q= (—4,4)?. The radius of the initially cir-
cular seed is chosen as 0.05. See Fig. 19 for the results for different choices of the time step

sizes T, and with hr ~h; = % fixed. We see that, as before, there is hardly any variation
in the numerical results obtained from the three simulations with different values of T for
PFEM. Moreover, we note that due the choice of the physical parameters much finer side
branches appear in Fig. 19 compared to the simulations in Fig. 18. To precisely capture
these small structures within a phase field computation would require very small values
for the interfacial parameter ¢, as well as correspondingly small discretization parameters
hs and T; recall (3.17), and (3.11). Taken together this means that we are currently unable
to present phase field computations for an evolution as shown in Fig. 19.

The next computation is similar to the simulation shown in [13, Fig. 14], where here
we take as anisotropy

Ol
Nl—=

AN v(p)=([g(P))” +[8(Rip)” +[g(Rap))”)*, where g(p):=[pi+1(p5+13)]?, (5:3)
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Figure 18: (PFEM, ANIp, =1, a=5x10"4%, p=0.01, uD:—%,
times t=0.3,0.4,0.5,0.6,0.7. From top to bottom =10, k=2, -

and 87 seconds, respectively.]

547

Q= (—2,2)?) Snapshots of the solution at
-,4. [These computations took 1, 9 seconds
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Figure 19: (PFEM, ANI,, 8=0, a=10"5, p=1.42x1073, up=—0.04, Q= (—4,4)?) Snapshots of the solution
at times £=5,10,20,30,40. From top to bottom T=10"% k=1,---,3. [These computations took 6, 124 and

781 minutes, respectively.]
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Figure 20: (PFEM, ANI3, 9=1, a=10"3, p=0.01, uD:—%, Q:(—4,4)3) Snapshots of the solution at times

t=0.1,0.2,0.3, as well as the solution at time T=0.3 within Q. From top to bottom T=1072,10"3,2x 1074,
[These computations took 2 hours, 20 hours and 50 hours, respectively.]

v v v

with the two rotation matrices defined as

0 1 0 0 0 1
Rl;:(—l 0 0) and RZ::< 0 1 0).
0 0 1 -1 0 0

The Wulff shape of the anisotropy (5.3) can be seen on the right of Fig. 3 in [13]. Moreover,
we use the parameters =1, x=10"3, p=0.01 and up=— 3 on the boundary 9pQ =090 of
Q)= (—4,4)3. The radius of the initially spherical seed is chosen as Ry=0.1, and we let 1
be defined by (5.2) with H =4. Three simulations for these parameters, with the spatial

discretization parameters fixed as hp ~5hy = g, are presented in Fig. 20. We observe that
the three simulations all show the same general shape of the growing six-armed crystal,
and for the smallest value of T the results appear to have converged. We also note that
the small oscillations in the solution for the simulation with the largest time step size
disappear as T is decreased. In order to demonstrate the good mesh properties of the
parametric method PFEM, we show in Fig. 21 two details of the triangulated approxima-
tion of I'(¢) at times t=0.2 and t=0.3 for the finest time discretization in Fig. 20. We recall
that the algorithm PFEM does not employ any mesh-redistribution or mesh-smoothing
methods. Rather it relies solely on local mesh refinements, where individual elements
of the triangulation become too large, see [13, §5.2] for more details. The quality of the
meshes shown in Fig. 21 is excellent.
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Figure 21: Details of the triangulations of PFEM in Fig. 20 at times t=0.2 (left) and t=0.3 (right).

We recall that a simulation for the phase field algorithm PF‘(’E)S-FEM for the same phys-
ical parameters has recently been performed in [17, Fig. 23]. As a comparison to the sharp
interface calculations from Fig. 20, we present the results for the scheme PF?E;-FEM in
Fig. 22. We note that the evolution shown for the phase field approximation in Fig. 22
is qualitatively very different from the sharp interface simulations in Fig. 20. In all like-
lihood the physically challenging parameters for the computation in Fig. 22 mean that,
both in terms of the discretization parameters for the given ¢ ! =167, e.g. the time step
size 7, as well as in terms of the interfacial parameter ¢ itself, the shown numerical results

o ¢ &4 @

Figure 22: (PF?i‘g)S-FEM, e 1=16m, ANI3, 9=1, a=1073, p=0.01, up=—1, Q=(—4,4)%) Snapshots of the

solution at times t=0.1,0.2,0.3, as well as the solution at time T=0.3 within Q). This calculation uses T=10"%.
[This computation took 8 days.]
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are still far from the true underlying solution to the sharp interface problem (2.3). Of
course, a detailed numerical study into this question is not yet possible due to the long
time that such computations would take.

Conclusions

While numerical simulations for phase field models in general show qualitatively correct
behaviour, often such numerical results are far away from the true sharp interface evolu-
tion. In order to obtain accurate simulations, the interface width ¢, as well as the spatial
and temporal discretization parameters need to be chosen sufficiently small. However,
reducing these parameters to reach an acceptable accuracy often requires very large com-
puting times on even the most advanced of today’s desktop computers.

Direct sharp interface approximations, on the other hand, can provide a computa-
tionally cheap method to compute interface evolutions in materials science accurately.
An example of such an algorithm is PFEM from [13,15]. In the computations presented
in this paper we have seen that even for very crude discretization parameters, the al-
gorithm PFEM provides surprisingly accurate approximations. The computational time
needed to compute these sharp interface approximations is often negligible compared to
the CPU times necessary for a corresponding phase field simulation.

The main problem of phase field methods is that the asymptotic error in ¢, which
in general is not known, plays a significant role in determining the accuracy of phase
field simulations. Small values of ¢, in turn, require very small discretization parameters.
Similarly, in second order convergent isotropic phase field models with a correction term,
where the asymptotic error in ¢ may be assumed to be relatively smaller than in classical
phase field models, very small discretization parameters need to be employed in order
to benefit from the smaller asymptotic error in practice. All of these issues do not arise in
sharp interface approximations.

The main advantage of phase field methods over direct front tracking methods is that
they intrinsically allow for topological changes. However, for the problem of solidifi-
cation and dendritic growth as considered in this paper, topological changes are rare.
Moreover, it is possible to perform topological changes also within the framework of
front tracking methods, see e.g. [26,54].

In the past, researchers and scientists may have been discouraged from applying front
tracking methods because of the difficulties in implementing such methods and because
of the deterioration of the mesh quality as the approximated sharp interface evolves in
time. However, assembling the system matrices in parametric finite element methods for
evolving manifolds is not much different from the assembly in standard Cartesian prob-
lems, see e.g. [40,41]. Of course, the coupling between a lower dimensional parametric
mesh and a bulk mesh is nontrivial, but successful implementations have been used in
e.g. [13,15,73,74]. Moreover, the good mesh properties of the scheme PFEM from [13,15]
mean that a good mesh quality is maintained throughout the numerical simulations, and
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no remeshing is required in practice. In fact, all the simulations presented in this paper
were performed without any remeshing, see [13] for more details.
We can summarize our main conclusions as follows:

(C1) The parametric front tracking method PFEM is more accurate and computationally
more efficient than phase field methods.

(C2) For isotropic problems, implicit time discretizations for phase field models are often
more accurate than semi-implicit time discretizations.

(C3) Explicit time discretizations for phase field models need very small time steps in
practice, and hence computations with explicit schemes are only competitive if run
in parallel on large clusters.

(C4) Second order accurate phase field models need finer discretization parameters than
classical phase field models in order to demonstrate their superior approximation
properties in practice.

Finally we note that while the focus of this paper has been the problem of dendritic
solidification, it is to be expected that similar conclusions can be drawn when considering
the respective merits of phase field models and sharp interface methods for other free
boundary problems in materials science, physics and biology. As possible examples we
refer to epitaxial growth, surface diffusion, thermal grooving, sintering, vesicle dynamics
and two phase flow.

It is our hope that the comparisons presented in this paper encourage a discussion
about the merits of phase field methods in general, and of the possible advantages of
using sharp interface approximations instead.
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