
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2024-0180

Vol. 38, No. 1, pp. 37-73
July 2025

The Effects of Spatial Reconstruction and Flux Solver

on the Performance of High-Order Finite-Volume

Compressible Flow Solvers

Chengxiang Li1,5, Xing Ji2, Kun Xu1,3,4 and Lian-Ping Wang5,*

1 Department of Mechanical and Aerospace Engineering, Hong Kong University of
Science and Technology, Hong Kong SAR.
2 State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi
Key Laboratory of Environment and Control for Flight Vehicle, School of Aerospace
Engineering, Xi’an Jiaotong University, China.
3 Department of Mathematics, Hong Kong University of Science and Technology,
Hong Kong SAR.
4 Shenzhen Research Institute, Hong Kong University of Science and Technology,
Shenzhen, China.
5 Department of Mechanical and Aerospace Engineering, Southern University of
Science and Technology, Shenzhen 518055, China.

Received 2 August 2024; Accepted (in revised version) 17 May 2025

Abstract. Most high-order computational fluid dynamics methods for compressible 
flows are based on the Riemann solver for the flux evaluation and high-order inter-
polation or reconstruction such as the Weighted Essential Non-Oscillatory (WENO) 
scheme for spatial accuracy. The advantage of this kind of combination is the easy 
implementation and the ability to achieve the required spatial accuracy. However, de-
spite the extensive research on high-order spatial reconstruction in the past, solvers 
coupling high-order space and time schemes have not been systematically evaluated. 
In this paper, based on the same fifth-order finite volume method (FVM), comparisons 
of the performance of the same flux solver with different reconstructions and the same 
reconstruction but different flux solvers are carried out on a structured mesh. For re-
construction, the TENO scheme and classic WENO-Z reconstruction have been chosen 
as representative methods. Meanwhile, for the flux solver, Lax-Friedrichs (LF) Rie-
mann solver, HLLC solver, and GKS are considered. Through a series of simulated 
comparison cases, the unique characteristics of GKS and TENO have been demon-
strated. Overall, the comparisons suggest that proper spatial and temporal coupling is 
important for accurate shock and vortex capturing.
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1 Introduction

The development of high-order schemes for compressible flows has achieved great suc-
cess in resolving complex vortex structures and capturing flow discontinuities. Com-
pared with the finite difference method, the high-order finite-volume method has greatly
improved. The finite volume method comprises the three main substeps, namely, the spa-
tial reconstruction, flux evaluation, and temporal discretization. Most of the efforts were
focused on building a novel high-order reconstruction method, which indeed achieved
great success. The successful high-order reconstruction methods include the essentially
non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) scheme [11, 16,
21]. There exist many modified versions of WENO, such as WENO-JS [16], WENO-Z [3],
WENO with adaptive order WENO-AO [1], multi-resolution WENO [38], and target
ENO(TENO) [8], etc.

In addition to the reconstruction, the flux evaluation and temporal discretization
method also play dominant roles in the overall performance of the scheme. Generally,
in terms of the flux solver, the approximate Riemann solvers are commonly used, such as
Roe [25], Advection Upstream Splitting Method (AUSM) [20], and Harten-Lax-van Leer
contact (HLLC) [30]. Since the Riemann solvers with a forward-Euler step has only a
first-order temporal accuracy, the Runge-Kutta (RK) method [12] is usually adopted to
advance the solution in time, making the high-order schemes stable and accurate in time.

Different from the Riemann solvers, there are other flux solvers to treat the time-
dependent interface fluxes, such as generalized Riemann problem (GRP) [19], Arbitrary
accuracy DERivative (ADER) [26], the gas-kinetic scheme (GKS), etc. In this paper, we
mainly focus on the GKS solver. During the past two decades, GKS has shown its abil-
ity to accurately recover the Euler and Navier-Stokes solutions [34, 36]. GKS is mainly
based on the Bhatnagar–Gross–Krook (BGK) collision model [2] and by directly integrat-
ing the BGK Boltzmann equation along the trajectory line, a time-dependent gas dis-
tribution function can be obtained, which has the advantage of high order in time and
space. By using the time-dependent gas distribution function at the cell interface, the
cell interface flux can be updated. In the previous study, it was found that the advan-
tages of high-order GKS (HGKS) are as follows: (1) GKS presents a gas flow evolution
from the kinetic scale to hydrodynamic scale, which not only provides accurate solutions
for the smooth regions of the flow field but also effectively captures shockwaves in the
discontinuous regions; (2) the inviscous and viscous terms are obtained simultaneously
from the gas distribution function containing both equilibrium and non-equilibrium flow
properties; (3) the flux in GKS has multi-dimensional properties [36], with contributions
from both normal and tangential derivatives of flow variables around a cell interface;
(4) compared with the traditional time-space independent Riemann Solver, the multi-
stage multi-derivative (MSMD) [15] methods such as the two-stage fourth-order scheme
(S2O4) [24] can provide the same order time integration accuracy with fewer middle
stages due to the considerations of the time-derivative of the interface flux in GKS.

In the previous work, Yang compared the performance of GKS and HLLC flux us-
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ing the same high-order reconstruction and found that with the same mesh and CFL
number, WENO5-AO-GKS shows better performance in shock and contact wave captur-
ing than WENO5-AO-HLLC. [37]. To find out whether the spatial reconstruction or flux
solver contributes more to the overall accuracy of the simulated complex flows contain-
ing shock-vortex interactions, this paper will compare the performance of different flux
solvers under the same reconstruction or different reconstructions under the same flux
solver.

Since the fifth-order reconstruction methods are widely used in various studies [14,
23], the finite volume schemes of fifth-order space accuracy are selected for compari-
son. Specifically, we shall select two traditional Riemann fluxes (Lax-Friderich (L-F) and
HLLC) and GKS flux, along with two reconstruction methods: WENO5-Z and TENO5.
The specific combination of L-F and WENO5-Z will be viewed as the baseline for compar-
isons. Besides, S2O4 temporal discretization is used for GKS, and fourth-order Runge-
Kutta (RK4) is adopted for L-F and HLLC solver, while both time marching schemes
achieve the same temporal accuracy. L-F is widely used in high-order schemes due to
its simplicity and robustness, WENO5-Z balances accuracy and robustness better than
traditional WENO methods like WENO-JS [4]. GKS and TENO5 are more recent devel-
opments in high-order flux and reconstruction: GKS can balance accuracy and robust-
ness through its multi-scale gas distribution function and TENO with its novel cut-off
weighting strategy can greatly reduce the numerical dissipation while preserving the
sharp shock-capturing property. TENO has been applied to multi-phase flows [10] and
turbulence flows [9] in recent years.

In the one-dimensional and two-dimensional flows to be simulated in this paper, the
low-dissipation TENO reconstruction has shown its ability to better capture high wave
number flow structures than WENO-Z. However, TENO has less effects on improving
the performance of the GKS. The possible reason is that spatial derivatives participate
in the local gas evolution in GKS and are not very sensitive to the interface pointwise
values. The numerical flux formulation plays an important role in a high-order scheme
when dealing with physical processes with strong nonlinearity. Choosing a better flux
formulation (such as GKS) might be more important than choosing a better spatial recon-
struction method when balancing the accuracy in resolving small-scale waves and the
robustness in treating strong discontinuities.

This paper is organized as follows. In Section 2, the classic finite volume method is
introduced. Section 3 presents the traditional Riemann solvers, including Lax-Friedrichs
and HLLC Riemann solver, spatial reconstruction including WENO5-Z and TENO5, and
the Runge-Kutta method for time integration. Section 4 presents the high-order GKS
method, including the gas-kinetic scheme, spatial reconstruction, and two-stage fourth-
order temporal discretization. Section 5 provides the simulation results for WENO-GKS,
TENO-GKS, WENO-HLLC, and TENO-HLLC schemes. Section 6 contains a discussion
and the last section summarizes the conclusions.
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2 Standard finite volume method

In this section, the formulation of the classical finite-volume method is presented.
To facilitate presentation, we consider the one-dimensional scalar hyperbolic conser-

vation equation
∂u

∂t
+

∂

∂x
F(u)=0, (2.1)

where u(x,t) denotes the conservative variable and F(u) denotes the flux function. After
discretising Eq. (2.1) on uniform cell elements, e.g., Ii =[xi−1/2,xi+1/2] and ∆x= xi+1/2−
xi−1/2,i=0,··· ,N, a system of ordinary differential equations

∂ūi

∂t
=− 1

∆x

∫ xi+∆x/2

xi−∆x/2

∂F

∂x
dx, i=0,··· ,N, (2.2)

where ūi denotes the volume-averaged conservative variable in cell element Ii,

ūi =
1

∆x

∫ xi+∆x/2

xi−∆x/2
u(x)dx. (2.3)

Eq. (2.2) can be further approximated by a conservative finite-volume method as

dūi

dt
≈− 1

∆x
(F̂i+1/2− F̂i−1/2), (2.4)

where the numerical flux F̂i+1/2 at the cell interface is computed by a Riemann solver

F̂i+1/2=FRiemann
i+ 1

2
(uL

i+1/2,uR
i+1/2), (2.5)

and the left-side data uL
i+1/2 and the right-side data uR

i+1/2 are computed by the left-biased
and right-biased reconstruction, respectively. Based on this framework, Godunov pre-
sented a first-order time-integration scheme for Euler equations

ūn+1
i = ūn

i +
∆t

∆x
(F̂i−1/2− F̂i+1/2). (2.6)

For different types of high-order finite volume methods, the accuracy of the updated
solution depends critically on the interface flux function F̂i+1/2, which depends on the
interface reconstruction data, uL

i+1/2, uR
i+1/2, and the functional form for the flux at the

cell interface, FRiemann
i+1/2 .

3 Riemann-solver-based high-order finite volume scheme

Although we can solve the exact solution of a Riemann problem at the cell interface,
approximate Riemann solvers are still widely used because of its high efficiency. [29] For
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different approximate Riemann solvers, e.g., the LF flux, the Roe flux and the HLLC flux,
they can all be formulated in a general form as [7]

FRiemann
i+ 1

2
(uL

i+1/2,uR
i+1/2)=

1

2
(F(uL

i+1/2)+F(uR
i+1/2))−|∂̃i+1/2|(uR

i+1/2−uL
i+1/2), (3.1)

where ∂̃i+1/2 means the characteristic signal velocity evaluated at the cell interface. The
first term in Eq. (3.1) is a central scheme,

1

2
(F(uL

i+1/2)+F(uR
i+1/2)),

which is a non-dissipative term. The second term in Eq. (3.1),

|∂̃i+1/2|(uR
i+1/2−uL

i+1/2),

which denotes the numerical dissipation. The numerical dissipation is derived from two
sources, i.e., the difference between uR

i+1/2 and uL
i+1/2 which is computed by the high-

order reconstruction and the scaling coefficient |∂̃i+1/2| which is determined differently
for different Riemann solvers.

In smooth regions, the higher-order reconstruction should show no data jump be-
tween uR

i+1/2 and uL
i+1/2 and as such a minimal numerical dissipation. In the meantime,

for distinct Riemann solvers, the scaling coefficients |∂̃i+1/2| are different generating dif-
ferent levels of nonlinear dissipation.

In the following section, the Riemann-solver-based high-order finite volume schemes,
which involve the Lax-Friedrichs, HLLC Riemann solver, and high-order TENO, WENO
reconstruction method, are introduced in detail.

3.1 Traditional Riemann solvers

3.1.1 The Lax-Friedrichs solver

The Lax-Friedrichs method is used to obtain the flux term in WENO5-LF and TENO5-LF
schemes. A nonlinear hyperbolic conservation law is defined through a flux function F:

Wt+Fx (W)=0. (3.2)

For the two-dimensional Euler equations, the conservative variables W and the corre-
sponding fluxes F are,

W=[ρ, ρu, ρv, ρE]T , F=
[

ρu, ρu2+p, ρuv, u(ρE+p)
]T

. (3.3)

The generalization of the Lax-Friedrichs method to nonlinear systems takes the form [18]

Wn+1
i =Wn

i −
∆t

∆x
(F(Wn

i+1/2)−F(Wn
i−1/2)), (3.4)
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with the Lax–Friedrichs interface flux given by

F(Wi+1/2)=
1

2
(Fn

i +Fn
i+1)+

∆x

2∆t
(Wn

i −Wn
i+1), (3.5)

where Fn
i is the corresponding flux in Eq. (3.3).

3.1.2 HLLC Riemann solver

The HLLC Riemann solver [30] is used to obtain the flux term in the current WENO5-
HLLC and TENO5-HLLC scheme. HLLC solver is an approximate Riemann solver,
which consists of four constant states. Assume that the speeds of the slowest and fastest
waves are SL and SR, and the speed of the middle shear wave is S∗. Then, the HLLC
solver can be written as follows,

W(x,t)=















WL, SL≥0,
W∗L, SL≤0≤S∗,
W∗R, S∗≤0≤SR,
WR, SR≤0,

(3.6)

and the corresponding numerical flux can be defined as,

Fi+1/2=















FL, 0≤SL,
F∗L, SL≤0≤S∗,
F∗R, S∗≤0≤SR,
FR, 0≥SR,

(3.7)

where FL = F(WL), FR = F(WR) by Eq. (3.3) and F∗K = FK+SL(W∗K−WK), K= L,R. The
W∗K, K= L,R, is given by,

W∗K =ρK

(

SK−UK

SK−S∗

)











1
S∗
VK

EK
ρK
+(S∗−UK)

[

S∗+
pK

ρK(SK−UK)

]











, (3.8)

where S∗ is related to the speeds SL and SR, namely

S∗=
pR−pL+ρLUL(SL−UL)−ρRUR(SR−UR)

ρL (SL−UL)−ρR (SR−UR)
. (3.9)

There are many methods to estimate wave speeds SL and SR, and a pressure-based wave
speed estimate method proposed by Toro is adopted in the current work [29]. Firstly, we
need to estimate p∗, the pressure of the region x/t∈[SL,SR]. Based on the Two-Rarefaction
Riemann solver (TRRS), the estimated p∗ is

p∗=

[

aL+aR− γ−1
2 (UR−UL)

aL/pz
L+aR/pz

R

]1/z

, (3.10)
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where z=(γ−1)/(2γ), and γ is the specific heat ratio. Then, the speeds SL and SR are
coming from the exact wave-speed relations in the exact Riemann solver,

SL =UL−aLqL, SR =UR+aRqR, (3.11)

where aL, aR are the sound speeds of the initial left and right state, and qK, K= L,R, are

qK =

{

1, p∗≤ pK,
[

1+ γ+1
2γ (p∗/pK−1)

]1/2
, p∗> pK.

(3.12)

3.2 WENO5-Z reconstruction for traditional Riemann solver

The above time evolution solution is based on the high-order initial reconstruction for
macroscopic flow variables. The fifth-order WENO reconstruction is adopted in this
study.

The key idea of WENO is to construct the desired values Q on targeted locations
by the linear combination of the sub-stencil values through the optimal weights. To re-
construct the left interface value Ql

i+1/2 at the cell interface xi+1/2, three sub-stencils are
selected

S0=[Ii−2, Ii−1, Ii], S1=[Ii−1, Ii, Ii+1], S2=[Ii, Ii+1, Ii+2].

The quadratic polynomials pr3
k (x) corresponding to the sub-stencils Sk, k= 0,1,2 are

constructed by requiring

1

∆x

∫

Ii−j−k−1

pr3
k (x)dx=Qi−j−k−1, j=−1,0,1, (3.13)

where Q is the cell-averaged value. Each of them can achieve a third-order (r=3) spatial
accuracy in the smooth case in their sub-stencil. For the reconstructed polynomials, the
point value at the cell interface xi+1/2 is given in terms of the cell averages as follows

pr3
0 (xi+1/2)=

1

3
Qi−2−

7

6
Qi−1+

11

6
Qi, (3.14)

pr3
1 (xi+1/2)=−

1

6
Qi−1+

5

6
Qi+

1

3
Qi+1, (3.15)

pr3
2 (xi+1/2)=

1

3
Qi+

5

6
Qi+1−

1

6
Qi+2. (3.16)

The smooth indicators for pr3 are given as:

β0=
13

12
(Qi−2−2Qi−1+Qi)

2+
1

4
(Qi−2−4Qi−1+3Qi)

2, (3.17)

β1=
13

12
(Qi−1−2Qi+Qi+1)

2+
1

4
(Qi−1−Qi+1)

2, (3.18)

β2=
13

12
(Qi−2Qi+1+Qi+2)

2+
1

4
(3Qi−4Qi+1+Qi+2)

2. (3.19)
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To avoid the loss of the order of accuracy at inflection points, in this paper, we use the
nonlinear weights in WENO-Z [3], which are

ωk=γk

(

1+
τ

βk+ǫ

)

, (3.20)

where the global smooth indicator τ is defined as

τ= |β2−β0|

and γ0=
1

10 , γ1=
6

10 , γ3=
3

10 are defined as optimal weights. The normalized weights are
given by

ωk =
ωk

∑
2
q=0ωq

. (3.21)

Then all the desired quantities at cell left interfaces can be fully determined as follows,

Ql
i+1/2=

2

∑
k=0

ωk pr3
k (xi+1/2). (3.22)

The same strategy is applied to the right side of the interface.

3.3 TENO5 reconstruction

For a five-point TENO scheme, the involved candidate stencils [p0,p1,p2] are the same as
for the WENO5. The smooth indicators [β0,β1,β2] are also the same as WENO5.

3.3.1 Scale separation

The smoothness measure which is used for scale separation of discontinuities from smooth
waves is defined as

γk =

(

C+
τK

βk+ǫ

)q

, k=0,1,2,

where ǫ=10−40 to avoid a zero denominator. The parameters q=6 and C=1 are used for
strong scale separation. τK measures the smoothness of the full-size stencil.

3.3.2 ENO-like stencil selection strategy

The smoothness measure is normalized first as

χk =
γk

∑
2
k=0γk

, (3.23)

and then subjected to a sharp cutoff function

δk =

{

0, if χk<CT,
1, otherwise.

(3.24)
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The non-dimensional parameter CT determines whether or not a stencil is recognized as
”smooth”. The cutoff function ensures that a candidate stencil is fully suppressed for the
final reconstruction if the measured smoothness is below a certain threshold, otherwise,
it is adopted with its original weight. The choice of the threshold CT can be determined
from a compromise between good spectral properties and numerical robustness for dis-
continuity detection through numerical experiments.

To remove contributions from candidate stencils containing discontinuities, the opti-
mal weight dk subjected to the cut-off δk is re-normalized as

wk=
dkδk

∑
2
k=0 dkδk

, (3.25)

so that the contributions from stencils containing discontinuities vanish. The final k−th
order reconstructed numerical flux evaluated at cell faces i+ 1

2 is assembled as

Ql
i+1/2=

2

∑
k=0

ωk pr3
k (x). (3.26)

Since the δk function switches between 0 and 1, a smooth transition from high-order
to low-order through the weighting strategy is prevented. Nevertheless, the result can
achieve arbitrarily high-order accuracy while satisfying the ENO property.

3.4 Viscous flux term

For viscous flow problems, the computation of viscous fluxes in the Navier-Stokes equa-
tions is essential. In the current HLLC and LF scheme, both the conservative variables
Qi+1/2 and the corresponding derivatives (Qx)i+1/2 at the cell interface need to be con-
structed by the cell averaged conservative variables Q. In this paper, a sixth-order central
difference method is applied for the calculation of viscous fluxes. The conservative vari-
ables can be written as follows

Qi+1/2=
1

60
(Qi−2−8Qi−1+37Qi+37Qi+1−8Qi+2+Qi+3),

and the corresponding derivatives are,

(Qx)i+1/2=
1

180∆x
(−2Qi−2+25Qi−1−245Qi+245Qi+1−25Qi+2+2Qi+3).

For two-dimensional problems, the dimension-by-dimension strategy is adopted [1,2].
The reconstructed value Qi+1/2,jl at the Gaussian quadrature point jl , the corresponding
normal derivative (Qx)i+1/2,jl , and tangential derivative (Qy)i+1/2,jl can be obtained by

the fourth-order polynomial pr5(y) based on the above Qi+1/2 and (Qx)i+1/2. Then, all
terms in the viscous fluxes can be fully determined. A similar procedure can be easily
extended to three-dimensional problems.”
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3.5 Time marching method

The classical fourth-order Runge-Kutta method (RK4) is applied for time integration in
a traditional Riemann solver scheme for achieving the 4th-order temporal accuracy. The
RK4 time marching method is adopted as follows,

w1=wn+
1

2
∆tL(wn), (3.27)

w2=wn+
1

2
∆tL(w1), (3.28)

w3=wn+∆tL(w2), (3.29)

wn+1=wn+
1

6
(∆tL(wn)+2∆tL(w1)+∆tL(w2)+∆tL(w3)). (3.30)

Finally, a block diagram of the solution procedure for a traditional Riemann-solver-based
high-order finite volume scheme is given in Fig. 1.

4 Gas-kinetic-solver-based high-order finite volume scheme

In this section, the formulation of GKS is introduced. To show its ability to handle muti-
dimensionality, the 2-D case is presented in detail.

4.1 Gas-Kinetic Scheme

The two-dimensional gas-kinetic BGK equation can be written as [2]

ft+u·∇ f =
g− f

τ
, (4.1)

where u is the particle velocity, f is the gas distribution function, g is the correspond-
ing equilibrium state, and τ is the collision time. The equilibrium state is a Maxwellian
distribution

g=ρ

(

λ

π

)
K+2

2

eλ((u−U)2)+(v−V)2+ξ2),

where λ=m/2kT, and m,k,T represents the molecular mass, the Boltzmann constant, and
temperature, K is the number of internal degrees of freedom, i.e., K=(4−2γ)/(γ−1) for
two-dimensional flows, and the γ is the specific heat ratio, ξ is the internal variables with
ξ2=ξ2

1+···+ξ2
K, dΞ=dudvdξ1 ···dξK. Due to the conservation of mass, momentum, and

energy during particle collisions, The collision term satisfies the following compatibility
condition

∫

g− f

τ
ψdΞ=0, (4.2)
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Macroflow variables

Update via Runge-Kutte

time discretization

Cell-averaged
conservative

variables 

interface flux solver

Obtain interface values

The numerical fluxes 

 in Eq.(11) or Eq.(13) 

Update  in

Eq.(33)

Normal
direction 

reconstruction

Time step in Eq.(70,71)

RK4 in Eq.(33) 

stage 4

Yes

No
Update  in

Eq.(33)

Figure 1: The block algorithm of the traditional Riemann-solver-based high-order finite volume scheme.

where ψ = (1,u,v, 1
2(u

2+v2+ξ2))T, The connections between macroscopic conservative
flow variables W=(ρ,ρU,ρV,ρE)T with the distribution function f are

W=
∫

f ψdΞ. (4.3)
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Taking moments of the BGK equation (4.1) and integrating with respect to a discrete
space volume Sij = [xi−∆x/2,xi+∆x/2]×

[

yj−∆y/2,yj+∆y/2
]

, the semi-discrete finite
volume scheme can be written as

dWij

dt
=− 1

∆x
(Fi+1/2,j(t)−Fi−1/2,j(t))−

1

∆y
(Gi,j+1/2(t)−Gi,j−1/2(t)), (4.4)

where Fi±1/2,j(t) and Gi,j±1/2(t) are the time dependent numerical fluxes at cell interface
in x and y direction. To achieve accuracy in space, the Gaussian quadrature is used, such
that

Fi+1/2,j(t)=
1

∆y

∫ yj+1/2

yj−1/2

Fi+1/2(y,t)dy=
2

∑
ℓ=1

ωℓFi+1/2,jℓ(t), (4.5)

where ω1 =ω2 = 1/2 are weights for the Gaussian quadrature points yjℓ = yj+
(−1)ℓ

2
√

3
∆y,

ℓ=1,2, to achieve fourth-order accuracy. Fi+1/2,jℓ are the numerical fluxes in the Gaussian
quadrature point.

Fi+1/2,jℓ(t)=
∫

ψu f (xi+1/2,yjℓ ,t,u,v,ξ)dΞ, (4.6)

where f (xi+1/2,yjℓ ,t,u,v,ξ) is the gas distribution function at the cell interface. By inte-
grating the BGK equation Eq. (4.1), the general solution f can be obtained.

f (xi+1/2,yℓ,t,u,v,ξ)=
1

τ

∫ t

0
g(x′,y′,t′,u,v,ξ)e−(t−t′)/τdt′+e−t/τ f0(−ut,−vt,u,v,ξ), (4.7)

for simplification of notation, (xj+1/2,yℓ) = (0,0), xi+1/2 = x′+u(t−t′), yjℓ = y′+v(t−t′)
are the trajectory of particles. f0 is the initial gas distribution function, and g is the corre-
sponding equilibrium state.

In the integral solution Eq. (4.7), the initial gas distribution function can be con-
structed as

f0= f l
0(x,y,u,v)H(x)+ f r

0(x,y,u,v)(1−H(x)), (4.8)

where H(x) is the Heaviside function, f l
o and f r

0 are the initial gas distribution function
on the left and right side of the interface at t=0, which can be determined by the initial
macroscopic variables. The initial distribution function f k

0 , k = l,r in the space around
(x,y)=(0,0), can be expressed as

f k
0 = gk(1+akx+bky−τ(aku+bkv+Ak)), k= l,r, (4.9)

where gk, k=l,r are the Maxwellian distribution functions on the left and right-hand sides
of the cell interface, which correspond to the macroscopic flow variables Wk, k= l,r. The
coefficients ak, bk, k=l,r are related to the slopes in space in the expansion of a Maxwellian
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in the normal and tangential direction, which can be obtained from the derivatives of the
macroscopic variables,

〈ak〉=∂Wk/∂x, 〈bk〉=∂Wk/∂y, k= l,r, (4.10)

where 〈···〉means taking the moments of the Maxwellian distribution function,

〈···〉=
∫

ψ(···)gdΞ.

The time evolution coefficient Ak, k= l,r, related to non-equilibrium parts in Eq. (4.9), can
be determined by compatibility condition.

〈aku+bkv+Ak〉=0, k= l,r. (4.11)

After the determination of f0, the equilibrium state g at the interface can be constructed
with spatial and temporal coefficients as

g= gc(1+ax+by+At), (4.12)

where gc is the local equilibrium at (x= xj+1/2,t= 0). gc and corresponding coefficients

a,b,Acan be given by the compatibility condition,

∫

ψgcdΞ=We=
∫

u>0
ψgldΞ+

∫

u<0
ψgrdΞ, (4.13a)

∫

ψagcdΞ=∂We/∂x=
∫

u>0
ψal gldΞ+

∫

u<0
ψar grdΞ, (4.13b)

∫

ψbgcdΞ=∂We/∂y=
∫

u>0
ψbl gldΞ+

∫

u<0
ψbrgrdΞ, (4.13c)

〈au+bv+A〉=0, (4.13d)

where We are the macroscopic variables corresponding to the equilibrium state gc.

After constructing the initial gas distribution f0 and equilibrium state g at the inter-
face, time-dependent distribution function f (0,y,t,u,ψ) at a cell interface can be obtained
by substituting (4.12) and (4.9) into (4.7),

f (0,y,t,u,v,ψ)=(1−e−t/τn)gc+(t+τ)e−t/τn−τ)(ugc
x+vgc

x)+(t−τ+τe−t/τn)Āgc

+e−t/τn [gl−(ugl
x+vgl

y)(τ+t)−τAl ]H(u)

+e−t/τn [gr−(ugr
x+vgr

y)(τ+t)−τAr](1−H(u)). (4.14)

For smooth flow, the time-dependent solution in Eq. (4.14) can be simplified as

f (0,y,t,u,v,ψ)= gc−τ(gc
xu+gc

t )+tgc
t . (4.15)
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For the inviscid flow, the collision time τ is

τ= c1∆t+c2

∣

∣

∣

∣

pl−pr

pl+pr

∣

∣

∣

∣

∆t, (4.16)

where c1 = 0.01 and c2 = 1∼ 5. For the viscous flow, the collision time is related to the
viscosity coefficient,

τ=
µ

p
+c2

∣

∣

∣

∣

pl−pr

pl+pr

∣

∣

∣

∣

∆t, (4.17)

where pl and pr denote the pressure on the left and right sides of the cell interface, µ is
the dynamic viscous coefficient, and p is the pressure at the interface. In the smooth flow
regions, it reduces to τ=µ/p.

4.2 Spatial reconstruction for gas-kinetic scheme

4.2.1 1-Dimensional reconstruction

In 1-D case, the standard WENO5-Z reconstruction and TENO5 reconstruction applied
to the cell interface value wl, wr for GKS is the same as what is described in Section 3.2.

4.2.2 2-Dimensional reconstruction

In 2-D case, the reconstruction is conducted direction by direction. In this part, we denote
w̄ as cell average value, ∩w as line average value, and w as pointwise values. For the
superscript, wl, wr represent the reconstructed value on the left or right sides of a cell
interface, which is related to the non-equilibrium part gl and gr in GKS in Eq. (4.14).
Then we is the reconstructed equilibrium state. Before the reconstruction, for cell (i, j),
the cell average value w̄ is stored. And after the reconstruction, the output we need is

wl,wr,we, wl
x,wr

x,we
x, wl

xx,wr
xx,we

xx, wl
y,wr

y,we
y, wl

yy,wr
yy,we

yy,

at each Gaussian point.

wl,r
x are obtained by constructing a second order polynomial by requiring

1

∆x

∫

Ii

p(x)dx=wi, p(xi−1/2)=wr
i−1/2, p(xi+1)=wl

i+1/2.

And we finally get

p(x)= a0+a1(x−xi)+a2(x−xi)
2, a0=

1

4
(−wr

i−1/2−wl
i+1/2+6wi), (4.18)

a1=
wl

i+1/2−wr
i−1/2

∆h
, a2=

3(wl
i+1/2+wr

i−1/2−2wi)

∆h2
. (4.19)

Thus,

(wr
x)i−1/2=−

2(2wr
i−1/2+wl

i+1/2−3wi)

∆h
, (wl

x)i+1/2=−
2(wr

i−1/2+2wl
i+1/2−3wi)

∆h
.

The procedure of the two-dimensional reconstruction is shown in Algorithm 1.
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Algorithm 1: Two-dimensional reconstruction algorithm.

Input: Cell average values w̄n

Output: interface gaussian points values and slopes
w̄l

i+1/2,j+2,∂xwl
i+1/2,jl

,∂xxwl
i+1/2,jl

∂ywl
i+1/2,jl

,∂yywl
i+1/2,jl

,

w̄r
i+1/2,j+2,∂xwr

i+1/2,jl
,∂xxwr

i+1/2,jl
∂ywr

i+1/2,jl
,∂yywr

i+1/2,jl
,

w̄e
i+1/2,j+2,∂xwe

i+1/2,jl
,∂xxwe

i+1/2,jl
∂ywe

i+1/2,jl
,∂yywe

i+1/2,jl

1 foreach cell Ωij do

// as an example, interface (i+1/2, j) left side reconstruction is

shown.

// normal reconstruction

2 if x-direction then

3 using 5th order reconstruction(WENO5-Z or TENO5);

4 calculate (ŵl
i+1/2,j,(ŵx)l

i+1/2,j)← (w̄i−2,j,w̄i−1,j,w̄i,j,w̄i+1,j,w̄i+2,j)

5 end
6 if y-direction then

7 similar to x-direction
8 end

// tangential reconstruction

9 if x-direction then

10 foreach Gaussian point xm at the interface (i+1/2, j) do

// here the index i+1/2 is omitted

11 using 5th order reconstruction(WENO5-Z or TENO5);

12 calculate (wl
j,m,(wx)l

j,m,(wy)l
j,m)← (ŵl

j−2,ŵl
j−1,ŵl

j,ŵ
l
j+1,ŵl

j+2,(ŵx)l
j)

13 end

14 end

15 if y-direction then

16 similar to x-direction
17 end

18 end

// similar to interface (i+1/2,j) right side reconstruction.

19 foreach interface do

20 calculate interface equilibrium state values and first-order derivatives by

Eq. (4.13) (we
i+1/2,j,(wx)e

i+1/2,j)← (wl,r
i+1/2,j,(wx)

l,r
i+1/2,j),

21 foreach Gaussian point xm at the interface (i+1/2, j) do

22 calculate (we
j,m,(wx)e

j,m,(wy)e
j,m);

23 end

24 end

25 return
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4.3 Two-stage fourth-order temporal discretization

In this section, a two-stage fourth-order gas-kinetic scheme is presented based on the
time-dependent gas distribution function (4.14) at each cell interface.

Consider the following time-dependent equation,

∂w

∂t
=L(w), (4.20)

with the initial condition at w(t=tn)=wn, where L is an operator for the spatial derivative
of flux. The time derivatives are obtained

∂wn

∂t
=L(wn),

∂

∂t
L(wn)=

∂

∂w
L(wn)L(wn). (4.21)

Introducing an intermediate state at t∗= tn+∆t/2,

w∗=wn+
1

2
∆tL(wn)+

1

8
∆t2 ∂

∂t
L(wn), (4.22)

with a third-order accuracy. the corresponding time derivatives are obtained as well for
the intermediate state,

∂w∗

∂t
=L(w∗),

∂

∂t
L(w∗)=

∂

∂w
L(w∗)L(w∗). (4.23)

Then, the state w can be updated with the following formula,

wn+1=wn+∆tL(wn)+
1

6
∆t2

( ∂

∂t
L(wn)+2

∂

∂t
L(w∗)

)

. (4.24)

For the hyperbolic equation, the above time stepping method provides a fourth-order
time accurate solution for w(t) at t=tn+∆t. We apply this approach to conservation laws

wn+1=wn+∆tL(wn)+
1

6
∆t2

( ∂

∂t
L(wn)+2

∂

∂t
L(w∗)

)

, (4.25)

where w is a conservative variable and f (w) is the corresponding flux,

∂wi

∂t
=Li(w)=− 1

∆xi
( fi+1/2− fi−1/2). (4.26)

For the gas-kinetic scheme, the corresponding flux is a complicated function of time. To
obtain the time derivatives of the flux function at tn and t∗= tn+∆t/2, the flux function
should be approximated as a linear function of time within a time interval

Fi+1/2(W
n,δ)=

∫ tn+δ

tn

Fi+1/2(W
n,t)dt=

∫ tnn+δ

tn

∫

uψ f (xi+1/2,t,u,v,ξ)dEdt. (4.27)
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In the time interval [tn, tn+∆t], the flux is expanded as the following linear form

Fi+1/2(W
n,t)=Fn

i+1/2+(t−tn)∂tF
n
i+1/2, (4.28)

the coefficients Fn
i+1/2 and ∂tF

n
i+1/2 can be determined as follows,

Fi+1/2(W
n,tn)∆t+

1

2
∂tFi+1/2(W

n,tn)∆t2 =Fi+1/2(W
n,∆t), (4.29)

1

2
Fi+1/2(W

n,tn)∆t+
1

8
∂tFi+1/2(W

n,tn)∆t2=Fi+1/2(W
n,∆t/2). (4.30)

By solving the linear system, we have

Fi+1/2(W
n,tn)=(4Fi+1/2(W

n,∆t/2)−Fi+1/2(W
n,∆t))/∆t, (4.31)

∂tFi+1/2(W
n,tn)=4(Fi+1/2(W

n,∆t)−2Fi+1/2(W
n,∆t/2))/∆t2 . (4.32)

Similarly, Fi+1/2(W
∗,t∗), ∂tFi+1/2(W

∗,t∗) for the intermediate state can be constructed.
With these notations, the two-stage algorithm for both the Euler and Navier-Stokes

equations is given as follows

(i) With the initial reconstruction, update W∗ at t∗= tn+∆t/2 by

W∗=Wn− 1

∆x
[Fi+1/2(W

n,∆t/2)−Fi−1/2(W
n,∆t/2)], (4.33)

and compute the fluxes and their derivatives,

Fi+1/2(W
n,tn),∂tFi+1/2(W

n,tn). (4.34)

(ii) Reconstruct intermediate value W∗, and compute

Fi+1/2(W
∗,t∗),∂tFi+1/2(W

∗,t∗), (4.35)

where the derivatives are dertermined in the time interval [t∗, t∗+∆t].

(iii) Update Wn+1 by

Wn+1=Wn− 1

∆x
[Fi+1/2(W

n,∆t)−Fi−1/2(W
n,∆t)], (4.36)

where Fi+1/2(W
n,∆t) are expressed as,

Fi+1/2(W
n,∆t)=∆tFi+1/2(W

n,tn)+
1

6
∆t2(∂tFi+1/2(W

n,tn)+2∂tFi+1/2(W
∗,t∗)). (4.37)

In summary, based on the distribution function for the flux in the smooth region, the
above scheme solves the Euler or Navier-Stokes equations with the leading-order error of
O((∆x)5,(∆t)4). Finally, a summary of the solution procedure for GKS is given in Fig. 2
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Figure 2: The brief algorithm of the high-order GKS.

5 Numerical results

In the following test cases of the inviscid flows, the time step is determined by

∆t=CFL× ∆x

(|U|+C)Max
, (5.1)

where C is sound speed. For the viscous flow, the time step is determined by,

∆t=CFL×Min

[

∆x

(|U|+C)Max
,
ρ∆x2

4µ

]

. (5.2)

5.1 1-D tests

5.1.1 Accuracy test in 1D

The first case concerns the advection of density perturbations, the initial condition is set
as follows

ρ(x)=1+0.2sin(πx), U(x)=1, p(x)=1, x∈ [0,2].

The boundary condition is a periodic boundary condition, and the analytic solution is

ρ(x,t)=1+0.2sin(π(x−t)), U(x)=1, p(x)=1.

In the computation, a uniform mesh with N points is used. In this test, a fixed CFL
number CFL= 0.1 is used for different meshes. With the fifth-order spatial reconstruc-
tion, the leading-order truncation error in the inviscid case from the fourth-order GKS is
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Table 1: TENO5 S2O4.

Mesh length L1 error L1 order L2 error L2 order
1/20 2.558609e-05 2.845558e-05
1/40 8.406174e-07 4.93 9.344976e-07 4.93
1/80 2.980860e-08 4.82 3.319259e-08 4.82
1/160 1.273925e-09 4.55 1.418256e-09 4.55
1/320 6.709996e-11 4.25 7.461086e-11 4.25
1/640 3.945189e-12 4.09 4.383633e-12 4.09

O(∆x5+∆t4). With the fixed CFL number, we have ∆t= c∆x and the leading term be-
comes O(∆x5+∆t4)∼O(∆x5+c4∆t4). With the mesh refinement, the order of accuracy
will converge to 4. The L1 and L2 errors and orders at t=2 are presented in Table 1. The
expected order accuracy can be achieved.

5.1.2 The Titarev and Toro problem

The Titarev and Toro problem considers the propagation of high-frequency oscillating
sinusoidal wave with the presence of a shock, which is a great challenge for spatial re-
construction and flux solver [27, 28]. This problem consists of a right-facing shock wave
impinging on a high-frequency density perturbation, a challenging problem for the flux
solver and reconstruction. The initial condition for the Toro problem is given by

(ρ,U,p)=

{

(1.515695,0.523346,1.805), 0< x<0.5,
((1+0.1sin(20πx)),0,1), 0.5< x<10.

(5.3)

The computational domain is [0,10] with 1000 cells. The computed density profiles and
local enlargements for the Toro problem at t=5 with both the reconstruction scheme are
plotted in Fig. 3. The results are also compared with the HLLC and LF solver. As shown
in Fig. 4, at the entropy wave part, the GKS scheme resolves the density fluctuations
better than the HLLC and LF solvers. Meanwhile, by changing reconstruction to TENO,
TENO-LF, and TENO-HLLC solvers perform better than WENO-LF and WENO-HLLC,
while the GKS results are not sensitive to the reconstruction method.

5.1.3 The blast wave problem

The initial condition for the Woodward-Colella blast wave problem [33] is given by

(ρ,U,p)=







(1,0,1000), 0< x<0.1,
(1,0,0.01), 0.1< x<0.9,
(1,0,100), 0.9≤ x<1.

(5.4)

A reflective boundary condition is imposed at x = 0 and x = 1. The simulation is per-
formed on a uniform mesh with N = 400 with CFL= 0.5. Fig. 5 displays the computed
profiles of density at t= 0.038. The blast wave problem requires the robustness and the
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Figure 3: Titarev-Toro problem by (a) GKS, (b) HLLC, and (c) LF schemes. Density distribution with 1000
mesh points and t=5.0. The CFL number is 0.5.
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Figure 4: enlarge the domain of (a) GKS, (b) HLLC, and (c) LF at t=5.0.

ability of strong shock capturing. To show the potential of GKS. The fifth-order WENO5
reconstruction with GKS is compared with the eighth-order reconstruction TENO8 with
LF. TENO8-LF can only result when CT=10−4. WENO5-GKS resolves the density profile
better than TEN8-LF near the right peak x= 0.78. Hence, we can conclude that using a
higher-order flux solver should be a better choice compared to higher-order reconstruc-
tion.

5.2 2-D tests

5.2.1 Interaction of planar shocks

In the following two-dimensional Riemann problems, two classic examples are consid-
ered [17] The computation domain is [0,1]×[0,1] covered by 400×400 uniform mesh
points, where the non-reflecting boundary conditions are used in all boundaries. The
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Figure 5: The density distributions for blast wave problem at t=0.038 with 200 cells, CFL=0.5.
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Figure 6: The density distributions for blast wave problem at t=0.038 with 400 cells, CFL=0.5.

initial condition for the first problem is given by

(ρ,U,V,p)=















(0.138,1.206,1.206,0.029), x<0.7, y<0.7,
(0.5323,0,1.206,0.3), x≥0.7, y<0.7,
(1.5,0,0,1.5), x≥0.7, y≥0.7,
(0.5323,1.206,0,0.3), x<0.7, y≥0.7.

(5.5)
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Figure 7: The density distribution of four shock-interaction at t=0.6 with 400×400 mesh. This figure is drawn
with 32 density contours between 0.16 and 1.71.

The density distribution simulated by WENO5-GKS, TENO5-GKS, WENO5-LF, and
TENO5-LF are presented at t=0.6 in Fig. 12(d). The four schemes can resolve small-scale
flow structures. The low-dissipation TENO reconstruction can better resolve smaller
structures compared to WENO5. However, the solution of TENO5-GKS and TENO5-
LF violates the flow symmetry severely while WENO5-GKS and WENO5-LF preserve it
well. This kind of symmetry breaking not only appeared in TENO reconstruction but
also in some high-order low-dissipative reconstructions such as WENO9-JS and can be
solved by reordering the multiplication in simulation code [32]. Fleischmann et al. [6]
also demonstrate that symmetry breaking is induced by the floating-point truncation er-
rors that grow exponentially with long-term evolution instead of instabilities.
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5.2.2 Interaction of planar contact discontinuities

The initial condition for the second 2-D Riemann problem is given by

(ρ,U,V,p)=















(1,−0.75,0.5,1), x<1, y<1,
(3,−0.75,−0.5,1), x≥1, y<1,
(1,0.75,−0.5,1), x≥1, y≥1,
(2,0.75,0.5,1), x<1, y≥1,

(5.6)

where four zones have the same pressure but different density and velocity. Four shear
layers will be formed by planar contact discontinuity interactions. The computation do-
main is [0,2]×[0,2] covered by 800×800 uniform mesh points. The CFL condition is 0.5
in all calculations. This case is to simulate the shear instabilities among four initial con-
tact discontinuities. The density distribution simulated by WENO5-GKS, TENO5-GKS,
WENO5-LF, and TENO5-LF are presented at the t=0.4 and t=1.6 in Fig. 8.

The discontinuities in the 2D Riemann problem cause the Kelvin-Helmholtz insta-
bilities due to the numerical viscosities. It is generally believed that smaller numeri-
cal dissipation accords with larger amplitude shear instabilities. As shown in Fig. 8,
at t = 0.4, the results for TENO-GKS and WENO-GKS show more small vortices than
TENO-LF and WENO-LF. At time t= 1.6, the flow structure becomes much more com-
plicated and WENO-GKS and WENO-LF show more dissipative results than TENO-GKS
and TENO-LF. In both TENO5-GKS and TENO5-LF, the high-order accuracy of the initial
non-equilibrium state by the TENO5 reconstruction helps reduce numerical dissipation
and leads to better overall results.

5.2.3 The Noh Problem in 2D

The 2-D Noh problem is an implosion test to model the gas compression with constant
radial velocity towards a circle center, where a moving strong shock wave is formed [22].
The computational domain is [0,1]2. The initial density and pressure are ρ = 1 and
p=1×10−4, and the velocity is (u,v)= (−x,−y)/

√

x2+y2. The ratio of the specific heat
is γ= 5/3. The inviscid wall condition is adopted along the boundaries x= 0 and y= 0.
The supersonic inflow boundary condition is imposed on the other boundaries with the
same pressure and velocity as the initial conditions. The analytical solution of density is

(ρ,U,V,p)=

{

16,−x/
√

x2+y2,−y/
√

x2+y2,10−4, r< t/3,

1+t/r,(−x)/
√

x2+y2,(−y)/
√

x2+y2,10−4, r> t/3.
(5.7)

The results of the WENO5 reconstruction with GKS solver and LF on the 400×400 grids
with CFL= 0.5 are shown in Fig. 9 and Fig. 10. In this case, WENO5-GKS can simulate
the 2-D Noh test, while WENO5-LF failed in the first time step, but can evolve that by
decreasing the initial pressure to p= 1×10−3. In WENO5 construction, the accuracy of
the WENO5-GKS for strong shock waves is verified by the precise post-shock density
solution which is higher than the result of WENO5-LF. TENO5-GKS and TENO5-LF in
this case failed to run while they blew up after a few time steps.
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Figure 8: 40 equal-spaced density contours of planar contact discontinuities. Left:t=0.4. Middle:t=1.6. Right:
local enlargement of t=1.6. 800×800 grids are used.
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Figure 9: Noh problem with WENO5-GKS solver at time =2.0. Resolution at 400×400.
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Figure 10: Noh problem with WENO5-LF solver at time =2.0. Resolution at 400×400.

5.2.4 Double Mach reflection problem

This problem is studied for inviscid flow [33]. The computational domain is [0,4]×[0,1],
and a solid wall lies at the bottom of the computational domain starting from x = 1/6.
Initially, a right-moving Mach 10 shock is positioned at (x,y)=(1/6,0), and makes a 60◦

angle with the x-axis. The initial pre-shock and post-shock conditions are

(ρ,U,V,p)=

{

(8,4.125
√

3,−4.125,116.6),
(1.4,0,0,1).

(5.8)
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Figure 11: Double Mach reflection of a strong shock: density contours at simulation time t= 0.2. Resolution
at 1920×480. This figure is drawn with 43 density contours between 1.887 and 20.9.

The reflecting boundary condition is used at the wall. For the rest of the bottom boundary,
the exact post-shock condition is imposed. At the top boundary. The density distribu-
tions with 1920×480 uniform mesh points at t= 0.2 with WENO and TENO are shown
below.

In this case, all four schemes show good robustness and can capture the flow struc-
ture well. The double Mach reflection problem demonstrates the good robustness of all
four schemes. From the local enlargement, The WENO5-GKS scheme and TENO5-GKS
scheme resolve the contact and shock waves much sharper than the standard WENO5-
LF scheme and TENO5-LF scheme, leading to a substantially improved prediction of the
shear-layer instabilities.
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5.2.5 Viscous shock tube problem

Next, the viscous shock tube problem was introduced to test the performance of different
schemes for viscous flows. It is a shock tube problem in a 2-D square box [0,1]×[0.1], and
the diaphragm is located at x = 0.5. The initial state is given as follows:

(ρ,U,V,p)=

{

(120,0,0,120/γ), 0< x<0.5,
(1.2,0,0,1.2/γ), 0.5≤ x<1,

(5.9)

where γ= 1.4 and Prandtl number Pr = 0.73. The simulation at Re= 200 is tested. The
output time is t = 1.0. For the boundary condition, the upper boundary is asymmetric
boundary, and others are the non-slip adiabatic walls. The density contour is shown
in Fig. 12, where all four schemes can capture the main flow structures. The λ-shape
structure, the vortices within the boundary layer, and the slip line in the lower right
region are captured clearly. The density profiles along the bottom wall are shown in
Fig. 13 with the local enlargement. The results show that both schemes have similar
resolution, while WENO5-GKS is slightly better.
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Figure 12: Viscous shock tube problem with Re = 200 : density contours at simulation time t=1. Resolution
at 500×250. This figure is drawn with 30 density contours between 20 and 130.

5.3 3-D tests

5.3.1 Taylor-Green vortex

The three-dimensional Taylor-Green vortex is simulated by WENO5-GKS, WENO5-
HLLC, TENO5-GKS, and TENO5-HLLC. The computational domain is [−πL,πL]×
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Figure 13: Viscous shock tube problem of Re = 200: density profile along the bottom wall (y=0). The right
is the enlarged figure. For all cases, the CFL number is 0.2.

[−πL,πL]×[−πL,πL], and the initial condition is

U=U0sin(x/L)cos(y/L)cos(z/L) ,

V=−U0cos(x/L)sin(y/L)cos(z/L),

W=0, p= p0+ρ0U2
0 (cos(2x/L)+cos(2y/L))(cos(2z/L)+2)/16.

The parameters are set as L= 1, U0 = 1, ρ0 = 1. The Mach number is Ma=U0/C = 0.1,
and the sound speed is C =

√
γRT. The mesh numbers are 643 and 1283, and periodic

boundary condition is imposed at all boundaries. The volume-averaged kinetic energy
is defined as,

Ek =
1

ρ0Ω

∫

Ω

ρ
(

U2+V2+W2
)

2
dΩ,

where Ω is the total volume of the flow field. The dissipation rate of the kinetic energy is
given by

ǫk =−
dEk

dt
.

The linear reconstruction is taken for both schemes in this test case. The Reynolds
number is defined as Re=U0L/ν, and two Reynolds numbers, Re=280 and Re=1600, are
calculated by four schemes. The results of Re=280 with mesh number 643 are presented
in Fig. 14, and compared with a reference solution generated with spectral method [31].
The CFL number is 0.5 for WENO5-GKS and TENO5-GKS while 0.3 for WENO5-HLLC
and TENO5-HLLC. If the CFL number is 0.4, The HLLC generates a large oscillation.
The reason might be that the HLLC flux is constructed by the normal direction recon-
struction while for GKS flux is intrinsically multi-dimensional which also considers the
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Figure 14: Taylor-Green vortex problem with Re = 280 by WENO5-GKS, WENO5-HLLC, TENO5-GKS, and
TENO5-HLLC schemes: the kinetic energy (left) and the dissipation rate (right). The CFL number is 0.5 for
the GKS scheme and 0.3 for the HLLC scheme. For both cases, the mesh number is 643.

tangential gradients. The multi-dimensional structure of the Taylor-Green vortex might
be more consistent with the GKS flux. To improve the robustness of WENO5-HLLC abd
TENO5-HLLC scheme, the conservative variables at the cell interface Qi+1/2 are obtained
by simple averaging of the left and right interface values of reconstruction. Although
changing reconstruction from WENO to TENO cannot be run at higher CFL number re-
sults for HLLC, TENO-GKS shows a better solution than WENO-GKS in dissipation rate
in Fig. 14(b). Furthermore, for higher Reynolds numbers, results for Re=1600 with mesh
number 1283 are shown in Fig. 15. The reference for Re = 1600 is also generated with
spectral method from [5], and a similar conclusion can be obtained with Re=280.

For Re=280, the integrated enstrophy is also considered, which is defined as

ζ=
1

ρ0Ω

∫

Ω

1

2
ρ|∇×U|2dΩ,

where ζ is calculated by the central difference method. The reference solution is from
DeBonis [5].

For the enstrophy ζ, the result of the TENO5-HLLC scheme is obviously better than
the WENO5-HLLC scheme, while there is only a tiny difference between TENO5-GKS
and WENO5-GKS. Both TENO5-GKS and WENO5-GKS results yield almost converged
(i.e., grid-independent) results when compared to the reference data. This contrast fur-
ther highlights the relative insensitivity of GKS flux solver to the reconstruction method-
ology.
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Figure 15: Taylor-Green vortex problem with Re = 1600 by WENO5-GKS, WENO5-HLLC, TENO5-GKS, and
TENO5-HLLC schemes: the kinetic energy (left) and the dissipation rate (right). The CFL number is 0.5 for
the GKS scheme and 0.3 for the HLLC scheme. For both cases, the mesh number is 1283.
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Figure 16: Taylor-Green vortex problem with Re = 280 by WENO5-GKS, WENO5-HLLC, TENO5-GKS, and
TENO5-HLLC schemes: the enstrophy. The CFL number is 0.5 for the GKS scheme and 0.3 for the HLLC
scheme. For both cases, the mesh number is 1283.

6 Computational efficiency

The computational efficiencies of WENO5-GKS, WENO5-HLLC, TENO5-GKS, and
TENO5-HLLC are compared in 2-D and 3-D cases. The computational time mainly
includes reconstruction and flux construction. For the reconstruction, WENO5-HLLC
and TENO5-HLLC need only pointwise conservative values, while the derivative is also
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Table 2: 2-D computational efficiency test of shock-interaction problem. The mesh number is 400×400. The
shown CPU time is obtained for 10 time steps by a single Intel core i7-8750 @ 2.20GHz.

CPU time(s) Time ratio
WENO5-GKS 133.74 1.00

WENO5-HLLC 216.41 1.62
TENO5-GKS 135.11 1.01

TENO5-HLLC 218.02 1.63

Table 3: 3-D computational efficiency test of Taylor-Green vortex problem with Mat =0.1 and CFL=0.3. The
mesh number is 643.The shown CPU time is obtained for 10 time steps by a single Intel core i7-8750 @ 2.20GHz.

CPU time(s) Time ratio
WENO5-GKS 506.35 1.00

WENO5-HLLC 789.62 1.56
TENO5-GKS 508.46 1.01

TENO5-HLLC 791.80 1.57

needed in WENO5-GKS and TENO5-GKS. Compared to WENO reconstruction, TENO
has an extra step for scale separation. For the flux construction, the GKS is more com-
plicated than HLLC, but GKS uses two stages instead of four stages in HLLC to achieve
4th-order time accuracy.

The shock-interaction problem is used to test the computational efficiency. The mesh
in this test is 400×400. In this case, the computation time and relative efficiency are
listed in Table 2 The computation time is shown in Table 2 are obtained for 10 time steps
by a single Intel core i7-8750 @ 2.20GHz. The results show that WENO5-HLLC is 62%
more expensive than WENO5-GKS in the 2-D shock-interaction problem, while TENO5-
GKS consumes almost the same time compared to WENO5-GKS. The next test is the
Taylor-Green vortex in 3-D. Again, the computational time is collected by running the
program for 10 time steps, and the results are shown in Table 3. The computational time
of WENO5-HLLC is 56% slower than WENO5-GKS. Changing to TENO reconstruction
slightly increases the computational time. This is mainly due to the temporal discretiza-
tion. More time stages in one time step will increase the computational time.

7 Discussions

In the latest TENO reconstruction, the basic idea is to judge whether the solution in a
stencil is smooth or not by the scale separation. The TENO method is used not only to
remove sub-stencils across discontinuities in the reconstruction but also to select flux as
a detector as shown in the following equation:

FRiemann
i+1/2 (uL

i+1/2,uR
i+1/2)=

{

Flow
i+1/2(u

L
i+1/2,uR

i+1/2), if δL
3 and δR

3 ,

F
high
i+1/2(u

L
i+1/2,uR

i+1/2), otherwise.
(7.1)
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Figure 17: Sub-stencils in the reconstruction for left side value of the interface xi+1/2 in the TENO8 and CGKS
8th-order reconstruction: the circles represent cell averages and the gradients represent cell average slopes.

The reason for the low dissipation in the TENO method is that smooth stencils use a
large five-point stencil with a non-dissipative central flux, and non-smooth stencils use
a nonlinear reconstruction between three small stencils with a dissipative Riemann flux,
e.g., HLLC [7]. However, the performance of the TENO reconstruction only depends on
the reconstructed left and right values at the interface at the beginning of the time step.
The dissipation for the non-smooth region will depend on the selected Riemann solver
flux. As a reconstruction method, TENO is unrelated to the gas evolution process in the
timestep.

On the other hand, the flux evaluation in GKS is based on the time evolution of the
solution in the kinetic model for a physical process from the initial non-equilibrium state
towards an equilibrium one. In the smooth region, GKS can accurately recover the Euler
or Navier-Stokes solution. In the discontinuity region, the particle-free transport mecha-
nism introduces numerical dissipation within a shock layer and stabilizes the numerical
shock structure. The non-equilibrium state and equilibrium state retain the local spatial
variations, which are lost in the traditional Riemann solvers.

Furthermore, the GKS flux solver requires the use of point values and derivatives of
both non-equilibrium and equilibrium states at the cell interface. In the spatial recon-
struction process, both WENO5-GKS and TENO5-GKS reconstruct the equilibrium and
non-equilibrium parts separately. However, unlike the traditional Riemann solver, the
time-dependent gas distribution function in GKS at a cell interface provides not only the
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Figure 18: The density distributions for blast wave problem from TENO8-HLLC and 8th-order compact GKS.
t=0.038 and 200 mesh points, CFL=0.5.
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Figure 19: The density distributions for Shu-Osher problem. The results were obtained by 8th-order compact
GKS and TENO8-HLLC at t=1.8 with 200 mesh points.

flux and its time derivative but also time-accurate flow variables at the cell interface. By
using the updated cell interface value, slopes of flow variables inside each control volume
can be obtained and high-order compact GKS can be constructed [13].

In Fig. 18 and Fig. 19, we compared TENO8-HLLC with 8th-order compact GKS
(CGKS) for the Shu-Osher problem. CGKS shows better results than TENO8-HLLC. This
comparison indicates that the dynamics of the 1st-order Riemann solver are not enough
for the construction of higher-order schemes. Because the physical propagation speed is
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limited as we transition from kinetic particle transport to hydrodynamic wave propaga-
tion [35], the fluid element is dynamically connected only to its neighboring elements.
The CFL number serves not only to determine the time step but also to quantify the rela-
tive physical domain for the numerical domain.

In ideal cases, the numerical domain of dependence for any scheme should be the
same as the physical domain of dependence. In contrast, for the current existing schemes,
there may be a large disparity between them. This disparity is due to the inconsistency
between the first-order Riemann solver and the higher-order dynamics requirement in
the higher-order schemes. To compensate for the physical weakness in the 1st-order Rie-
mann solver, a strategy like TENO reconstruction may be used to obtain a more reliable
and accurate value at the cell interface. However, with the implementation of high-order
gas evolution models, such as GRP and GKS, both the numerical and physical domains
of dependence are approaching each other in the corresponding higher-order compact
schemes. Fig. 18 and Fig. 19 show the ability of CGKS in maintaining high-order ac-
curacy and robustness. Fig. 17 shows the sub-stencils in the reconstruction for the left
side value of the interface xi+1/2 in the TENO8 and CGKS 8th-order reconstruction. To
achieve the same order, CGKS can use a smaller spatial size of sub-stencils in the compact
schemes compared to the TENO8 with a traditional Riemann solver. This merit makes
the CGKS more flexible in porting to an unstructured mesh as it uses less cell stencil.

8 Summary and conclusions

A performance comparison for high-order schemes, namely, WENO5-GKS, WENO5-
HLLC, WENO5-LF, TENO5-GKS, TENO5-HLLC, TENO5-LF, is presented in this paper.
TENO5-LF and TENO5-HLLC, as two TENO class Riemann solvers, are compared with
the previous two WENO class solvers, WENO5-LF and WENO5-HLLC. In the TENO
reconstruction, due to its stencil selection similar to ENO, TENO can control the dissi-
pation of smooth and non-smooth regions. Different from traditional WENO schemes,
which lead to smoother stencils by convex combination, the TENO scheme functions as
a discontinuity sensor by suppressing the stencils that are detected as non-smoothness
stencils based on a predetermined threshold. TENO shows a great improvement in re-
solving high-frequency problems like the Toro problem and shows its ability to treat dis-
continuities in the two-dimensional Riemann problem. In the one-dimensional case Toro
problem, TENO5-GKS shows better accuracy in smooth regions. In two-dimensional
problems, TENO-GKS can capture more vortex structure than WENO-GKS, WENO-LF,
and TENO-LF.

On the other hand, TENO reconstruction breaks the symmetry of the flow in two-
dimensional problems, such as the interaction of planar shocks, because its accumulated
floating-point truncation errors may not be quickly dissipated by numerical viscosity.
And for the extreme problems with strong pressure jump such as the Noh problem, low-
dissipative TENO reconstruction diverges in the early stage.
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As noted in Section 3, the numerical dissipation comes from |∂̃i+1/2|(uR
i+1/2−uL

i+1/2).
The high-order TENO scheme can detect the non-smooth stencil with the scale separation
strategy, a dissipative Riemann solver is still needed to handle the non-smooth scales, i.e.,
the dissipation of the scheme will depend on the choice of the Riemann solver. By com-
paring different choices of the Riemann solver, GKS presents favorable robustness in the
Noh problem. For three-dimensional Taylor-Green Vortex, WENO5-GKS and TENO5-
GKS can take a larger time step with CFL number 0.5, instead of 0.3 for WENO5-HLLC.
Meanwhile, WENO5-HLLC (TENO5-HLLC) is 56% (57%) more expensive than WENO5-
GKS (TENO5-GKS). It shows that GKS can have a slightly better overall efficiency in 3D
cases.

In summary, the numerical flux formulation is more critical for a high-order spatial-
temporal scheme when simulating physical processes with strong nonlinearity. Choosing
a better flux formulation (such as GKS) appears to be more important than choosing
a better spatial reconstruction method when balancing the accuracy in resolving small-
scale waves and the robustness in treating strong discontinuities.
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