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Abstract. We present a graph-based numerical method for solving hyperbolic systems
of conservation laws using discontinuous finite elements. This work fills important
gaps in the theory as well as practice of graph-based schemes. In particular, four
building blocks required for the implementation of flux-limited graph-based meth-
ods are developed and tested: a first-order method with mathematical guarantees of
robustness; a high-order method based on the entropy viscosity technique; a proce-
dure to compute local bounds; and a convex limiting scheme. Two important features
of the current work are the fact that (i) boundary conditions are incorporated into
the mathematical theory as well as the implementation of the scheme. For instance,
the first-order version of the scheme satisfies pointwise entropy inequalities including
boundary effects for any boundary data that is admissible; (ii) sub-cell limiting is built
into the convex limiting framework. This is in contrast to the majority of the existing
methodologies that consider a single limiter per cell providing no sub-cell limiting ca-
pabilities. From a practical point of view, the implementation of graph-based methods
is algebraic, meaning that they operate directly on the stencil of the spatial discretiza-
tion. In principle, these methods do not need to use or invoke loops on cells or faces of
the mesh. Finally, we verify convergence rates on various well-known test problems
with differing regularity. We propose a simple test in order to verify the implementa-

tion of boundary conditions and their convergence rates.
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1 Introduction

For the last four decades the field of numerical methods for solving hyperbolic systems
of conservation equations has been dominated by a paradigm that is commonly referred
to as high-resolution schemes. These are numerical methods in which the order of consis-
tency is automatically adjusted locally (in space) depending on some chosen smoothness
criteria; see early references [4,27,55,/61]. While a heuristic high-resolution method is
a good starting point for practical computations, it is not enough to achieve uncondi-
tional robustness of the scheme. Here, we define unconditional robustness as the guar-
antee that the computed update at a given time step remains admissible and maintains
crucial physical invariants, such that the resulting state can be used again as input for the
next time step update. Modern approaches for constructing robust high-order schemes
are based on the following ingredients [8,20,125,32,36,/39,40,44-47,50,52,56,/57,61,63]:

(a) areference low-order method with mathematically guarantees of robustness,

(b) a formally high-order method that may or may not guarantee any robustness prop-
erties,

(c) a post-processing procedure based on either flux or slope limiting techniques that
blends the low-order and high-order solutions.

A particular incarnation of such postprocessing technique is the convex limiting tech-
nique that establishes mathematical guarantees for maintaining a (local) invariant-set
property [20].

First-order graph-based formulations combined with discontinuous spatial discreti-
zations are only tersely described in [25, Section 4.3], leaving the path towards high-
performance high-order graph-based methods underdeveloped. Therefore, the first goal
of the present paper is to complete the mathematical theory and discuss computational
aspects of invariant-set preserving schemes for the case of discontinuous finite elements
in comprehensive detail. In particular, we incorporate boundary conditions into the for-
mulation of the scheme, provide proofs of invariant-set preservation and discrete entropy
inequalities including the effects of boundary data.

The second goal of this paper is to lay out the elementary building blocks required
to construct a robust high-order scheme with convex limiting, using a graph-based dis-
continuous Galerkin discretization. This requires the development and testing of three
components:

(i) aheuristic high-order method,

(ii) a suitable strategy for constructing local bounds and their relaxation in order to
prevent degradation to first-order accuracy,

(iif) a convex-limiting procedure that blends the high and low order methods while
maintaining an invariant set.
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1.1 Background: Graph-based methods

A graph-based formulation [14}42,51] is a numerical method that operates directly on the
stencil or sparsity-graph of the discretization and its degrees of freedom, bypassing enti-
ties such as cells, faces, or bilinear forms of the underlying discretization paradigm. In
its simplest incarnation, a graph-based formulation takes a solution vector consisting of
states U} associated with a (collocated) degree of freedom i at time t,, and computes an
updated state U?“ for the time t,, 1 as follows:

n+1 n
miUlTnUz-i-'Z' f(U?)Cij—dij(U?—U?)ZO. (1.1)

jEL()

Here, Z(i) is the stencil or “adjacency list” of the i-th degree of freedom, the expression
Yiezi) E (U?)ci]- is an algebraic representation of the inviscid divergence operator, and
dij(U]’.‘—U?) represents artificial viscous fluxes. The graph-based formulation used in
this paper is introduced in detail in Section 3]

The concept of graph-based methods is quite old — one can argue that its roots lie
in finite difference approximations on unstructured grids. A notable modern prede-
cessor of what we call graph-based methods is the group finite element formulation of
Fletcher [14,51]. More recently, the concept of graph-based methods has been associated
with flux-corrected transport techniques; see [37]. There is a rich record of applications
of graph-based (sometimes also called edge-based) methods in computational fluid dy-
namics; see [42, Chapter 10] for a historical account. From the mathematical point of
view, invariant-set preserving methods [24] and convex-limiting [20,25] techniques lead
to increased interest in graph-based formulations. Computationally, the algebraic struc-
ture of the scheme is a natural idea in order to manipulate individual degrees of freedom
and preserve pointwise stability properties.

1.2 Background: Invariant set preservation and convex limiting

As outlined above, one of the fundamental prerequisites for the development of a ro-
bust high-resolution scheme is the availability of a first-order scheme with mathemati-
cally guaranteed robustness properties. The graph-based methods described in [24,25]
provide such mathematical assurances, by maintaining the so-called invariant-set prop-
erty [24]. These first-order methods provide a discretization agnostic paradigm that
works on arbitrary meshes, arbitrary polynomial degree, and arbitrary space dimension.

The convex-limiting framework introduced in [20,25] provides a limiter technique that
works on individual degrees of freedom and maintains the invariant-set property. By
construction, the limiter formulation is purely algebraic and is not bound to a specific
discretization technique. In the context of finite element discretizations, it does not dis-
tinguish between cell-interior degrees of freedom and those located at the cell boundary:.
Therefore, convex limiting is an instance of sub-cell flux limiting. First-order invariant-
set preserving methods, as well as the convex-limiting technique, were particularly well
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received by the discontinuous Galerkin spectral element community [40,46,/50] and related
sub-cell limiting efforts [36,39].

1.3 Graph-based discontinuous Galerkin formulations and objectives

The framework of invariant-set preserving methods based on convex limiting have been
discussed in detail in the context of continuous finite element formulations [7,/17,18,43].
The low-order stencil-based invariant-set preserving methods have also been combined
effectively with discontinuous Galerkin spectral element methods in [40,46,50]. This
requires combining two different discretization techniques: the low-order method is de-
scribed and implemented using a purely algebraic (or stencil based) approach, while the
high-order method is most frequently described and implemented with a cell-based for-
mulation. Unifying the high and low order methods into a single stencil-based descrip-
tion is very desirable, since it greatly simplifies the analysis, construction, and implemen-
tation of the schemes.

Therefore, we introduce and discuss suitable low-order and high-order methods
based on the algebraic structure introduced in [25| Section 4.3], using the same stencil,
and discuss the convex limiting paradigm adapted to the graph-based discontinuous
Galerkin setting. We will corroborate our analytical formulation with a computational
validation of convergence rates and qualitative fidelity.

1.4 Related works

Regarding other methods, we start by noting that the dominant body of DG schemes are
cell-based, formally high-order methods, potentially supplemented with slope-limiting
(e.g. Zhang-Shu limiter [62]) or troubled-cell indicator. These technique do not use a ref-
erence first-order scheme that preserves all entropy inequalities and all invariant sets.
While this may look advantageous, since they do not compute both a high-order and
a low-order solution, they do not have local bounds to enforce to the high-order method.
That explains why the current slope-limiting paradigm is mostly limited to positivity
preservation (p >0 and e > 0) and rarely even uses local bounds. A noteworthy excep-
tions of this approach are the publications [46,[50] which borrow some ideas from [25].
These publications indeed rely on a low-order finite volume subgrid method, while the
high-order method is a summation-by-parts method. The work in [46,50] uses high-order
and low method with different spatial discretizations, thus having different stencils and
different basis functions. One of goals of the present work is to present a simple approach
that incorporates some form of sub-cell limiting using a single spatial discretization.

The rest of the paper is organized as follows. Section [2|is dedicated to preliminar-
ies and notation about the spatial discretization and hyperbolic systems of conservation
laws. In Section 3| we define a first-order method by extending the mathematical descrip-
tion and analysis of graph-based discontinuous Galerkin methods in terms of invariant-
set preservation and entropy inequalities. In Section {4 we discuss the procedures for
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reflecting boundaries, supersonic inflows and outflows as well as subsonic inflows and
outflows. In Section [5| we develop a convex-limited scheme using a robust first-order
method and a high-order method using the entropy-viscosity technique. In Section [p| we
provide a series of numerical experiments demonstrating that the convex-limited scheme
exhibits expected convergence rates. We also propose a simple test for validating the im-
plementation of outflow and inflow boundary conditions.

2 Preliminaries

We briefly introduce relevant notation, recall the concepts of hyperbolic conservation
laws, invariant sets and entropy inequalities from the literature and discuss the finite
element setting for the proposed graph-based discontinuous formulations. We loosely
follow the notation from [20}25].

2.1 Hyperbolic systems, invariant sets, and entropy inequalities
We are interested in solving partial differential equations of the form
Ju+dive (u) =0, (2.1)

where u=u(x,t) € R" is the state (here, m is the number of components of the system),
x€R? is the spatial coordinate with the space dimension d, and f(u):R" —R"*“ denotes
the flux. The divergence of the flux is defined as [div{ (u)]; =Y ;c1.4) Ox; [£ (#)];. We make
the following assumptions, see also [23,24].

Assumption 2.1 (Admissible Set). We assume that there is a convex set A C R", called
admissible set, such that the matrix

Ix[f(u)n] eR™™ with x:=n-x

has real eigenvalues for all n€S%~1. We assume that the solution of (2.1)) is understood as
the zero-viscosity limit # =lim,_,o+ u, where u¢ solves the parabolic regularization

oru +dive (u®) =eAuc. (2.2)

Assumption 2.2 (Entropy Inequality). Furthermore, we make the important assumption
[23]24] that there exists at least one entropy-flux pair {7 (u),q(u) } associated to (2.2), with
7(u):R™ —R and g(u) :R™ — R? such that

o (u®)+divg(u®) <eAn(u€) forall e>0,
see [16, p. 28], such that the zero-viscosity limit u =1lim,_,y+ u° satisfies the entropy dissi-

pation inequality
o (u)+divg(u) <0.
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Assumption 2.3 (Finite Speed of Propagation). Consider the solution u(x,t) of the pro-
jected Riemann problem

ur, if XSO,

) (2.3)
ug, if x>0,

oru—+0y(f(u)-n)=0, where Uoz{

and x:=x-n. Given the solution u(x,t) of the Riemann problem (2.3), we assume that
there is a maximum wave speed of propagation, denoted as Amax (#,ug, 1) >0 such that

N[ —

1
u(x,t)=u; for x-ngi and u(x,t)=ur for x-n>

provided that tAmax(ur,ug,n) <1/2.

Assumption 2.4 (Invariant Set). We assume that the Riemann problem (2.3) satisfies an
invariant-set property of the form: There exist convex subsets 5 C A such that

1/2
a(t) ;:/ u(x,t)dx €5,
—-1/2

provided that u(x,t) is the unique entropy solution of the Riemann problem with left
state u; € B and right state ug € B and that tAmax (uy,ug,n) <1/2. The precise description
of the set B C R depends on the initial data and the hyperbolic system at hand; see
Section[2.2] for a detailed summary for the compressible Euler equations.

For additional background on entropy inequalities, parabolic regularization princi-
ples and invariant sets we refer the reader to [5,15,23| 24, 31] and references therein.
A general reference on hyperbolic systems of conservation laws is [16].

2.2 The compressible Euler equations

For the compressible Euler equations [16,58] the conserved state is u = [p,m,£] " € R™
with m =d+2 is comprised of the density p, momentum m, and total energy £. The flux
ff(u) : R+2 — R#+2)%4 s given by

T

E( , (2.4)

F(u):=|m, 0 'mOm+ply, ; E+p)

where II; is the d x d identity matrix, and p is the pressure. For the sake of simplicity we
assume that the system is closed with a polytropic ideal gas equation of state [16,58]]. This
implies that

p=(y—1e(u), e(u):=—=—, (2.5)
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where €(u) is the internal energy and y > 1 denotes the ratio of specific heats. The admis-
sible set A is given by

A= {[p,m,g]T eR™2 | p>0 and &(u) >o}. (2.6)

For the case of a polytropic ideal gas equation of state, the Euler equations admit a math-
ematical entropy-flux pair {#(u),q(u)} given by

n(u):=—ps(u), o(u):=-—ms(u), where s(u):=log(p "p(u)). (2.7)

Here, s(u) denotes the specific entropy. We note that this choice of entropy-flux pair {#,q}
is not unique, as there are infinitely many entropy-flux pairs for the Euler equations [26)
33].

Let u(x,t) be the unique entropy solution of the Riemann problem (2.3). Then, the
Riemann average #(t) belongs to the invariant set

B={ucA|s(u)>min{s(ur),s(ur)}},

provided that the initial data is admissible; i.e., up,ur € A; and that tAgma <1/2; see

Assumption[2.3] Note that 3 characterizes a minimum principle of the specific entropy s.

2.3 Space discretization

We consider a quadrilateral or hexahedral mesh 7; and a corresponding nodal, scalar-
valued discontinuous finite element space V), for each component of the hyperbolic sys-
tem

V.= {oun(x) €L3(Q) | (040 Tk) (%) €Q“(K), VKE T }.

Here, Tk : K — K denotes a diffeomorphism mapping the unit square or unit cube K to
the physical element K € 7;, and Q¥(K) is the space of bi-, or trilinear Lagrange poly-
nomials of degree k defined on the reference element K. That is, the Lagrangian shape
functions are defined by enforcing the property ¢y (X;) =0j with the Gauf3-Lobatto points
{Xi }ren defined on the reference element. Here, N is the number of local degrees of
freedom on the cell K. The basis functions on the physical element K are then generated
using the reference-to-physical map Tx: More precisely, for each physical element K, we
define shape functions by setting ¢x ;(x) :=¢;(T'(x)) for all i € N'. More detail on the
construction and implementation of finite element spaces we refer the reader to [6,10].

Remark 2.1 (Choice of Basis Functions). We have chosen quadrilateral and hexahedral
elements for implementational convenience. Our framework can accommodate the usual
set of simplicial elements, tensor-product elements, or even more exotic spatial discretiza-
tions, such as rational barycentric coordinates on arbitrary polygons. The only restriction
is that the chosen basis {¢;(x)} is interpolatory, has non-negative mass, viz., [ ¢;(x)dx>0,
and satisfies the partition of unity property Y ;cy ¢;(x)=1 for all x in the domain. The pre-
cise location of the nodes is of no consequence.
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We define V={icIN|1<i<dim(V},)} as the index set of global, scalar-valued degrees
of freedom corresponding to V},. Similarly, we introduce the set of global shape functions
{¢i(x)}icy and the set of collocation points {x;};cy. Note that, in the context of nodal
discontinuous finite elements, different degrees of freedom can be collocated at the same
spatial coordinates. In other words, the situation x;=x; with i#j€) may occur whenever
x; lies on a vertex, edge or face of the mesh. We introduce the index sets

Z(K)={j€V | supp(¢;) NK# D},
Z(K)={jeV | ¢jlox 0},
Z(@Q)={jeV | pjlaa #0}

Note that the set Z(dK) also contains indices of shape functions that have no support on
K but on a neighboring element of K. We also note that when using finite elements with
Gauf3-Lobatto points the situation j € Z(d(2) can only occur if x; lies on the boundary 0Q).
We assume that the basis functions satisfy the following partition of unity property for
each element K:
Y ¢i(x)=1, xek. (2.8)
JEL(K)
Finally, we introduce some matrices to be used for the algebraic discretization. We
define the consistent mass matrix with entries m;; € R and lumped mass matrix with
entries m; €R as

mij::/K(pi(pjdx, mi::/chidx. (2.9)

In order to discretize the divergence of the flux, we introduce a vector-valued matrix

c? - C?]'Ki’ if jeZ(K),

Cij-= (2.10)
TUlEN, i jen\I(K),
where K; € Tj, is the uniquely defined element satisfying supp(¢;) NK; # @, and
1 1
Czlf = /KVij‘Pidx/ C?jK =3 /aKij(Pian5, =2 8K080¢ianS/ (2.11)

where ny is the outwards pointing normal of the element K. The stencil at the node i is
defined as Z(i) = {j € V| ¢;; #0}. From definitions (2.10) and (2.11) it follows that ¢;; =0,
see Lemma [3.2] for more details.

3 Low-order method

We now introduce a first-order, graph-based method for approximating (2.I). The scheme
is based on results previously reported in [24}25,44]. A particular novelty of the pro-
posed scheme is the inclusion of boundary conditions in the formulation, which will be
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discussed in more detail in Section 4 We introduce the scheme in Section discuss
conservation in Section and prove invariant-set and entropy-dissipation properties
in Section 3.3l

3.1 Description of the low-order scheme

Let u}l (x) =Y_;c, Ul'p;(x) be a given (discontinuous) finite element approximation at time
tn, where the coefficients shall be admissible states U € A. In addition, let U?Q’" € A with
i€Z(9Q)), be a given vector of admissible boundary data for time t,. We then compute

the low order update UZ.L’”+1 at time t,, 1 =t,+ 71, as follows:
UL,i’l+1 _ Un
mi———— 4 Y {F(U))cy—di" (U U7 |
T j€Z()
(U9 90— g2 (U9 —Ut) =0, for i€V, (3.1)

Scheme is an algebraic formulation of a discontinuous Galerkin formulation [25] in
which the underlying weak formulation is hidden in the matrices m; and c;;. We note that
(3.1) is based on a central flux approximation [25] with subsequent interpolation, using the
nodal property of the shape functions [30]

Y (U cl]—/ V Y, F (Uj) ¢]><pldx

JEZ(i) JEZ(K;)

+% ( Z E(U?)‘P]'_ Z f(U?)t,bj) -ng, ¢p;dx

Ki NeT(@K)\I(K;) e (0K )NT(K)
z—/Kf(uZ)-chidx—k/aK.{{ﬁ‘(uZ)}}aKi.nKi(Pl,dxl

where {{ff(u})} } 5k, denotes the average between the two adjacent states. For more de-
tails, see also [25].

Scheme imposes the boundary data weakly with a jump condition, defining
a boundary flux through an outer state with the help of boundary conditions in the usual
DG form, see e.g., [3,28,30], albeit with a simplified, diagonal flux, £ (U?Q’”) 90 ag de-
tailed in Sectionbelow. Since ¢; =0 and d?Q’” =0forieV\Z(0Q)), (3.1) is valid for both
boundary and interior degrees of freedom simultaneously. We defer the discussion on
how to construct a suitable boundary data vector U?Q’” to Section @

The graph viscosities dL] ", 4% >0 in (3.T) are computed as follows:
dL n. T Cij .
=|cijl e A max (U] U; Mij), where n;;= Tenln’ for i#j,
4
20 (32)
A2 =90 oA S (UL, UM ), where n;= —!

|C?Q|42'
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Here, AL, (Ur, Ug,n):R"xR"xS%"1—R* is an upper bound of the maximum wavespeed
of the projected Riemann problem (2.3)) [24]. We also introduce dll-;’”

dyti=— Y d—dion, (3.3)
JEL(P),j#i

This definition plays a role in the computation of the largest admissible time-step size, see
(3.1T), however, we note that dg;’” is not needed in order to compute the update UI-L’"+1
with (3.1).

The low order scheme (B.1)-(3.2) is a first-order invariant-set preserving approxima-
tion in the spirit of [24]. To this end we rigorously establish conservation properties in
Section and derive a bar state characterization that in turn implies an invariant-set
property and discrete entropy inequalities (see Lemma [3.5). We have summarized an
adaptation of (3.1)-(3.2) for the prescription of boundary conditions in the context of con-
tinuous finite element discretizations in Appendix

3.2 Conservation properties

In order to establish conservation properties of the scheme we make use of some auxiliary
results.

Lemma 3.1 (Partition of Unity Property). It holds that

Y. cij+c?r=0, forall i€V. (3.4)
j€Z()

Proof. Leti€V be arbitrary and let K; denote the cell with i € Z(K). Using the definitions
(2.10) and (2.11), as well as property (2.8), we can compute

2 Cij—i-C?Q: 2 (c?—c?}K">+ 2 3Kf_|_caﬂ

JEZ(i) JEZ(K;) JEL(i)
—/ V Z <p] <p,dx—f/ Z 4>] ping,ds
jEZ(K jeZ(K

1

= ) ping,d —|-*/ ing.d

2 Jok\an ]eI(%I( )(P])MKI "2 Jogoan P14

1
/ q)an ds +2/ 2 ¢inK,'dSZO
The proof is complete. O

Lemma 3.2. The matrix c;; is skew-symmetric

Cij = —Cji f01’ all i,j ev. (3.5)
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Proof. The statement is an immediate consequence of definition (2.10) and the fact that
integration by parts shows

Ki BK, _ BKI Kl aK K]
¢ =i =+l =—(c; =g
_x. oK _ 9K _ _ 9K; _
for K; =K;; or that cij =Cji —Cj; whenever K; # K; due to the fact that ng, = —n K; on
aKl‘ﬂaK]‘. ]

Conservation equation (2.1) implies that the following flux-balance of the state U;
between time t" and #"! holds true:

/ u(x,t"1) dx—|— / ansds—/ u(x,t")dx.
0 90 0

We now show that the scheme 1) satisfies a discrete counterpart of such a flux balance.
We start by deriving an explicit skew-symmetric counterpart of scheme (3.1)):

tn+1

Lemma 3.3 (Skew Symmetric Form). Using property scheme (3.1)) can be written equiv-
alently as
m; (U =0+ Y FE+F =0 (3.6)
JEZ(i)
with the fluxes
Fii:=7, (£(U}) +£(U})) cij—rnd}j'” (up-uy),
1:aQ L=, (F(U?Y) +£(UL)) 9 — 7, d?¥" (U9 —UY),

where the vectors Fb € R™ are skew symmetric, i.e., Fb = —F};. Note that F?Q’L is a boundary
flux.

Summing up (3.6) over the index i and using the skew symmetry of FL leads to the
following corollary
Corollary 3.1 (Total Balance). Scheme (3.1) satisfies the balance equation

Un—l—l n

yom—t——Lt+ Y FOt=0 (3.7)
icy Tn i€1(aQ))

forallieV. Using definitions (2.9) and (2.11)) one can write (3.7) equivalently as

/”“ Jdx+— / (E(UXM™)+-£(U?)) nxds
2 ZEI BQ
Y a0 Uy = / uf (x) dx.
i€Z(20) 0

Remark 3.1. F?Q'L can be viewed as a central flux between the boundary state U} and
a ghost node with state U?Q’” in the usual discontinuous Galerkin framework.
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3.3 Invariant-set preservation

We now focus on stability properties of the low-order scheme. In the spirit of [24,25], we
rewrite as a convex combination of bar states. These are states formed by an alge-
braic combination of interacting degrees of freedom that, under a suitable CFL condition,
correspond to the spatial average of an associated one dimensional Riemann problem.
However, in contrast to the discussion found in the references above, we end up with an
additional set of bar states that depend on the boundary data. We start with the following
algebraic identity.

Lemma 3.4 (Convex Reformulation). The update procedure (3.1)) can equivalently be written
as follows:

27,d>" 27,d9" __ 27d"
U= <1+” ) L D D= i/ (3.8)
l i jez@gy M

where U?j and ﬁ?Q’n are the bar states defined by

U?J:Q(U?JFU?) - 2;L (f(U;'l)—f(U?))nij/ (3.9)
ij
=00 1 a0, oy |9 90 n

U =S (U U - (U™ —£(U7) ) (3.10)

i

Note that ﬁ?ﬂ’n depends on the boundary data U?Q’”.

Proof. Similarly to the derivation of the skew symmetric form (3.6)), we can use identity

to rewrite as follows:
m U =m;U] — 7, ) (f(U]r'l) —f(U!))c;j —dle'” (U;l —U7})
JEZ()
5 (E(UO) £ (UF) ) O - a0 (U2 ).

1

We now add and subtract 27, Y jcz(i)\ (i} df.;/”U;-1 and ZTnd?Q’”U?Q’"
m Uttt = <mi—21’nd?0’" - 2rnd§;f”) U’
JET(\{i}
-5 ), (F(U}) —f(Uf‘))cij—diLj’” (Ui +uy)
JET(i)\{i}
— (£(U) £ (UF) ) 12— (U 4 1Y),

The result now follows readily dividing both sides of the equality by m; and using defi-
nition (3.3). O
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Lemma 3.5 (Pointwise Entropy Inequality). Let {n,q} be any entropy-flux pair of the hyper-
bolic system opu+divE (u) =0 [23,24]. Assume that the update is performed with a time
step size T, satisfying the following CFL condition:

245"
—Tnﬁgl forall ieV. (3.11)

Then the update U™ satisfies the following pointwise entropy inequality:

AR

Tn

m; a(U}) ¢ —d" (n(U}) —(U}))
JEZ(i)

+a(UF0) = (5 (U2) —y (U]) ) <0 612
forallie V.

Proof. Proving inequality (3.12) relies on the convex reformulation (3.8), the convexity of
the entropy # and corresponding inequalities that hold true for the bar states defined in

and (310

_ |cijl
L
2d;;

1(U) <5 (n(U7) +1(U7)) (a(U7) —a(U7))mn,

_ \C?Q\ﬁ

0Q),
24707

B (O <3 (1) 4y (up)) (a(U?™) ~a(U?))n.

Such inequalities hold true provided that db” and d?Q’” are chosen large enough so that
the bar states represent an average value over the Riemann fan [24]. In particular, the choice
(3.2) is sufficient [24]. For further details we refer to the detailed discussion found in [24,
Theorem 4.7] and [25, Theorem 3.8]. O

Remark 3.2 (Global Entropy Inequality). Similarly to the procedure in Section 3.2 that es-
tablishes global conservation (see Lemma 3.3|and Corollary B.I), we can rewrite inequal-
ity (3.12) in skew symmetric form and sum up. This leads to a global entropy inequality

Y mi (U 41, Y Q<Y m(U7) (3.13)

icy i€Z(30) icy
with (viscous) boundary fluxes
Q= (a(UP™) +a(Uf) ) -2~ (n(U) = (U}) ).

This is nothing else than the discrete counterpart of a global entropy inequality satisfied
by the entropy-flux pair {7,q}.
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Remark 3.3 (Time Step Size Restriction). CFL condition determines the largest time
step size that can be used for an individual update step. For example, in practical im-
plementations it is convenient to select a (user specified) constant 0 < Cr <1 and then
compute a time step size as follows:

. m;

T,,zCr-mm(— Lln> (3.14)
ey Zdii,

Here, m; decreases and dé’” grows with increasing polynomial degree k leading to a stric-

ter time step size restriction.

Lemma 3.6 (Invariant Set Property). Under the stated CFL condition (3.11) and assuming

that the provided boundary data U?Q'” is in the invariant set 3 for all i € Z(9QY), then the update
1 : : 1

Ut computed by B.1) and B.2) will satisfy Ul € B as well.

Proof. The statement is a direct consequence of the fact that (3.8) expresses U’ *! as a con-
vex combination of bar states, that in turn are located in the invariant set B provided that
the CFL condition (3.11) holds; see Lemma[3.5 O

4 Boundary conditions

We now discuss how to construct the boundary data vector U?Q’” eR™, i€ Z(0Q)) for
different types of boundary conditions.

The construction of the boundary data vector U?Q’” follows well established proce-
dures, we refer to e. g., [3,9,28-30]. For the sake of completeness we briefly summarize
our approach based on [18].

4.1 Construction of boundary data U?Q'”

We distinguish Dirichlet boundary conditions, slip boundary conditions, supersonic and
subsonic in- and outflow.

Dirichlet boundary conditions. For Dirichlet boundaries we simply set U?Q’" c€Ato
the desired boundary data at position x; for time ¢,,.

Slip boundary conditions. We impose slip boundary conditions for a boundary state
U?=[p!,m!,E" " at a boundary collocation point x; by setting

U= o md",EMT, where m?:=m! —2(m} -n;)n;, 4.1)

and where we recall the definition n; = ¢/ |c??}|» for a boundary collocation point x;.
This implies that m?’” and m} have opposite normal components but the same tangen-
tial projection with respect to the normal n;. The boundary flux F?Q’L consequently only
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affects the balance of the normal component of the momentum and leaves all other com-
ponents unaffected.

Supersonic in- and outflow. In order to impose supersonic in- and outflow at portions
of the boundary, we proceed as follows. Given a state U? = [p",m?,£"] " at a boundary
collocation point x; with velocity v!, local speed of sound 4;(U”), and corresponding
Dirichlet data U?’" for the inflow, we set

d, .
U?Q,n _ {Ui "ot often<—a, 42)

n H n
u?,  if ol-n;>a;.

Subsonic in-flow and outflow. For the subsonic case, we need to distinguish in- and
outgoing characteristics. To impose conditions only on the ingoing ones, we construct
the boundary data vector U?Q’" by blending together the current state U} and the given
Dirichlet data U?’” [9,18,29]]. To this end, we briefly review the approach described in [18]
for the case of our discontinuous formulation.

Given a state U= [p,m,€ ]T and a unit vector n we introduce the following set of
characteristic variables Ry (U,n) and characteristic speeds A (U,n), k=1,...,4:

o 2a  p(U) 2a
R(U,n).—{vn o o v—(v-n)n, v,,—i—ry_l},
AMU,n):={v,—a, vy, vy, vy+a}.

(4.3)

Here, v, =v-n and a= \/yp/p is the local speed of sound. The strategy now consists
of constructing the boundary data satisfying: U with R;(U?" n) = R;(UM",n) if
Ai(U?,n) <0 (incoming characteristics), and Ri(U?Q’”,n) = Ri(U!,n) otherwise. Con-
structing an admissible state U?Q’” satisfying such constraint is always possible; see [18,

§4.3.2]. In addition, the resulting state U?Q’” is always admissible provided U¢ is admis-
sible, and the construction coincides with (4.2) for the case of supersonic in- and outflow.

4.2 Multi-valued boundary conditions

As opposed to classical implementations of discontinuous Galerkin schemes via face in-
tegrals, the algebraic approach implies that more than one boundary condition applies to
a given boundary collocation point x;, for instance

— For a typical channel flow setup, a small subset of the boundary collocation points
x; (those at corners) lie between the slip boundaries at the top and bottom as well
as the inflow and outflow boundaries at the left and right, respectively.
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— Another example is given by two parts of the boundary with slip boundary con-
ditions that meet at an angle, say 90°. Here, slip boundary conditions for both
normals should rather be enforced instead of a single slip boundary condition with
a combined normal (of 45°).

In order to treat such boundary states, we first partition the boundary 9() into all K dis-
joint components 0();, where we either apply a different boundary condition, or where
portions of the boundary meet with a large angle. Then we split ¢?? accordingly

1

U oY, ci Z can, with can. —
2 JaKknaoy

ke[1:K] ke[l K

(Pian5~

Finally, scheme takes the form

UL,H+1_U1/1
m————+ Y {£(U})cy—dy" (U} U7 |
T j€Z(i)
+ Y { £(UPkn) BQ'k—d?Q'k'”(U?Q'k'”—U?)}:0, for i€V,  (44)
ke[1:K]

where U is a modified vector of appropriately chosen boundar data, and the mod-
i pprop y y

dQQ,k,n

ified graph viscosity d; is computed as follows:

C?Q,k

o kn , 00k o0k, k k__
B0k — | DOK| AL (U U E),  where nf— W.
i e

(4.5)

5 High-order method and convex limiting

Following the same approach as discussed in [20,25], we now introduce a formally high-
order method by using the consistent mass matrix and introducing a high-order graph-

viscosity dl] ,

Uy
Y myt———+ {f Jei—di " (Ul -Up) |
JEZ(i) n JEL(i)
+£ (U9 IO g0OH (g2 Ut =0, for i€V (5.1)

Here, m;; = [, ¢i¢;dx denotes the consistent mass matrix. A considerable body of stabi-
lization techniques have been developed over the years, supplying ideas that could be
adapted to the computation of high-order graph viscosities d?’". Among these methods
we mention entropy-viscosity [22], smoothness sensors [47], and semi-discrete entropy-
stable flux constructions [12,13]; see also [45] for a comprehensive review of approaches.
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H

All of these methods have in common that they try to ensure that 4 ij M db’” near shocks

and discontinuities, while forcing dfjl'” ~ (0 in smooth regions of the solution.

The development of high-order methods for discontinuous spatial discretizations re-
quires some attention to the minimal amount of viscosity. Without enough viscosity
between the element interfaces, the method might not even be stable for smooth solu-
tions. Therefore, we will first present a high-order viscosity dlr.?m’" such that if used in

scheme (5.1)):

(i) it results in a stable approximation of smooth solutions on structured and unstruc-
tured meshes;

(ii) we observe optimal convergence rates for smooth problems. We will call such a vis-
cosity dg.‘m’” a minimally stabilizing viscosity.

This viscosity will not have any shock-capturing capability and might not be best choice
of viscosity for non-smooth problems. The sole purpose of such a viscosity is to define
a minimal amount of viscosity that the method should always have.

On the other hand, we would like to adapt the entropy viscosity methodology de-
scribed in [21}22] to the context of graph-based methods using discontinuous spatial dis-
cretizations. We will denote the entropy viscosity as dfjv’”. Such viscosity should provide
the required shock capturing capabilities. Ultimately, we set

dg]{-’" :=max {d?in’”,d;‘”n } (5.2)

to guarantee that the high-order scheme (5.1) possesses enough viscosity to deliver stable
solutions and optimal convergence rates in the context of smooth solutions as well as
shock-capturing capabilities in the context of non-smooth problems.

In Section |5.1| we define the minimally stabilizing viscosity d}}‘m while in Section

we describe the entropy viscosity df]."’”. In Section [5.3) we describe the convex limiting

procedure to ensure that the blended method satisfies local bounds at every collocation
point.

5.1 Minimally stabilizing high-order viscosity

The usual Lax-Friedrichs flux of the form [;A[[u;]]$ids, where A is an estimate on the
maximum wavespeed between cell interfaces, leads to the usual optimal convergence
rate ||u—up||12(q) < O(K1/2). However, it can be observed experimentally that the be-
havior of the Lax-Friedrichs flux is suboptimal for the case of even polynomial degree in
the L!-norm. For instance, for k=2 when solving the isentropic vortex [40,60,62] a rate
of O(h*7>) can be observed instead of the expected O(h*?), see Remark The phe-
nomenon of observing suboptimal convergence rates for even polynomial degrees in the
L! norm has been well known for a while by practitioners but it is rarely commented on



M. Kronbichler, M. Maier and I. Tomas / Commun. Comput. Phys., 38 (2025), pp. 74-108 91

in the literature. Following an argument in [54] we use a different scaling for the cases of
odd and even polynomial degrees in order to define a minimally stabilizing high-order
viscosity that recovers the optimal rate O (h**1) in the L'-norm when k is even.

Remark 5.1. We note that such a degradation in convergence rates typically manifests
only after a sufficiently large number of mesh refinements has been reached. Therefore,
in our numerical results (reported in Section [6) a sufficiently large number of mesh re-
finements is used to ensure that we have reached an asymptotic regime.

In light of the discussion above, we set d’l?’]f-‘in = diL.’” if x; = x;, for the case of odd
polynomial degree. This choice is roughly equivalent the interfacial Lax-Friedrichs flux.
However, for even polynomial degree we adapt the idea outlined in [54] and set d;7"" =
O(h/ Z)diLj’” if x; =x;. However, we want to avoid introducing a length scaling  into the
high-order viscosity, therefore we set

gmin. {Ckil\g»kdb’n, if  x; =Xj,

if (5.3)

0, otherwise,

where

il\“'— 1mi+m]- %
7 2 (9]

is a dimensionless mesh size, and the constants c; and py are set to ¢, =1, and

1, if k iseven,
Pk=4q 2
0, if k isodd.
The graph viscosity d?]?‘in is symmetric by construction. The choice of coefficient p; fol-
lows from the theoretical and computational discussion outlined in [54]. Extensive nu-
merical tests indicate that the power p =1/2 for the case of even polynomial degree is
indeed optimal; it maintains a stable approximation of smooth solutions on unstructured
meshes, as well as optimal convergence rates in the L! norm. On the other hand, the non-
dimensional constant c; >0 can be chosen more freely. For the sake of reproducibility
we simply report our particular choice for the parameters used in our numerical results
(Section @, which we found to be reasonable for a large number of test cases.

Remark 5.2 (Superconvergence). We note that discontinuous spatial discretizations of
even polynomial degree (without stabilization) are superconvergent for the case of linear
conservation equations on uniform meshes. For instance, non-stabilized discontinuous
Q? spatial discretizations have been shown to be fourth order accurate for smooth linear
problems on uniform meshes with periodic boundary conditions, see [1]. In view of
these theoretical results, it seems tempting to simply set dg-ﬁ“ =0 as a minimal viscosity
choice. However, we have observed numerically that these theoretical results for linear
conservation equations do not necessarily translate to the case of non-linear hyperbolic
systems, nor to general unstructured hexahedral meshes.
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5.2 Entropy viscosity

The entropy viscosity commutator has been introduced in [22]. Here, we summarize
a variant discussed in [21]. Consider the generalized Harten entropy f(s(u)), where s(u)
is the specific entropy (2.7), and f is any function satisfying the constraints

f(s)>0, f'(s)c,"—f"(s)>0.

Here ¢, = 00s/0d0 is the specific heat at constant pressure, see [23]. For any admissible
state u = [o,m,€]T € R¥*2 we adopt the shorthand notation f(u):= f(s(u)). We then
define a shifted generalized mathematical entropy ®(#) and a corresponding entropy-

flux g (u)
@} (u) =plf () = F(U])], @ (w)=mf(u)—f(u])].
Let V, @ (u) € R¥"2 denote the gradient of ®(u) with respect to the state u and set

Ri:= Y [a@(U})— (V@) T£(U})] ¢y,

JEL(i)
Z q(U C1] +Z| [Vu®;]i| [ (U )Ci]'|/
JEZ(i) kem

where [V, ®;]; is the k-th component of V,,®; and £(U}) R4 denotes the k-th row of

the flux f (U7) € R#*+2)%4 We define the normalized entropy-viscosity residual N; and
entropy viscosity di’ as

R; .
N;:= 511 and d;"" :=djmin { ce,max{|Ni|,INj|},1},

where cey is a constant that will in general depend on the polynomial degree. From
numerical explorations we have chosen to use cey =1,0.5,0.25 for the polynomial degrees
k=1,2,3, respectively.

5.3 Convex limiting: Algebraic reformulation

In analogy to Lemma 3.3} we rewrite the high-order scheme (5.I) as follows:

m;(UP U+ Y Fij+F?Q'H:0, (5.4)
=10

where the algebraic fluxes F? are given by
Fil:=1, (f(U’?)+1T'(U’7))cz-j—rnd.H’”(U?—U?)
+ (my—&;my) (U =0 U Uy,
FaQH _Tn< (Uaan)+f( )) BQ_TndB'Q,H,n(UiaQ,n_U?).
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Here, we have used the fact that Zjez(i) (ml-j —51']‘"11') =0, which is a well known technique
[25,138] for absorbing the consistent mass matrix mj; into the fluxes. We note that the
high-order algebraic fluxes are skew symmetric, F}]{- = —F]-Pil. Furthermore, subtracting
from (5.4), after some reorganization we obtain

miU?,nH ZmiUiL’n+1+ y Ajj+A?Q/ (5.5)
JEZ()

where Ajj:= FZI; —Ffjl and A?Q = F?Q’L —F?Q’H, with A;; skew symmetric, i.e. A;;=—A;;.
Eq. (5.5) now serves as a starting point for the convex limiting technique. We compute
the new, blended update U’ ! by setting

U =Ry T A 2O AT, 56)
JEZ()

where £}, = (7 € [0,1] and (9" € 0,1] are limiter coefficients. From (5.6) and (55), it is
evident that /;;, E?Q = 0 recovers the low-order scheme and, conversely, EZ-]-,K?Q =1 the
high-order scheme. The goal is thus to choose the limiter coefficients as large as possible

while maintaining a pointwise invariant-set property (in the spirit of Lemma , ie.,
Urtle A
1

Remark 5.3 (First-order Scheme and High-order Polynomials). In this work, we use the
same finite element basis and stencil for both the high-order and low-order methods.
However, we note that several authors [19,41,46] have explored the argument that the
first-order method degrades their accuracy with increasing polynomial degree k. There-
fore, the first-order scheme should be computed using a subgrid of low-order polynomial
degree, usual k=0 or k=1. While it is indeed true that the first-order method degrades its
accuracy with increasing polynomial degree, the importance of such a degradation is not
substantial for modest polynomial degree, as illustrated by Table |5, For instance, in the
table it can be observed that the error of the Q, first-order scheme is 1.6 x the error of the
Q; first-order scheme. Similarly, the error of the Q3 first-order scheme is 2.3 x larger than
the error of the corresponding Q; method using the same total number of DOFs. We be-
lieve that this higher error pre-factor is acceptable: in return we obtain a simpler method
with a more straight-forward code, while avoiding all the complexity associated to have
a low-order method defined in a subgrid. Of course, for very high order polynomial
degrees, say k > 5, this sentiment might not hold true.

5.4 Convex limiting: Local bounds and line search

We want to enforce local bounds on the density p and the specific entropy s(u) given by
(2.7). However, the logarithm in makes the specific entropy a rather cumbersome
quantity to work with directly. Following our previous work [18,20,25], we use the
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rescaled quantity

S(u) = 7e(u) =~ exp(s(w)

instead. Since it is a monotonic rescaling, enforcing a minimum bound on s(u) will also
enforce a minimum bound on s(u). For each node i € V, we construct local bounds p™™,

22" such that the final update U?“ =

pmax, gmin and construct limiter coefficients ¢%.

4
[or 1, ”*1,81“1] given by (5.6), satisfies bounds
pmm <pn+l pmax’ g(U;H-l) Zg{nin

In this manuscript we use the following local bounds:

min . —0O,n . ” . . =—n
pitti=r, mm{P(Ui ), minjez ()mlnkeI(j)Pk/mlnjeI(i)mlnkel(j)P(Ujk)}/
2

—_— Q, J71
PP =1 max {p(Ui n),maxjez(i) MaXyez(j) ), MaXjex )maxkeI(])P<U?k) }, (5.7)

—30), .
5?““ =1, mm{s(Ui n),mmjez()mmkez() s(0g), minjez(;) Mingez(j)s (U?k)},

where the bar states U, jk and U " are defined in (3.9) and (3.10) respectively. We note
that the use of the bar states in ( is owed to equat10n . the low-order update is
a convex combination of the bar states, see also the discussion in [20, Section 4.1] and [25),
Lemma 7.15]. The relaxation coefficients rf are defined as follows:

ri=1—ch!, rfi=1+chl",

where Ii;= (m;/|Q)|)1/? is a dimensionless mesh size. For the numerical tests in Section@
we use the constants
c;=4.0, p,=15 (5.8)

for all polynomial degrees throughout.

The constants have been chosen with a quick parametric study such that we observe
expected convergence rates for the numerical tests summarized in Section[6] The relax-
ation coefficients are necessary to recover optimal convergence rates because a strict
enforcement of the local minimum principle on the specific entropy would result in a first
order scheme; see [20,34]. We note that this relaxation has no consequence on the robust-
ness of the scheme: As long as the initial data is admissible, the update will result again
in an admissible state.

A tempting alternative to the relaxation of the local bounds is to dispense with
using local bounds altogether and replacing them with a single set of global bounds,

{p rgrff al, ﬁ{g‘;al,gﬂj’f al} with prgiiofal >0and s “glObal > 0, for all degrees of freedom. While
positivity preserving, such a limiter strategy at least from our experience —lacks control
on over- and undershoots and leads to unsatisfying numerical results for benchmark

configurations.
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The limiter coefficients E?j, K?Q’” are now constructed with the help of one dimensional

line searches [20]]. For this, we first rewrite (5.7) in terms of a convex set,

Bi={U=[o,me]T €RM2 | giin < p <o, 5(U) 2570, (59)
and rewrite (5.6) as follows:
U:_H—l — Z K; (U},n-&-l ‘l‘g?]P]) +x; (U}'H—H +E?Q’nP?Q) (510)
JEL(i)

with Pjj:=A;;/xm;, P9Y =A% /i;m;, and x;:= (cardZ (i) +1) L.

Eq. (5.10) describes the update U?H as a convex combination of limited, unidirec-

UL,n+1 gi)Q,n t
1 1

tional updates +{}iPij. This allows us to reduce the construction of £j; and

solving one dimensional line searches [20, Lemma 4.3].

o

Lemma 5.1. Assume that UZ.L’”Jrl +4;iP; € B; for all j€ I(i) and UZ.L’”H—i—E?QP?Q € B;. Then,
U™ as defined by (5.10), belongs to the set B; as well. If li; are symmetric, meaning {;; = {j;,
then the convex limited high-order update U™ is also conservative.

In summary, the limiter coefficients are chosen such that
Ut 4P eB; forall jeZ(i), and UM +029P%e B,

which in turn implies that U?H €B,.

6 High-performance implementation and computational results

We now outline a high-performance implementation of the numerical scheme in the hy-
drodynamic solver framework ryujin [18,43]. The code supports discontinuous and
continuous finite elements on quadrangular meshes for the spatial approximation and is
built upon the deal.II finite element library [2]. We conclude the section by discussing
a number of validation and benchmark results.

6.1 Implementation

Due to the graph-based construction of the method, the implementation of the proposed
discontinuous Galerkin scheme can be realized in analogy to the scheme described for
continuous elements in [43], and can be applied to arbitrarily unstructured meshes in-
cluding local adaptive refinement. The implementation computes the necessary infor-
mation row-by-row by a (parallel) loop over the index range of variable i, with single-
instruction multiple-data (SIMD) vectorization across several rows to ensure a high uti-
lization of data-level parallelism. The kernels are written to balance data access and com-
putations for optimal performance on modern CPU-based high-performance architec-
ture, performing the following main steps:
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— For the computation of the low-order update, the flux f(uj}) is evaluated point-
wise and the graph viscosity is computed with a point-wise Riemann solver.
For data locality reasons, most of the factors for the high-order viscosity are also
computed in the necessary sweep over all mesh nodes.

— The high-order update and convex-limiting steps (5.10) involve combinations of
the fluxes along the 7 and j indices as well as the high-order viscosity (5.2), together
with the evaluation of the limiter coefficients /.

— In order to obtain converged results of the one-dimensional line searches, the lim-
iter step is executed twice, necessitating two sweeps through all nodes.

As described in [43], the computational cost of the above steps is not only dominated by
the actual flux computations, and the elevated number of around 14-20 divisions per non-
zero entry (i,j) of the stencil, but also by four transcendental power functions per non-
zero (using Padé-type approximations) that play a crucial role. Furthermore, the cost for
indirect addressing into generic sparse matrix data structures along the index j are also
relatively high. Overall, the proposed scheme yields an arithmetic cost proportional to
O((k+1)%) operations per degree of freedom. This is a substantial cost when compared
to state-of-the-art cell-based implementations of discontinuous Galerkin methods, where
modern implementations typically utilize on-the-fly evaluation of the underlying finite-
element integrals using sum-factorization techniques for O(k+1) complexity per degree
of freedom [11,35], or related properties deduced by spectral polynomial bases and one-
dimensional differentiation operations [49]. The cost has to be contrasted against the
mathematically proven robust realization proposed here.

Note that the chosen implementation does not utilize the additional structure pro-
vided by the element-wise basis functions, which could allow to fuse some of the indi-
rect addressing and additional computations for the unknowns inside a finite element
cell, compared to the abstract row-by-row processing of our approach. However, as the
computational part with expensive transcendental functions is the more restrictive bot-
tleneck on current architectures [43], which is addressed in ongoing research.

6.2 Validation tests

We now verify the proposed method for three different solution regimes:
(i) a smooth analytic solution given by the isentropic vortex [59],

(ii) a semi-smooth solution (continuous with second derivatives of bounded variation)
given by a single rarefaction wave,

(iii) the discontinuous solution of the LeBlanc shock tube that has large pressure and
density jumps.
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For all three cases analytic expressions for the solution can be found in [20], specifically
we use [20, Eq. 5.3], [20, Table 2], and [20, Table 4] with the same choices for computa-
tional domains and parameters. As a figure of merit we introduce a consolidated error
norm
T — lon—pllLr ) N [my —m||Lp o) N 1En—Ellrr ) ’
lollr ) [mll o) 1€ Lr ()

for p =1,2,c0 evaluated at the final time. We enforce Dirichlet boundary conditions
throughout by setting the boundary data U?Q’” to the exact (time-dependent) solution.

We describe each test with more details in the following bullets:

Isentropic vortex (test case (i)). We set the computational domain for the smooth test
case (isentropic vortex) to the square [—5,5]?; see [20, Eq. 5.3]. For the sake of complete-
ness we repeat the formulas of the exact analytical solution [59]

p(x,1) = (poo+0p(x,)) 77, D=0et00, p(xt)=p(x1)",
:B 1—12

dv(x,t)=-"—e " [-X,X

]T
27

—1)82 L,
(Sp(x,if):—(’Y&W_[)z/3 el

7 7

X¥=x—x0—t0eo, x=[x1,x2] | are the space coordinates, xo = [x19,%20] is the initial position
of the vortex, and r = |x|2. For all our tests: poo =1, veo = [1,1]7, xo=[-1,-1], y=5/3,
and B =>5.0. The initial time is ¢ty =0 and final time is tr =2. We discretize the domain
with uniform grids with n, elements per edge, where n, = -2" with n;=24,16,12 for the
cases polynomial degrees k=1,2,3, respectively. We now create a series of increasingly
refined meshes by varying r from 0 to 5. The values of n; are chosen such that each re-
finement level r has the same number of degrees of freedom for all polynomial degrees
k=1,2,3. For time integration we use SSPRK-54 throughout, a fourth order strong stabil-
ity preserving Runge Kutta method [53]. Computational results are summarized in Ta-
ble|1jon page Classical error analysis for linear advection problems indicate that the
expected rate in the L?(Q)-norm is of order O(h¥+1/2). In general, we observe expected
convergence rates for all reported test cases. A notable exception is a slight reduction of
convergence rates in the L!(Q)) and L®(Q)) norms for polynomial degree k= 3.

Rarefaction wave (test case (ii)). Similarly, for the rarefaction test case (ii) we split the
unit interval [0,1] into 1, = n;-2" uniform subintervals with 1, =60,40,30 for k=1,2,3, re-
spectively, and by varying r from 0 to 7. Regarding time-integration, we use the SSPRK3
scheme for all polynomial degrees. We note that the error for the rarefaction wave is dom-
inated by the fact that the initial data is non-differentiable in x=0.2. This test also has the
added difficulty that there is a sonic point at x =0.2: numerical methods without enough
artificial viscosity will not produce an entropic solution. Error estimates from polynomial
interpolation suggest a limit of O(h?) for the convergence rate in the L!-norm. However,
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we are not aware of any scheme capable of delivering second order rates for the rarefac-
tion wave test. For instance, finite volume methods with piecewise linear reconstructions
deliver rates O(h?) with p € [1.333,1.50], see [48]]; semi-discretely entropy-stable methods
yield p <1.50 regardless of the polynomial degree, see [40]; first-order continuous finite
elements with using entropy-viscosity and convex limiting achieve p[1.60,1.65], see [21].
Our results are reported in Table [2| on page We observe a convergence order O(h”)
in the L!-norm with average p~21.70, 1.60, and 1.63 for polynomial degrees k=1, 2, and
3, respectively.

Leblanc shock tube (test case (iii)). Results for the LeBlanc shocktube are summarized
in Table 3| page We observe the expected linear convergence rate for all polynomial
degrees k=1, 2, 3. From mathematical approximation theory, it is well known that high
order polynomial degrees offer no advantage when approximating discontinuous prob-
lems. In this sense, the numerical results in Table |3 for the LeBlanc shocktube test are
optimal. Note that, in Table 3| the exact same number of global degrees of freedom is
used on each refinement level for Q;, Q> and Q3 elements. Comparing the obtained L-
error for all three cases we tend to conclude that Q; elements are the optimal choice — at
least for the case of discontinuous solutions with strong shocks. For the same number
of global degrees of freedom they offer the smallest L!-error while having low computa-
tional complexity, and comparatively large time-step sizes.

Remark 6.1 (Verification of Boundary Conditions with Isentropic Vortex). In order to
test our implementation of boundary conditions, in Section [6.3 we modify the isentropic
vortex benchmark. We increase the final time fr so that the simulation ends with the
center of the isentropic situated exactly above the top right corner of the computational
domain. By doing so, the correct treatment of boundary data is essential for recovering
optimal convergence rates.

6.3 Accuracy of boundary condition enforcement

We now briefly evaluate the performance of the boundary condition enforcement in (3.1)
and by repeating the smooth isentropic vortex test, case (i), with a modified final
time tr for the convex-limited method and bilinear finite elements (k =1). Specifically,
we choose a final time of tr =6/M for increasing choices of (directional) vortex speed
M=1,15,20,25. Here, M =1 implies that the center of the vortex is moving exactly
with the speed of sound 4 in x and in y direction individually. We note that for M =1
and M =1.5 a significant portion of the top and right edges (outflow boundaries) will be
subsonic. With the choice of final time tr=6/M, the center of the vortex is located exactly
on top of the top right corner at final time ¢r. As a rigorous figure of merit we examine
convergence rates in the L!-norm. Four different strategies are tested for the construction
of boundary data U?>"
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(a) exact Dirichlet data by setting U?*":=U"" on the entirety of the boundary, where
UM is the analytical solution,

(b) sub/super-sonic boundary conditions with exact data: U?’” = UfOI’”,
(c) sub/super-sonic boundary conditions with a far-field state: U?’” =farn,

(d) sub/super-sonic boundary conditions with the old state: we set U?’” =Ur

Strategies (a) and (b) are intended to evaluate the formal consistency of the method when
the exact boundary data is available. On the other hand, strategies (c) and (d) are meant
to evaluate the performance of the method when exact boundary data is not available.
For strategies (c) and (d) no rates can be expected as we evaluate the error up to the
boundary. The behavior of strategies (c) and (d) are of particular interest in the context of
channel flows and transonic exterior aerodynamics. For such applications exact bound-
ary data is unavailable and the specific subsonic or supersonic nature is unknown as well.
The numerical results for the four strategies are summarized in Table E]for the case of Q;
spatial discretization. We see that strategies (a) and (b) deliver the proper convergence
rates. On the other hand, even though no rates should be expected for the case of strate-
gies (c) and (d), we still observe proper convergence rates once the regime becomes fully
supersonic (M =2 and M =2.5). This indicates that the sub/super-sonic boundary condi-
tion approach is indeed capable of selecting the boundary-data from the proper upwind
direction.

6.4 High fidelity simulation: Mach 3 flow past a cylinder

We now present numerical results for a 2D benchmark configuration consisting of a
Mach 3 flow past a cylinder with radius 0.25 is centered along (0.6,0,z). The compu-
tational domain is Q=10,4] x [—1,1] and is equipped with Dirichlet boundary conditions
on the left of the domain, slip boundary conditions on the cylinder and the top and bot-
tom of the domain, and do nothing boundary outflow conditions on the right side. The
initial flow configuration is that of a uniform flow at Mach 3 [20]. The computational do-
main is meshed with an unstructured quadrilateral coarse mesh. A higher resolution is
obtained by subdividing every quadrilateral into 4 children an fixed number of times and
adjusting newly generated nodes on the cylinder boundary to lie on the curved surface.
Fig. 1) shows a temporal snapshot at time ¢t =4.0. The computations where performed
with a mesh consisting of 9.4M quadrilaterals corresponding to 9.4M degrees of freedom
per component for Q!, and with a mesh consisting of 2.4M quadrilaterals for Q% and Q3,
corresponding to 5.3M (Q?) and 9.4M (Q?) degrees of freedom per component. We ob-
serve qualitatively that all spatial discretizations lead to a comparable results with well
captured (unstable) contact discontinuities emerging from primary and secondary triple
points.
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(c) @3, 9.4M DOFs per component

Figure 1: Temporal snapshot at time t=4.0 of the density profiles of a supersonic Mach 3 flow past a cylinder.

Computed for increasing polynomial degree: (a) Q', (b) @2, (c) Q3. The density is visualized on a rainbow
colormap to highlight discontinuities.
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7 Conclusion and outlook

We have introduced a graph-based discontinuous Galerkin method for solving hyper-
bolic systems of conservation laws. The method has three main ingredients: a first-order
scheme, a high-order scheme (based on the entropy-viscosity technique), and a convex-
limiting procedure that blends the high and low order schemes. The first-order update
satisfies both the invariant-domain property as well as a pointwise discrete entropy in-
equality for any entropy of the system. The resulting convex-limited scheme preserves
the invariant set using relaxed local bounds.

A notable feature of the method is the direct incorporation of boundary conditions.
The state at each node is guaranteed to be admissible provided the boundary data sup-
plied to the scheme is admissible. For the case of the first-order method, this allows
to prove invariant-set preservation as well as local entropy inequalities including the ef-
fect of boundary contributions. For the high-order and convex-limited scheme, we have
tested the implementation of boundary conditions using the isentropic vortex test with
sufficiently large final time, allowing interaction of the vortex with the boundary. If the
boundary data is the exact analytical solution, the method delivers optimal convergence
rates. On the other hand, if the boundary data consists of the far-field state or the data
from the previous time step, the implementation is convergent in the fully supersonic
regime.

The convex-limited scheme has been evaluated with a number of numerical tests
ranging from a smooth analytic solution to a discontinuous one, observing expected
convergence rates. The discontinuous test has verified robustness of our scheme and
first-order convergence in the shock-hydrodynamics regime. Consistent with approxi-
mation theory, for the same number of global degrees of freedom, the lowest order Q
ansatz offers the smallest L!-error while having the lowest computational complexity,
and comparatively large time-step sizes. Finally, the semi-smooth rarefaction test has
verified a rather subtle aspect of high resolution methods, which is the ability to produce
better than first-order rates for solutions that are continuous with second derivatives of
bounded variation. Finally, we verified that the proposed method is suitable for high
fidelity simulations with a 2D benchmark configuration of a Mach 3 flow past a cylinder.
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Appendix A Convergence tables

Table 1: Convex-limited scheme: (i) isentropic vortex test. Error delivered by scheme described by (5.6); see
Section |5} We consider the cases of QF spatial discretizations for k=1,2,3.

LI-error
#DOFs ot rate Q? rate Q3 rate
2304 | 2.255x1072 9.787 x1073 3.354x 1073

9216 | 7.281x1073 | 1.63 | 1.149x 1073 | 3.09 | 2.568x10~% | 3.71
36864 | 2.063x1073 | 1.82 | 1.562x10~* | 2.88 | 1.706 x10~> | 3.91
147456 | 5.487x107% | 1.91 | 2.012x107° | 296 | 1.145x107° | 3.9
589824 | 1.415x10% | 1.96 | 2.539x107° | 2.99 | 7.789x 108 | 3.88
2359296 | 3.594x 107> | 1.98 | 3.193x 107 | 2.99 | 5.496x10~° | 3.82

LZ-error
#DOFs Q! rate Q? rate Q° rate
2304 | 5.523x1072 2.082x 1072 8.588x 1073

9216 1.834x1072 | 1.59 | 2.851x1073 | 2.87 | 6.845x10~* | 3.65
36864 | 5.338x1073 | 1.78 | 4298 x10~* | 2.73 | 4530x107° | 3.92
147456 | 1.455x1073 | 1.88 | 6.097x 107> | 2.82 | 3.280x10°° | 3.79
589824 | 3.822x10°%* | 1.93 | 8.428x10° | 2.85 | 2.390x 107 | 3.78
2359296 | 9.825x 107> | 1.96 | 1.178x107°¢ | 2.84 | 1.922x 108 | 3.64

L*®-error
#DOFs ot rate Q? rate Q3 rate
2304 | 3467x10° 1| - |1446x10° 1] - [1.028x10° 1| -

9216 1.298x 10~ 1 | 1.42 | 3.532x1072 | 2.03 | 6.514x1073 | 3.98
36864 | 4.697x1072 | 1.47 | 9.308x1073 | 1.92 | 5.469x10~* | 3.57
147456 | 1.695x1072 | 1.47 | 1.826x1073 | 2.35 | 6.232x107° | 3.13
589824 | 5.613x1073 | 1.59 | 3.715x10~% | 2.30 | 5.252x107° | 3.57
2359296 | 1.750x 1073 | 1.68 | 7.391x 107> | 2.33 | 5.763x10~7 | 3.19

Table 2: Convex-limited scheme: (ii) rarefaction test. Convergence rates for scheme (5.6). We consider the

cases of QF spatial discretizations for k=1,2,3. The number of elements for each case k=1,2,3 has been chosen
in a way that the number of degrees of freedom of each refinement case match exactly. Note that the best
expected rate for this test is O(h?) for all polynomial degrees.

Ll-error
#DOFs Qof rate Q? rate Q3 rate
120 | 1.772x1073 | - [ 1.068x107° | - [3.001x10°% | -

240 | 5.174x107% | 1.78 | 2.813x10% | 1.92 | 1.029x10~* | 1.54
480 1.564x107% | 1.73 | 1.121x10~* | 1.33 | 3.455x107° | 1.57
960 | 4.628x107° | 1.76 | 3.542x 107> | 1.66 | 1.158 x107°> | 1.58
1920 | 1.301x107° | 1.83 | 1.269x 107> | 1.48 | 3.946x107°¢ | 1.55
3840 | 4.204x107° | 1.63 | 3.863x107° | 1.72 | 1.049x107° | 1.91
7680 | 1.365x107° | 1.62 | 1.423x107° | 1.44 | 3573x10~7 | 1.55
15360 | 4.516x10~7 | 1.6 | 4.335x10~7 | 1.71 | 1.070x10~7 | 1.74
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Table 3: Convex-limited scheme: (iii) LeBlanc test. Error delivered by scheme described by (5.6); see Section
We consider the cases of QF spatial discretizations for k=1,2,3.

Ll-error
#DOFs Q! rate Q? rate Q3 rate
120 1.362x 1071 1.256x 1071 1.158 x 101

240 | 9516x1072 | 0.52 | 6.863x102 | 0.87 | 5.957x1072 | 0.96
480 | 5.519%x1072 | 0.79 | 3.840x102 | 0.84 | 3.995x 102 | 0.58
960 | 3.195x1072 | 0.79 | 2.903x10"2 | 0.4 | 2.052x1072 | 0.96
1920 | 1.639x1072 | 0.96 | 1.441x1072 | 1.01 | 1.214x1072 | 0.76
3840 | 8.704x1073 | 0.91 | 8.494x10°3 | 0.76 | 6.559x 102 | 0.89
7680 | 4.324x1073 | 1.01 | 4.730x1073 | 0.84 | 4.345x 1073 | 0.59
15360 | 2.290x1073 | 0.92 | 2.626x1073 | 0.85 | 2.296x 1073 | 0.92

Appendix B Implementation of boundary conditions:
Adaptation to continuous finite elements

The scheme (3.1)-(3.2) and the mathematical theory developed in this manuscript is en-
tirely valid for the case of continuous finite elements. However, slight changes are re-
quired in definitions of (2.10)-(2.11). Here provide the required mathematical statements
but avoid doing the proofs since they are just adaptations of the proof already presented
for the discontinuous case in Section 3l

In the context of continuous finite elements we have to use the following definitions:

1 1
Cij:/QVWPidx—E/m%‘%naodsf C?in/anqbinaod& (B.1)

Note that the face integral (1/2) [, ¢;pinands can only be nonzero if both ¢; and ¢
have support on the boundary.

Proposition B.1. The vectors ¢;; as defined in (B.1) satisfy the usual skew-symmetry prop-
erty ¢;j= —cj; foralli,jeV.

Proof. The proof follows by integration by parts arguments. However, in this case, since
the shape functions {¢; }icy are compactly supported and weakly differentiable in (), we
do not need to use integration by parts on each element K, but rather integration by parts
in entire domain (), see also [25]. O

Proposition B.2 (Partition of Unity Properties). The vectors c;; and ¥ as defined in (B.I)
satisfy the partition of unity property ) jcz(; cij+c?0 =0.
The proof follows using arguments similar to those of Lemma

Lemma B.1 (Total Balance). The scheme (3.1) with c;; and C?Q as defined in (B.1) satisfies the
flux-balance (3.7).

The proof of this lemma is omitted since it is identical to the proof of Lemma
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Table 4: Boundary condition validation: modified isentropic vortex test. We use a modified isentropic vortex
test to verify the accuracy of the boundary value enforcement outlined in Section [d] We test four different
strategies for the construction of boundary data: (a) exact Dirichlet data, (b) sub/super-sonic boundaries with
exact analytical data, (c) sub/super-sonic boundaries with far-field state; and (d) sub/super-sonic boundaries
using data from the previous time-step; see Section [6.3] The test is repeated for different Mach numbers,
M=1, 1.5, 2.0, and 2.5. In every case we use QQ; spatial discretization. We note that for M=1 and M=1.5
a significant portion of the outflow boundary (top and right edges of the domain) is subsonic. Strategies (a)
and (b) deliver proper convergence rates. Strategies (c) and (d) are only convergent for sufficiently large Mach
numbers.

Strategy (a): exact Dirichlet data

#DOFs | M=1.0 | rate | M=15 | rate | M=20 | rate | M=25 | rate

2304 | 4.37E-03 - 3.05E-03 - 3.05E-03 | - | 279E-03 | -
9216 8.63E-04 | 2.34 | 6.26E-04 | 2.28 | 6.13E-04 | 2.31 | 5.68E-04 | 2.29
36864 | 1.78E-04 | 2.27 | 1.34E-04 | 2.21 | 1.26E-04 | 2.28 | 1.15E-04 | 2.29
147456 | 4.03E-05 | 2.14 | 3.15E-05 | 2.09 | 2.85E-05 | 2.14 | 2.60E-05 | 2.15
589824 | 9.61E-06 | 2.06 | 7.63E-06 | 2.04 | 6.79E-06 | 2.07 | 6.18E-06 | 2.07
2359296 | 2.45E-06 | 1.97 | 1.87E-06 | 2.02 | 1.65E-06 | 2.03 | 1.50E-06 | 2.03

Strategy (b): sub/super-sonic boundary conditions with exact Dirichlet data

#DOFs | M=1.0 | rate | M=15 | rate | M=20 | rate | M=25 | rate

2304 | 4.05E-03 - 2.98E-03 - 2.41E-03 | - 1.99E-03 | -
9216 8.36E-04 | 2.27 | 6.19E-04 | 2.270 | 5.15E-04 | 2.22 | 429E-04 | 2.21
36864 | 1.79E-04 | 2.22 | 1.33E-04 | 2.210 | 1.13E-04 | 2.18 | 9.88E-05 | 2.12
147456 | 4.12E-05 | 2.12 | 3.13E-05 | 2.094 | 2.67E-05 | 2.08 | 2.37E-05 | 2.05
589824 | 9.92E-06 | 2.05 | 7.60E-06 | 2.044 | 6.52E-06 | 2.03 | 5.85E-06 | 2.02
2359296 | 2.54E-06 | 1.96 | 1.87E-06 | 2.024 | 1.60E-06 | 2.01 | 1.45E-06 | 2.01

Strategy (c): sub/super-sonic boundary conditions with far-field approximation
#DOFs | M=1.0 | rate | M=15 | rate | M=2.0 | rate | M=25 | rate

2304 1.36E-02 - 4.09E-03 - 241E-03 | - | 1.99E-03 | -
9216 1.07E-02 | 0.35 | 1.70E-03 | 1.26 | 5.15E-04 | 2.22 | 4.29E-04 | 2.21
36864 | 9.65E-03 | 0.14 | 1.14E-03 | 0.56 | 1.14E-04 | 2.17 | 9.88E-05 | 2.12
147456 | 9.20E-03 | 0.06 | 1.01E-03 | 0.17 | 2.73E-05 | 2.05 | 2.37E-05 | 2.05
589824 | 8.98E-03 | 0.03 | 9.31E-04 | 0.12 | 6.86E-06 | 1.99 | 5.85E-06 | 2.02
2359296 | 8.86E-03 | 0.02 | 8.72E-04 | 0.09 | 1.79E-06 | 1.93 | 1.45E-06 | 2.01
Strategy (d): sub/super-sonic boundary conditions with current state
#DOFs | M=1.0 | rate | M=15 | rate | M=2.0 | rate | M=25 | rate

2304 6.12E-03 - 3.02E-03 - 241E-03 | - | 2.03E-03 | -
9216 3.99E-03 | 0.61 | 6.58E-04 | 2.20 | 5.08E-04 | 2.24 | 4.33E-04 | 2.22
36864 | 3.59E-03 | 0.15 | 1.76E-04 | 1.90 | 1.13E-04 | 2.16 | 9.88E-05 | 2.13
147456 | 1.05E-02 | -1.56 | 7.09E-05 | 1.31 | 2.67E-05 | 2.08 | 2.37E-05 | 2.05
589824 | 3.97E-03 | 1.41 | 4.45E-05 | 0.67 | 6.52E-06 | 2.03 | 5.85E-06 | 2.02
2359296 | 4.66E-03 | -0.22 | 3.64E-05 | 0.29 | 1.60E-06 | 2.01 | 1.45E-06 | 2.01
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Table 5: Error of the first-order method with respect polynomial degree. This tables illustrates the growth of the
L1-error of the first-order scheme (B-I)-(32) as the polynomial degree grows for the isentropic vortex problem.
For every polynomial degree the error halves with each mesh refinement (as expected from a first-order scheme).
However, the error constant, or “error pre-factor”, grows with the polynomial degree.

#DOFs Q Q> Q3
2304 1.2799e-01 | 1.5639e-01 | 1.7400e-01
9216 8.5427e-02 | 1.1676e-01 | 1.4080e-01
36864 | 5.1002e-02 | 7.6054e-02 | 9.8985e-02

147456 | 2.8281e-02 | 4.4705e-02 | 6.1502e-02

589824 | 1.4981e-02 | 2.4553e-02 | 3.5023e-02
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