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Abstract. We develop new low-dissipation central-upwind (LDCU) schemes for non-
linear elasticity equations in heterogeneous media. In general, central-upwind sche-
mes belong to the class of finite-volume Godunov-type schemes, which consist of three
steps: reconstruction, evolution, and projection onto the original grid. In our new
method, the evolution is performed in the standard way by integrating the system
over the space-time control volumes. However, the reconstruction and projection are
performed in a special manner. First, we take into account the fact that the conserva-
tive variables (strain and momentum) are discontinuous across the material interfaces,
while the flux variables (velocity and strain) are continuous there: we therefore recon-
struct the flux variables. Second, we use a special projection recently introduced in
[A. Kurganov and R. Xin, J. Sci. Comput., 96, 2023] to complete the derivation of the
LDCU scheme. Our numerical experiments demonstrate that the developed schemes
are capable of accurately resolving waves with dispersive behavior that over a long
period of time evolve into solitary waves.
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1 Introduction

Consider the one-dimensional (1-D) elasticity system

εt−ux=0,
(
ρ(x)u

)
t
−σx

(
K(x);ε

)
=0,

(1.1)

where ε(x,t) is the strain, u(x,t) is the velocity, ρ(x) is the density, K(x) is the bulk mod-
ulus of compressibility, and σ(K(x);ε) is the stress. If ρ(x) and K(x) are both constants,
then the medium is homogeneous. A nonconstant ρ(x) and K(x) correspond to a hetero-
geneous medium. We consider a layered medium consisting of two different materials
of length ℓ with densities ρ1 and ρ2 and bulk moduli of compressibility K1 and K2 so that
for all integer j,

ρ(x)=

{
ρ1, if 2jℓ< x< (2j+1)ℓ,

ρ2, otherwise,

K(x)=

{
K1, if 2jℓ< x< (2j+1)ℓ,

K2, otherwise.

(1.2)

The stress-strain relation in the linear case has the form σi(ε)=Kiε, i=1,2. A more realistic
model is obtained when a nonlinear stress-strain relation is considered. We take either

σi(ε)=Kiε+βK2
i ε2, i∈{1,2}, β=Const (1.3)

or

σi(ε)= eKiε−1, i∈{1,2} (1.4)

as examples of such relations; see [6,12,18–20]. In a homogeneous medium with a nonlin-
ear stress-strain relation, a generic solution of (1.1) and (1.3) will typically develop shock
and rarefaction waves. But in a heterogeneous medium with a nonlinear stress-strain re-
lation, the resulting waves will have dispersive behaviors that will lead to solitary waves
instead of shock waves [6, 12, 17–20].

The elasticity system (1.1) can be put into the framework of conservation laws with
space-dependent flux. To this end, we rewrite (1.1) as

Ut+F(C(x);U)x=0, (1.5)

where

U=(ε,m)⊤, F
(
C(x);U

)
=

(
−

m

ρ(x)
,−σ

(
K(x);ε

))⊤

, (1.6)

m=ρu denotes the momentum, and C(x) :=(ρ(x),K(x))⊤.
Since (1.5) is a hyperbolic system of conservation laws, it is very natural to numer-

ically solve it by a finite-volume Godunov-type scheme. Such schemes form a class of


