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Abstract. We develop new low-dissipation central-upwind (LDCU) schemes for non-
linear elasticity equations in heterogeneous media. In general, central-upwind sche-
mes belong to the class of finite-volume Godunov-type schemes, which consist of three
steps: reconstruction, evolution, and projection onto the original grid. In our new
method, the evolution is performed in the standard way by integrating the system
over the space-time control volumes. However, the reconstruction and projection are
performed in a special manner. First, we take into account the fact that the conserva-
tive variables (strain and momentum) are discontinuous across the material interfaces,
while the flux variables (velocity and strain) are continuous there: we therefore recon-
struct the flux variables. Second, we use a special projection recently introduced in
[A. Kurganov and R. Xin, ]J. Sci. Comput., 96, 2023] to complete the derivation of the
LDCU scheme. Our numerical experiments demonstrate that the developed schemes
are capable of accurately resolving waves with dispersive behavior that over a long
period of time evolve into solitary waves.

AMS subject classifications: 65M08, 76M12, 35L65, 74B20

Key words: Hyperbolic systems of conservation laws, low-dissipation central-upwind schemes,
nonlinear elasticity, heterogeneous media, waves with dispersive behavior, solitary waves.

*Corresponding author. Email addresses: alexander@sustech.edu.cn (A. Kurganov), 122328620@mail.
sustech.edu.cn (Z. Liu), mpollack@ColumbiaState.edu (M. Pollack), 12331009@mail.sustech.edu.cn

(R. Xin)

http:/ /www.global-sci.com/cicp 156 ©2025 Global-Science Press



A. Kurganov et al. / Commun. Comput. Phys., 38 (2025), pp. 156-180 157

1 Introduction
Consider the one-dimensional (1-D) elasticity system

g —uy=0,
(p(x)u), —0ox(K(x);e) =0,

where ¢(x,t) is the strain, u(x,t) is the velocity, p(x) is the density, K(x) is the bulk mod-
ulus of compressibility, and o(K(x);e) is the stress. If p(x) and K(x) are both constants,
then the medium is homogeneous. A nonconstant p(x) and K(x) correspond to a hetero-
geneous medium. We consider a layered medium consisting of two different materials
of length ¢ with densities p; and p, and bulk moduli of compressibility K; and Kj; so that
for all integer j,

(1.1)

, if 2i0<x<(2j+1)¢,
p(x):{m je<x<(2j+1)

p2, otherwise,
(1.2)

Ky, if 2j 2i+1)4
K(x): 1, 1 ]£<x<(]+ )/
K;, otherwise.

The stress-strain relation in the linear case has the form ¢;(¢) =K;¢,i=1,2. A more realistic
model is obtained when a nonlinear stress-strain relation is considered. We take either

0i(e) =Kje+BK?¢?, ic{1,2}, B=Const (1.3)

or
oi(e)=efe—1, ic{1,2} (1.4)

as examples of such relations; see [6,12,18-20]. In a homogeneous medium with a nonlin-
ear stress-strain relation, a generic solution of (1.1) and (1.3) will typically develop shock
and rarefaction waves. But in a heterogeneous medium with a nonlinear stress-strain re-
lation, the resulting waves will have dispersive behaviors that will lead to solitary waves
instead of shock waves [6,12,17-20].

The elasticity system (1.1) can be put into the framework of conservation laws with
space-dependent flux. To this end, we rewrite (1.1) as

U,+F(C(x);U),=0, (1.5)

where
- T
——,—0(K(x);e ) , (1.6)
s o (K (20
m = pu denotes the momentum, and C(x):= (p(x),K(x))".
Since (1.5) is a hyperbolic system of conservation laws, it is very natural to numer-
ically solve it by a finite-volume Godunov-type scheme. Such schemes form a class of

U=(e,m)’, F(C(x);U)= (—
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projection-evolution methods in which the solution is first approximated by a global
piecewise polynomial function and then evolved in time according to an integral form
of (1.5), written over certain space-time control volumes (CVs). The evaluation can be
done in an upwind manner by (approximately) solving (generalized) Riemann prob-
lems arising at the spatial boundaries between the CVs; see, e.g. [1,7,10,17,26]). This
may, however, be quite complicated or even impossible, depending on the system at
hand. Alternatively, the CVs can be selected in such a way that all of the possibly non-
smooth nonlinear waves stay inside the CVs so that no Riemann problems have to be
(approximately) solved. This leads to non-oscillatory central schemes [11,21,23], which
may be an attractive alternative to upwind schemes. Though central schemes are robust
and efficient, they contain relatively large numerical dissipation, which may significantly
oversmear contact waves and material interfaces. A way to reduce the numerical dissi-
pation present in central schemes was proposed in [15], where the first central-upwind
(CU) scheme was developed. In general, CU schemes take advantage of the simplic-
ity of Riemann-problem-solver-free central schemes while incorporating several upwind
features, which help to reduce numerical dissipation; see [3,13,14,16].

Although the aforementioned finite-volume schemes were designed for the systems
of conservation laws like U;+F(U), =0, some of them can be extended to the studied
systems with space-dependent fluxes (1.5). This was done in [6], where the wave prop-
agation methods were developed for acoustics problems in periodic or random media,
which were extended to the studied system (1.5)-(1.6) in [18] and then applied to non-
linear layered media in [19,20]. Discontinuous Galerkin methods for the studied system
were applied in [2,24]. In [28], a -mapping algorithm originally introduced in [29, 30]
for general hyperbolic conservation law with space-dependent fluxes, was coupled with
a WENO reconstruction and extended to (1.5)-(1.6).

The goal of this paper is to develop CU schemes for (1.5)-(1.6). In principle, Riemann-
problem-solver-free CU schemes can be directly applied to the studied system. However,
this may lead to a poor resolution in the case of layered material as we demonstrate in
Section 4. In order to prevent this, we develop a low-dissipation CU scheme for (1.5)-
(1.6). The LDCU schemes have been recently introduced in [16] and applied to several
hyperbolic system of conservation laws in [4,5,16]. The key idea of the LDCU schemes is
to accurately project the evolved (in time) solution onto the original finite-volume mesh.
The projection is based on a subcell reconstruction, which allows one to achieve a very
sharp resolution of contact waves/material interfaces.

The rest of the paper is organized as follows. The LDCU scheme for the 1-D elasticity
system (1.5)-(1.6) is described in Section 2. It is extended to the 2-D case in Section 3.
Finally, in Section 4, we present numerical examples, which clearly demonstrate that the
developed schemes are capable of accurately resolving waves with dispersive behav-
ior over a small time scale. The schemes perform extremely well over a long period of
time when the waves with dispersive behavior evolve into solitary waves. Moreover,
we demonstrate that the LDCU scheme is capable to outperform some of the existing
upwind schemes.
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2 One-dimensional LDCU scheme

In this section, we develop a second-order LDCU scheme for (1.5)-(1.6). We follow a gen-
eral framework introduced in [16].

2.1 Fully discrete LDCU scheme

We first introduce a uniform mesh consisting of the finite-volume cells C;:= [xjf 1% 1 ]

-1 +x]- 1 )/2, and assume that the solution,

of size x. X;_1 = Ax centered at x; = (x]

i+t i3
realized in terms of its cell averages

— 1
Uﬁx—/ U(x,t™)d
I Ax of (#7)dx

is available at a certain time level t =t". A fully discrete LDCU scheme is developed in
the following three consecutive steps: reconstruction, evolution, and projection.

Step 1: Reconstruction. Given the cell averages {U]n }, our goal is to reconstruct a global
(in space) second-order interpolant of U at time t =1t". This can be done with the help of
the following piecewise linear reconstruction:

U(x,t") =Y [U] + (W)} (x—xj)] Xc,(x), 2.1)

]

where X¢ () is the characteristic function over the cell C; and (Ux);? are the slopes, which
should approximate the values of U, (x;,t") with at least first order of accuracy. To make
the reconstruction (2.1) non-oscillatory, the slopes are to be computed using a nonlinear

limiter; see, e.g. [7,10,17,22,23,25,27]. For instance, one can use the generalized minmod
limiter [22,23,25],

u..—-u'u..-u’ u -u’
n__ - j+1 j j+1 j—1 j j—1
(Ux)]- =minmod (9 A Az ,0 Ay , (2.2)
which can be applied in a componentwise manner. Here,
min(zy,2p,...,2m), if z;>0, Vi=1,...,m,
minmod(z1,22,...,Zm) 1= { max(z1,2z2,...,z2m), if z;<0, Vi=1,...,m, (2.3)

0, otherwise,

and the parameter 6 € [1,2] can be used to control numerical dissipation. When 6 =1,
the minmod reconstruction (and thus the resulting scheme) is most dissipative and when
6 =2, the minmod reconstruction is least dissipative. In what follows, we will refer to the
minmod reconstruction with § =2 as the MinMod2 reconstruction.
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Step 2: Evolution. Next, we need to evolve the approximate solution, represented by
a global piecewise linear interpolant U (x,#"), to the next time level t=#"*1:=#"4+At". To
this end, we first estimate the local speeds of propagation

oF oF
+ F - - + ot
41 _max{)” (au (CH%’UH%_)) At (au (€ +%’UJ+2)> 0}’

- oF , oF , . .
“j+%_mm{A<au(cf+%’uf+%)> i <au(cf+§’u )>’0}’

where A, > A_ are the eigenvalues of the Jacobian dF /0U, and compute the left- and
right-sided point values of C and of the interpolant U (x,t") at x= Xyl

Ax

Ax _ —
S, U, =TS W)

+ _ + 77
C, =Cly,y%0), U, =T~

Note that if C is continuous at X1, then C]Jr 1= C]_ ,, but the case of a discontinuous C

is generic. In order to deal with thlS, we build the grld such that the discontinuities of C
appear at the cell interfaces only.
For the system (1.5)-(1.6), the Jacobian is

0 ———
oF _ o(x) |
ou _do 0
de
and its eigenvalues are
Au(re) =+ da/de,
p(x)
where for o given by (1.3) or (1.4),
do 5 do K(x)e
T =K(x)+2BK*(x)e or T =K(x)e",
respectively. Since the Riemann fan for the studied system is symmetric, we have a ]tr 1=
2

—aH% ::a]-+%.
We next introduce the points

n n n n
X =X.,1—a., 1At X =X, a., 1At
b T N T A Xy X B,

and integrate the system (1.5) over the “smooth”, [x]-_% Xl )X [t",#"+1], and “nons-

mooth”, [x]- L% X [t",#"11], space-time CVs. This way the solution is evolved in
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time and upon the completion of the evolution step, we obtain the (intermediate) cell
averages

- T'+T'.. Ax—a. A"
t +1 i+
Ujul%: ! > =+ 1 P ((U)} = (Ux)74q)

1 n 7’Z+ n . 1’l+l
20 ey Uy ) —F (S, )|
(2.4)
Uint_ﬁn ( x);l A”
joEU () A
— Ax ' nta\ n . ﬂ+%
Ax—(a;_y+a;, 1) A" [P<C( it o)’ Uiy é) P<C(xi—%fr)’ujf%,r)]’

see [13,16] for details. In (2.4), the point values of U at ( . é,t”) and (x;.:_ y ") are
2/

computed using the piecewise linear reconstruction of U, namely,

~ Ax
l,l]n+ I l,l(x]+ Z) U +(Ux)} (7—a]-+%At">,

T Ax
u]”+ b = Ll(x;.l%’r) = U]'—H - (ux);l+1 (7 —aj+%Atn> ,

and the point values of U at (x" [ g,t”Jr ) and (x" X1, 7 ), are obtained using the Taylor
expansions about (x X1 t") and ( X1 1), respectively
7’1+% _ n _ﬂ n
Ug =iy P(C( eyt é)
n—&-% _qn _ﬂ n n
U, =Y P(C(XH% )iy r)x

Step 3: Projection. Next, we project the evolved solution realized in terms of its in-

termediate cell averages {LI U]Hfrtl} onto the original grid. To this end, we need to

construct the interpolant

mt mt Tyint
v ;{ X[le i rH—U X[x/"f g }}.
Following [16], we set

Uttt x<x

. i1 i1/

un (x)={ ' aE (2.5)

J+5 —int,R
2 y

Uiy X>%y
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where the values U;T nd Umtl are determined using the following two requirements.

First, from the conservation of 3 and m, we have
1 int,L  ==int,R ——int
2<u]+1 +T} ) . (2.6)

Second, we would like to make sure that ¢ and u are continuous across the layer interface.
Therefore, we take

a,mt mt R umtlL _ umt,lR’
j+3 ]+2 J*2 J*2
which can be rewritten in terms of the new conservative quantities U and U] +1
follows: L iR
e T
— ZintL_ g4 zint, I _ 2
K. e =K' g1, - =5 (2.7)
J*+2 Jt3 I3 Jt3

Piry Pivg
After solving the linear system (2.6)-(2.7), we obtain

2K,
int L J+3 —mt1
—=In —
) K Kt Jta
—intL j+3 ]+%+ j+s
u. 1 = . - _ 7
Jt3 —int,L 0. 1
j+3 It3 mint,
tpelh, T2
Pirs TPy
2K,
ntR Jt3 —mt1
—=In —
o K: K, Jt3
—intR j+3 JJr%+ j+s
u, 1 = . =
I*2 mmt,R 2p+ )
j+3 T3 —int
2 I E—— + ¥ m]+1
2
Pivt ™ Prey

We now define the auxiliary diagonal matrices A].tr , and A; 1
2 2

2K

1
% 0
K ,+K
At = j+3 j+3
j+i 200, ’
0 I+3
= +
Pies TPy )38
2K @8)
i+ 0
K-, +K" |
= ]+2 ]+2 5
J+3 0., 1 !
j+3
0 2'+
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so that
mt R

mt L mt
"4 u] +37 ]+ 3

t
u A+ }12. (2.9)

After modifying the reconstruction U™, we perform the projection step to end up
with

j+2
T+l 1 ' t =int At" —int,R int int,L s=int
e [ ameae=T 5 o []_%( DT ay, (T T )}
x]._%
(2.9) —int A" mt int —int —int
0 4 S oy (A T ) ag (A T T | (2.10)

2.2 Semi-discrete LDCU scheme
We now pass to the semi-discrete limit by sending At" — 0 in (2.10). This results in

—1’l+1 —=nNn —int —=n
d_ U, u'—u.
—Uu. (M= lim -.—— — lim L1
gLt = lim ——er—= lim —

1
el A i T (o) Jm T AL i T

We then proceed as in [16, Section 2.2] and use the fact that, according to (2.8), “4]‘1 1+
2
.A._+ 1 =21, to end up with the new semi-discrete LDCU scheme, which can be written in

the fzollowing flux form:

_ 1 _1
u _J* " ma 2.11)

Q.-|Q_,

where the numerical fluxes are

- + + - u-
G AL FG )

2
,+2<A, LA U ) (2.12)

3 it jt3 its

—
+
NI—=

Note that the indexed quantities in (2.11), (2.12), and most of the formulae below are
time-dependent, but we omit this dependence for the sake of brevity.

Remark 2.1. A direct application of the CU scheme from [13] to (1.5)-(1.6) is obtained by
replacing (2.5) with the following limited linear piece:

s t
u]}it%() u}11+(ux) (—le),
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where the slope (le)}itl is computed as in [13, Section 2]. The corresponding semi-
2

discrete CU scheme will then have the following numerical fluxes:

F(C' ;ut )+F(C U’
Fo (CJ+% UJ+%)+ (CJ*% UJ+%)
Jt+3 2
a. 1
_ N ut —u ) —

2 [(uﬁ% Uy di+%}’ (213)
which are different from those in (2.12). In (2.13), d]- +1 is a “built-in” anti-diffusion term
given by

— i +  _qr* * 37—
d;,y =minmod (U}, ~U’ U7,y U, ),
u,+u;, F(C’ u’,)-F(C_ ;U
U — 1t it3 (1+% J+%) (17% J+%)
j+% 2 24, 1

I+3

In the numerical results reported in Section 4, we will compare the behavior of this CU
scheme with the proposed LDCU one.

2.3 Special reconstruction

The LDCU numerical flux (2.12) should be computed using the reconstructed point val-
ues U]il. If these values are computed using the MinMod2 reconstruction (2.1)-(2.3),

then the2computed solution may contain severe oscillations. This occurs since ; and 7,
typically jump across layer interfaces (these are contact discontinuities) so when the Min-
Mod2 limiter is applied to € and m at cells bordering a layer interface, it may result in
a one-sided numerical derivative. Then, even if the resulting reconstruction of ¢ and m
are non-oscillatory, the corresponding point values of u and ¢ may be oscillatory.

To illustrate such possibility, let us consider a particular set of cell averages of m:
{ﬁj_l =1.5,1m;=0.9,71;1=0.2571;, = 0.25} and the corresponding point values of u:
{uj,l =0.5,u; =0.3,uj41 = 0.25,uj5 = 0.25}, as shown in Figs. 1 and 2. A MinMod2
reconstruction for m in the cells C; and C;1 is shown in Fig. 1 (left). A layer interface
is located at x = X1 with p=3 to the left and p=1 to the right of the layer interface. One
can see that while the reconstruction for m is non-oscillatory, the corresponding values
of u, obtained through u =m/p, contain an oscillation at the layer interface; see Fig. 1
(right).

To prevent such oscillations, we use the fact that both u and ¢ are continuous across
a layer interface and apply the limiter to these continuous quantities rather than to ¢
and m. In Fig. 2 (left), the point values u]t 1/“];1 ,ujtr ,, and u].;% are reconstructed using
the MinMod2 limiter. The resulting recorfstrucztion izs non-oscillatory and the obtained
values of m = pu are non-oscillatory as well; see Fig. 2 (right).
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Layer Interface Layer Interface
p=3 p=1 p=3 p=1
71_1]',1
1.5 + _ 06 +
u]',l
| /X | .
10+ mt _M 04 + "
/72 M.+ 1 Mj
-1
T T ’ L4 Uiy Ujy2
_ utrl EEEE— e x O
05 + My 02 + P Vs
Mjt1 Mo j+3 Z
T miy T i+3
Jt2 S~
i+3
0 0
Xi+l i+l

Figure 1: MinMod2 reconstruction applied to the cell averages of m (left) and the obtained point values of

u=m/p (right). Notice the oscillation in the u-field at X=X, 1.
2
Layer Interface Layer Interface
p=3 p=1 p=3 p=1
ﬁ’l]'_l
0.6 + 15 +
1/{]‘,1
<4 . N <4
'y " "
04 + 2 10 + m' ] j
\X j =32
+ ° uj uj +
j+1 j+2
[ ] X o _ /
02 + Vs 05 + M+t . i
z Mjy1 Mji2
| U, 1 mt
Jt+3 jt+3 A
i3
0 0
i i

Figure 2: MinMod2 reconstruction applied to the point values of u (left) and the obtained point values of
m=pu (right). The resulting reconstruction is non-oscillatory.

In the general case, the point values u; and ¢; are
_ K7 2(7.)\2 _ KjE
uj—p—j, 0j=Kjg+pKj(¢) or cj=eV9-1

The reconstructed point values are then

_ X Ax
”]-Jr% :”j+7(”Jc)jf ”]-J:_% :”j+1—7(”X)j+1/
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Ax Ax
:(7j+_(0x)j/ U]:_%:Uj+l_7(‘7x)j+lz

where the slopes are obtained using, for example, the generalized minmod limiter

—mi Ujr1—Uj Ujr1—Uj—1 U~ Ui
(ux)]-—mmmod<9 A 3Ax ,0 Ay >,

. Ujt1—0j Ojp1—0j-1 ,0;—0j1
0y); =minmod ( 62 , ,0 .
(03); < Ax 2Ax Ax
We can now calculate the corresponding point values of € and m, which are also used

in the calculation of the numerical fluxes. To this end, we introduce the notations

pﬁ%::p(xj+%io), K]fr%::K(xH%iO),

and compute e* | by
I+2

_ + +
N 1+ /1+4[3(7j+% " ln((7j+%+1)

£ = or =
j+3 2BK* | jt+3 K, 7
I+3 Jt3

depending on which stress-strain relation, (1.3) or (1.4), is being used.

3 Two-dimensional LDCU scheme

We follow [12] and use a “dimension-by-dimension” approach in order to extend the 1-D
system to the following (nonlinear) 2-D elasticity system:

€ —Ux— Uy =0,
(p(xy)u), —ox(K(xy)e) =
(o(xy)), =0y (K(x,y)e)

where u and v are the x- and y-velocities, respectively. The system (3.1) can be written as

0, 3.1)
0

4

Ut(x,t)—|—F(C(x);U)x+G(C(y);U)y:0,
m, T n, T (3.2)
U= (e,my,my) ", F(C(x);U)= (—7,—(7,0> , G(C(yu)= (—7,0,—(7> :

Here, m, = pu and m, = pv denote the corresponding momenta and ¢ is defined as in
either (1.3) or (1.4).

The elasticity system (3.2) is relevant when the layers of material are either vertical
or horizontal. In this case, one can set up a Cartesian grid for which material interfaces



A. Kurganov et al. / Commun. Comput. Phys., 38 (2025), pp. 156-180 167

align with the cell interfaces as, for instance, in Fig. 13 below. In a general 2-D case, the
elasticity system is more complicated; see, e.g. [17].

We design the LDCU scheme for the system (3.2) along the same lines as in Section 2.
We first introduce a uniform mesh consisting of the finite-volume cells C; x:= [x i1 |

X, 1=Axand Yird ~Yi1 =Ay centered

i+ i
at (xj,yx) with x; = (xjf% +xj+%)/2 and y; = (yk,% +y,(+%)/2, and assume that the cell
averages at a certain time level ¢,

[ykf% Vs %] of the uniform size AxAy with x

— 1

are available.

At the reconstruction step, we again (as in Section 2.3) reconstruct the continuous
flux variables instead of the discontinuous conservative ones. This means that the point
values at the cell centers,

(1) (1) k
Ujpy=——"-, Vjx=——-,
Pjk Pjk

= 2 (7..)2 K
Tjk :Kj,ksj,k+:BKj,k(€j,k) or oji=e ikEik —1,
are used to obtain the reconstructed one-sided values at the four sides of the cell C;x

Ax -~ Ay
u Zuj,k+7(ux)j,k, uj,k+%:uj,k+7(uy)j,kz

+ 3.k

T2 (3.3)
ut =u; —E(u ik, U L =u; —&(u )i

j—L kT kT Ty B gk B 1 T Rk T ke

To ensure a non-oscillatory nature of the resulting scheme, the slopes in (3.3) are to be
computed using a nonlinear limiter. In the numerical experiment reported in Section 4,
we have used the MinMod2 limiter

Ax 2Ax Ax
Uikl —Ujk Ujkt1 —Ujk-1 2 Uik —Ujk—1
Ay 2Ay Ay '

. U1k —Ujk Ujp1e—Uj—1k Ujk—Uj—1k
(ux)]-,k:mlnmod <2 / e J722 2 / ,

(uy);x =minmod (2

The reconstructed values of the other two flux variables, v and ¢, are obtained in a similar
way.

We can now calculate the corresponding point values of m,,,m,, and ¢
(3.4)

() =P g (M) =P

and 8};1 , is computed depending on which stress-strain relation is being used, that is,
27
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by either
B -1+, /1+4,B(T];%’k - ln(ajjr%/k—i—l)
€= K= O & 1 == (3.5)
2 ﬁ ]_;'_%’k 2 ]—‘rl k

In (3.4) and (3.5), p L p(xH%—O,yk) and K],;%’k::K( 1

of U along the boundary of cell C; are calculated likewise.

—0,yx). All other point values

The solution is evolved in time by solving the following system of ODEs:

EU. __ ‘7:1'+%J<_‘7:J'—%,k _ gj,k+% _gj,k—%
dt Ik Ax Ay /

where F [y and G ik are the 2-D LDCU fluxes, obtained in a “dimension-by-dimen-
27 4 2
sion” manner

1 _ + -
j:j+%,k:§<Aj+%,kP(C;+ k’uJr )+“41+ k (CJ+ k'uﬁ k)>

(3.6)

1

. - + -
2al+%'k<A 2k ]+1k A +3k ]+1k)

g 1=1< GO )+ AL G U )
ikt T2\ Nkt ]k+1’ jk+3 jk+3 k3 ik

1

——a. . . —A. . .
2 J'k+%( TIEL e A11k+%u],k+%>

Here, the auxiliary diagonal matrices A are given by

2K‘ 207"

Pit 1k
At =diag | — s , ! 01,
3k K +K+ ¢ P —|—p]+ P
21<+1 20,
A;+lk:diag e H_Kll , j+3.k o),
Y ]+1k+ Lk p]+1k+p]+1k
2K, 20t
A* | =diag jk+3 Pik+l
i ka1 — VYT + ’
b K, +1+K]k+1 Piat TP g1
2K 207
A].’k#:diag K- ]k}“(z o, s ,
. ]k+1+ jk+3 p]k+1+p]k+1

and the local propagation speeds are estimated by
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4 Numerical examples

In this section, we present both 1-D and 2-D numerical examples. Our main goal is to
demonstrate that equipped with the special reconstruction, the LDCU schemes produce
non-oscillatory results and also achieve higher resolution than both the CU scheme from
[13] and the wave propagation method from [18].

In all of the examples, we have integrated the ODE systems (2.11) and (3.6) using
the three-stage third-order strong stability preserving (SSP) Runge-Kutta method (see,
e.g. [8,9]) and used the CFL number 0.5.

4.1 One-dimensional examples

Example 1 (Accuracy Test). In the first example taken from [28], we consider the fol-
lowing smooth initial data prescribed on the computational domain [—1,1]:

e(x,0)=12x+24, u(x,0) = —(12x*4+48x+72),
o) =S )= (243) 2o
and the following Dirichlet conditions:
(=1t ==y “(1’”:_(;3%)3’
L= o= (tzi61§4’

which are implemented as follows. We first set

uy =u(=1t), uy ,=u(lt), oy =c(-Lt), o 1-(7(1,t),
+2 2

N+

Nl—

where N is the total number of the uniform cells, and then use these values to compute
the slopes (uy)1, (t4x)N, (0x)1, and (0y )N in the cells C; and Cy:

_ U —uy
(¢y )1 =minmod <9 1 u1,2 ),

Nl—

Ax Ax

+
_ U, 1—UN
(uy)N= mmmod(@ NTUN- 1,2 N+A2x ),

‘71
(0x)1 =minmod <9 Ax Ax );

+
ON —0] IN+1
(ox)N= mmmod(@ NZZN-L 5 2 )

Ax
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We note that the exact solution of this initial-boundary value problem is available and
given by
e(t) = 12x+24 u( ) = — 12x* 448x+72
’ (t+1)27 ’ (t+1)3

We now compute the numerical solution until the final time =1 using the LDCU scheme
with the minmod parameter 6 =2 on a sequence of uniform meshes with Ax=1/5,1/10,
1/20,1/40,1/80, and 1/160. We then measure the L!-errors and compute the correspond-
ing experimental convergence rates. The obtained results presented in Table 1, confirm
that the second order of accuracy is achieved by the LDCU scheme.

Table 1: Example 1: The Ll-errors and experimental convergence rates for the strain ¢ and momentum .

3 m

Ax
Error Rate Error Rate

1/5 | 1.20e-01 - 6.15e-01 -
1/10 | 3.34e-02 | 1.84 | 1.65e-01 | 1.90
1/20 | 8.70e-03 | 1.94 | 4.30e-02 | 1.94
1/40 | 2.24e-03 | 1.96 | 1.14e-02 | 1.92
1/80 | 5.67e-04 | 1.98 | 2.93e-03 | 1.96

1/160 | 1.43e-04 | 1.99 | 7.42e-04 | 1.98

Example 2 (Homogeneous Media). Inthe second example, we consider the case of a ho-
mogeneous media when the values of the density and bulk modulus of compressibility
are constants, that is, in (1.2)-(1.3) we set

p1(x)=p2(x) =Ki(x)=Ka(x)=2. 4.1)

We take the initial data U(x,0) =0 and the following boundary conditions:

0+(0,t)=0

u(0,t) = —0.2(1+4cos(7(t—30)/30)), if t<60,
ol if > 60,

at the left boundary, and the free boundary condition at the right boundary. The Dirichlet
boundary condition for u is implemented the same way as the Dirichlet boundary con-
ditions were implemented in Example 1 and the free boundary conditions on the right
and the boundary condition o0y (0,f) =0 are implemented using the standard ghost cell
technique. We apply the CU scheme with the MinMod2 reconstruction to the nonlinear
elasticity system (1.1)-(1.3), (4.1) with f=0.3. The obtained results are shown in Fig. 3.
As one can see, a shock wave clearly forms and it is nicely resolved by the CU scheme.
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Figure 3: Example 2: Strain (left) and stress (right) computed by the CU scheme on a uniform mesh with
Ax=0.25 at times t=80,160, and 240.

Example 3 (Heterogeneous Media). In the third example, we consider the heteroge-
neous case with the density and bulk modulus of compressibility given by (1.2) with

p1:K1:3, szKzzl, {=1.

Compared to the homogeneous case, the situation changes dramatically. In Fig. 4, we
show the strain and stress computed using 4 grid cells per layer of material at t =80. We
compare the obtained results with the reference solution, computed by the LDCU scheme
on a much finer grid with Ax=0.01 (our reference solution is in very good agreement with
the solution presented in [18]). As one can see, the strain is reasonably resolved while the
stress is very oscillatory.

0.7
----cu
06F Ref

=Y
%

05 iy
0.4 1 1"

03r

=
=
= =
=

0.2

0.1}

0

01 . . . . \ . . 02 . . . . . . )
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80

Figure 4: Example 3: Strain (left) and stress (right) computed by the CU scheme on a uniform mesh with
Ax=0.25 (4 grid cells per layer of material) at time t=80.
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We then increase the number of grid cells per layer to 16 and plot the obtained results
in Fig. 5. As one can see, the strain is now nicely captured but the resolution of the stress
has not improved. At a later time =240, both components of the solution computed with
16 grid cells per layer is of poor quality. There is a noticeable phase shift in the strain (see
Fig. 6, left) and the stress is not well resolved at all (see Fig. 6, right). The results reported
in Figs. 5-6 clearly indicate that the CU scheme does not work properly.

Next, we apply the LDCU scheme to this example. We take the minmod parameter
6 =2 for small time calculations (t <240) and 6 = 1.6 for large times (¢t > 840). In Fig. 7,
we plot the strain and stress at times t =80,160, and 240 computed on a uniform mesh
with Ax=0.25, or 4 grid cells per layer of material. One can clearly observe the formation
and initial stages of the evolution of the waves with dispersive behavior. These results
are in good agreement with the results reported in [18]. In Fig. 8, we show the solution at
time t =240 from Fig. 7, but zoomed in closer. We compare it with the reference solution,

0.7

-—--cu
06 Ref 1]

10 20 30 40 50 60 70 80 10 20 30 40 50 50 70 80
Figure 5: Example 3: Same as in Fig. 4, but with Ax=0.0625 (16 grid cells per layer of material).

1r \ 2r
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N . L L . L . L L L L )
160 170 180 190 200 210 220 160 170 180 190 200 210 220

Figure 6: Example 3: Same as in Fig. 5, but at a later time t=240.
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Figure 7: Example 3: Strain (left) and stress (right) computed by the LDCU scheme on a uniform mesh with
Ax=0.25 (4 grid cells per layer of material) at times t=80,160, and 240.
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Figure 8: Example 3: Strain (left) and stress (right) computed by the LDCU scheme on a uniform mesh with
Ax=0.25 (4 grid cells per layer of material) at time t=240.

computed by the LDCU scheme on a uniform mesh with Ax=0.01, which is 64 grid cells
per layer of material. We can see that at 4 cells per layer, we already achieve fairly good
resolution (compare this with the results reported in Fig. 6). We then double the number
of cells per layer and present the obtained results in Fig. 9. Both the strain and stress
are now nicely captured and the resolution of contact waves across material interfaces is
almost perfect.

We now run the code for large times (up to t =2850). For t >70, we switch to the pe-
riodic boundary conditions, which are implemented using the standard ghost cell tech-
nique. The oscillations in the shock wave shown in Fig. 7 cause the heights of the waves
to fluctuate which will result in the original wave to break up into solitary waves and
propagate at different speeds. The results obtained by the LDCU scheme on a uniform
mesh with Ax =0.03125 are shown in Fig. 10. At time ¢ =840 our results are in good
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Figure 9: Example 3: Same as in Figure 8 but with Ax=0.125 (8 grid cells per layer of material).
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Figure 10: Example 3: Strain (left) and stress (right) computed by the LDCU scheme on a uniform mesh with
Ax=0.03125 at times t=2840,1500, and 2850.

agreement with the ones computed by the wave propagation method from [18] on the
same mesh; see the results reported in Fig. 11. For larger times (f = 1500 and 2850), the
heights of the solitary waves computed by the LDCU schemes are substantially larger
and thus they travel faster. We also compute the results of the wave propagation method
on a much finer uniform mesh with Ax=0.01, which are shown in Fig. 12. The solitary
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Figure 11: Example 3: Same as in Fig. 10, but computed using the wave propagation method.
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Figure 12: Example 3: Same as in Fig. 11, but computed on a finer mesh with Ax=0.01.
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waves travel faster compared to those computed on a coarser mesh (Fig. 11), but they
still travel slower than the waves captured by the LDCU scheme. This occurs thanks
to a smaller amount of numerical dissipation present in the LDCU scheme so that the
solitary waves are (almost) not damped by the LDCU scheme.

4.2 Two-dimensional example

Example 4 (2-D Heterogeneous Media). In the 2-D example, we take the problem set-
ting from [12]: We use the stress-strain relation (1.4) and consider the domain [0,100] x
[0,10] with alternating vertical material strips of length 1 (as outlined in Fig. 13) so that,
for all integer j >0,

p(x,y)= {

4, if 2j<x<2j+1, K(x, >:{4, if 2j<x<2j+1,

1, otherwise, 1, otherwise.

The initial condition is a half of a Gaussian,

_ (g5

o(x,y,0)=5e 5, x>0

with u(x,y,0) =v(x,y,0) =0. The boundary conditions are periodic in the y-direction
and reflexive in the x-direction. They are implemented using the standard ghost cell
technique.

As one can see in Figs. 14 and 15, by time t =75, the waves have started to evolve into
solitary waves. One can also see that while the strain develops contact discontinuities
(see Fig. 14), the stress remains continuous (see Fig. 15). Figs. 16 and 17 show 1-D slices
along the line y =5 of the strain and stress, respectively. As one can see, the strain and
stress behave in a similar fashion to the 1-D case. The oscillations in the shock wave for
the strain will cause the heights of the wave to fluctuate which results in the different
parts of the wave traveling at different speeds. The resolution achieved by the LDCU
scheme is quite spectacular given that only 4 cells in the x-direction per a vertical layer
of material have been used (in the presented calculations Ax = Ay =0.25). As in the 1-D
case, no oscillations across material interfaces have been observed.

‘\‘\/’/'

Material Interfaces

Figure 13: Example 4: Layout of materials and a sample of adjusted 2-D Cartesian grid.
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Figure 14: Example 4: Strain at times t=0,5,20, and 75.
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Figure 15: Example 4: Stress at times t=0,5,20, and 75.



178 A. Kurganov et al. / Commun. Comput. Phys., 38 (2025), pp. 156-180
t=0
2 I
1 —
Us \ I | \ | \ \ | \
0 10 20 30 40 50 60 70 80 90 100
t=5
2 T T
1 U, ]
U | I I i I I i I I
0 10 20 30 40 50 60 70 80 90 100
=20
2 I I I I
1 M ]
(Ut \ | \ | \ \ | \
0 10 20 30 40 50 60 70 80 90 100
t=75
2 ] { | T | 1 { T 1
1 — —
0 \ I ] I | \ | I
0 10 20 30 40 50 60 70 80 90 100
Figure 16: Example 4: 1-D slices of strain at times t=0,5,20, and 75.
t=0
5 T T T T T T T T T
25 -
0 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
t=5
5 T
25 —
0 - ‘ | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
t=20
5 I I I I I I I I I
25+ —
ok )‘,ff/—\\/\ I I | | | | |
0 10 20 30 40 50 60 70 80 90 100
t=75
5 T
25 -
0 | | ! | | w |
0 10 20 30 40 50 60 70 80 90 100

Figure 17: Example 4: 1-D slices of stress at times t=0,5,20, and 75.
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