Commun. Comput. Phys. Vol. 38, No. 1, pp. 181-222
doi: 10.4208/ cicp.OA-2024-0095 July 2025

A Kolmogorov High Order Deep Neural Network
for High Frequency Partial Differential Equations in
High Dimensions

Yagin Zhang1'2'+, Ke Li3t, Zhipeng Chang4, Xuejiao LiuZ,
Yunging Huang!* and Xueshuang Xiang?*

1 School of Mathematics and Computational Science, Xiangtan University,
Xiangtan 411105, China.

2 Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology,
Beijing 100094, China.

3 Information Engineering University, Zhengzhou 450001, China.

4 School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China.

Received 20 April 2024; Accepted (in revised version) 30 April 2025

Abstract. This paper proposes a Kolmogorov high order deep neural network (K-
HOrderDNN) for solving high-dimensional partial differential equations (PDEs), which
improves the high order deep neural networks (HOrderDNNs). HOrderDNNs have
been demonstrated to outperform conventional DNNs for high frecguency problems
by introducing a nonlinear transformation layer consisting of (p+1)“ basis functions.
However, the number of basis functions grows exponentially with the dimension d,
which results in the curse of dimensionality (CoD). Inspired by the Kolmogorov Su-
perposition Theorem (KST), which expresses a multivariate function as superpositions
of univariate functions and addition, K-HOrderDNN utilizes a HOrderDNN to effi-
ciently approximate univariate inner functions instead of directly approximating the
multivariate function, reducing the number of introduced basis functions to d(p+1).
We theoretically demonstrate that CoD is mitigated when target functions belong to a
dense subset of continuous multivariate functions. Extensive numerical experiments
show that: for high-dimensional problems (d =10, 20, 50) where HOrderDNNs(p > 1)
are intractable, K-HOrderDNNSs(p > 1) exhibit remarkable performance. Specifically,
when d=10, K-HOrderDNN(p=7) achieves an error of 4.40E —03, two orders of magni-
tude lower than that of HOrderDNN(p=1) (see Table 10); for high frequency problems,
K-HOrderDNNs(p > 1) can achieve higher accuracy with fewer parameters and faster
convergence rates compared to HOrderDNNss (see Table 8).
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1 Introduction

In recent years, deep learning methods for solving partial differential equations (PDEs)
have attracted widespread attention [1]. A series of novel methods, such as the deep
Ritz method (DRM) [2], Physical Information Neural Networks (PINNSs) [3, 4], the deep
Galerkin method (DGM) [5] and Weak Adversarial Neural Networks (WAN) [6], have
been proposed and demonstrated the vast potential of deep neural networks (DNNs) in
solving various PDEs. The basic idea of these methods is reformulating a PDE prob-
lem as an optimization problem and training a DNN to approximate the solution of the
PDE by minimizing the corresponding loss function. Compared to traditional mesh-
dependent methods such as Finite Element Methods (FEMs), these deep learning-based
numerical methods show great flexibility and potential for solving complex PDEs de-
fined in high dimensions and irregular domains. Unfortunately, challenges still exist
despite their early success, especially when dealing with high-frequency problems. As
revealed by frequency principle or spectral bias [7, 8], PINNs exhibit different learning
behaviours among different frequencies, with low-frequency components being priori-
tized and high-frequency components hard to capture, ultimately leading to difficulties
in achieving stable training and accurate predictions in high-frequency problems.

To address this challenge, a series of extensions to the vanilla PINN have been pro-
posed to boost the performance of PINNs from various aspects, such as PhaseDNN [9],
MscaleDNN and its variants [10-12], cFPCT-DNN [13], PIRBN [14], etc. In particu-
lar, [15] develops the High Order Deep Neural Network (HOrderDNN), which incor-
porates high order idea from FEMs into conventional neural networks by introducing
a nonlinear transformation layer determined by high order basis functions. As demon-
strated in [15], HOrderDNN(p) can directly reproduce polynomials in Q,(IR?), efficiently
capture the high frequency information in target functions, and obtain greater approxi-
mation capability, additional efficiency and higher accuracy in solving high frequency
problems compared to PINN. Furthermore, [16] develops HOrderDeepDDM by combin-
ing HOrderDNN with the domain decomposition method for solving high frequency in-
terface problems. However, with the powerful approximation capability in HOrderDNN,
there are also some limitations. Specifically, the nonlinear transformation layer incorpo-
rated in HOrderDNN requires (p+1)? tensor product basis functions to reproduce any
multivariate polynomial function f(x)€ Q, (R?). As the dimension d increases, the num-
ber of basis functions (p+1)? grows exponentially, resulting in HOrderDNN suffering
the curse of dimensionality (CoD).

In this paper, we continue this line of research for solving high frequency problems
and propose a Kolmogorov high order deep neural network, named K-HOrderDNN, to
address the issue of CoD in HOrderDNN. Drawing inspiration from the famous Kol-
mogorov Superposition Theorem (KST), we reconstruct the nonlinear transform layer



