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Abstract. Non-overlapping domain decomposition methods are well-suited for ad-
dressing interface problems across various disciplines, where traditional numerical
simulations often require the use of interface-fitted meshes or technically designed ba-
sis functions. To remove the burden of mesh generation and to effectively tackle with
the flux transmission condition, a novel mesh-free scheme, i.e., the Dirichlet-Neumann
learning algorithm, is studied in this work for solving the benchmark elliptic interface
problems with high-contrast coefficients and irregular interfaces. By resorting to the
variational principle, we carry out a rigorous error analysis to evaluate the discrepancy
caused by the boundary penalty treatment for each decomposed subproblem, which
paves the way for realizing the Dirichlet-Neumann algorithm using neural network
extension operators. Through experimental validation on a series of testing problems
in two and three dimensions, our methods demonstrate superior performance over
other alternatives even in scenarios with inaccurate flux predictions at the interface.
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1 Introduction

Many problems in science and engineering are carried out with domains separated by
curves or surfaces, e.g., the abrupt change in material properties between adjacent re-
gions, from which the interface problem naturally arises. A widely studied benchmark
example is the elliptic interface problem with high-contrast coefficients [6, 36, 40], whose
solution lies in the Sobolev space H1+ϵ(Ω) with ϵ>0 possibly close to zero [44]. Due to the
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limited regularity of solution, classical numerical methods, such as finite difference and
finite element methods [3, 34], require the generation of an interface-fitted mesh for the
discretization of domain [6], which can be technically involved and time consuming es-
pecially when the geometry of interface gets complicated and the dimension of problem
increases. To ease the burden of mesh generation, numerical approaches based on un-
fitted meshes, e.g., the immersed interface method [36] and many others, have emerged
as attractive alternatives [40]. However, using unfitted meshes, e.g, a uniform Cartesian
mesh, often requires technical adjustments to the basis function to enforce the jump con-
dition with high accuracy [5, 17].

Note that the computational domain has been separated as the union of multiple non-
overlapping subdomains, each of which corresponds to a local boundary value problem
after endowing the interface with an appropriate boundary condition [52]. As a result,
the non-overlapping Dirichlet-Neumann algorithm [52, 68, 69] is developed to address
elliptic interface problems, where decomposed subproblems are alternatively solved us-
ing mesh-based numerical methods [3, 34, 35]. However, the complex geometry of sub-
domain interfaces remains a major concern during the meshing process. Fortunately,
many domain decomposition methods [9, 52, 60] can be formulated at the continuous
level, thereby making it computationally feasible to adopt the meshless deep learning
technique [14, 29, 70] as the local problem solver [19]. Thanks to the rapid develop-
ment of artificial intelligence science, much attention has recently been paid to com-
bining deep learning with insights from domain decomposition methods. The physics-
informed neural networks (abbreviated as PINNs in what follows) [29–31, 53], among
others [56, 70, 72] has been utilized to solve Dirichlet and Neumann subproblems within
the classical Dirichlet-Neumann algorithm [39], which is named “DeepDDM” and ap-
plied to several interface problems as a proof of concept. To further enhance its scal-
ability properties, the DeepDDM method is extended with the aid of coarse space cor-
rection [45, 52]. Note that in the degenerate case of homogeneous jump conditions, the
continuity of averaged solution between neighbouring subdomains, as well as its first
and higher-order derivatives, are explicitly enforced through additional penalty terms in
a series of papers [22,24,27,43,55,67]. Designing specific network architectures is another
way of dealing with the complex geometry and jump condition [10, 21, 61, 64], e.g., using
adaptive activation functions [25, 26], augmenting an additional coordinate variable as
the input of the solution ansatz [32], replacing neural network structures with extreme
learning machines [10, 11] or graph neural networks [59], to name a few. Additionally,
an efficient hybrid approach [4, 64] is developed to address the singular and regular so-
lutions using neural network and finite difference methods, respectively.

However, when solving the Dirichlet subproblem using neural networks, the gradi-
ent of trained model often exhibits higher errors at the boundary compared to its in-
terior domain, which poses challenges when explicitly enforcing the flux transmission
condition along subdomain interfaces. In contrast, a novel Dirichlet-Neumann learning
algorithm using neural network extension operators is studied in this work for tackling
high-contrast coefficients as well as irregular interfaces, alleviating the issue of inaccurate


