
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2024-0046

Vol. 38, No. 1, pp. 248-284
July 2025

Dirichlet-Neumann Learning Algorithm for Solving
Elliptic Interface Problems

Qi Sun1,2, Xuejun Xu1,2,* and Haotian Yi1

1 School of Mathematical Sciences, Tongji University, Shanghai 200092, China.
2 School of Mathematical Sciences, Key Laboratory of Intelligent Computing and
Applications (Ministry of Education), Tongji University, Shanghai 200092, China.

Received 3 March 2024; Accepted (in revised version) 3 June 2024

Abstract. Non-overlapping domain decomposition methods are well-suited for ad-
dressing interface problems across various disciplines, where traditional numerical
simulations often require the use of interface-fitted meshes or technically designed ba-
sis functions. To remove the burden of mesh generation and to effectively tackle with
the flux transmission condition, a novel mesh-free scheme, i.e., the Dirichlet-Neumann
learning algorithm, is studied in this work for solving the benchmark elliptic interface
problems with high-contrast coefficients and irregular interfaces. By resorting to the
variational principle, we carry out a rigorous error analysis to evaluate the discrepancy
caused by the boundary penalty treatment for each decomposed subproblem, which
paves the way for realizing the Dirichlet-Neumann algorithm using neural network
extension operators. Through experimental validation on a series of testing problems
in two and three dimensions, our methods demonstrate superior performance over
other alternatives even in scenarios with inaccurate flux predictions at the interface.
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1 Introduction

Many problems in science and engineering are carried out with domains separated by
curves or surfaces, e.g., the abrupt change in material properties between adjacent re-
gions, from which the interface problem naturally arises. A widely studied benchmark
example is the elliptic interface problem with high-contrast coefficients [6, 36, 40], whose
solution lies in the Sobolev space H1+ϵ(Ω) with ϵ>0 possibly close to zero [44]. Due to the
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limited regularity of solution, classical numerical methods, such as finite difference and
finite element methods [3, 34], require the generation of an interface-fitted mesh for the
discretization of domain [6], which can be technically involved and time consuming es-
pecially when the geometry of interface gets complicated and the dimension of problem
increases. To ease the burden of mesh generation, numerical approaches based on un-
fitted meshes, e.g., the immersed interface method [36] and many others, have emerged
as attractive alternatives [40]. However, using unfitted meshes, e.g, a uniform Cartesian
mesh, often requires technical adjustments to the basis function to enforce the jump con-
dition with high accuracy [5, 17].

Note that the computational domain has been separated as the union of multiple non-
overlapping subdomains, each of which corresponds to a local boundary value problem
after endowing the interface with an appropriate boundary condition [52]. As a result,
the non-overlapping Dirichlet-Neumann algorithm [52, 68, 69] is developed to address
elliptic interface problems, where decomposed subproblems are alternatively solved us-
ing mesh-based numerical methods [3, 34, 35]. However, the complex geometry of sub-
domain interfaces remains a major concern during the meshing process. Fortunately,
many domain decomposition methods [9, 52, 60] can be formulated at the continuous
level, thereby making it computationally feasible to adopt the meshless deep learning
technique [14, 29, 70] as the local problem solver [19]. Thanks to the rapid develop-
ment of artificial intelligence science, much attention has recently been paid to com-
bining deep learning with insights from domain decomposition methods. The physics-
informed neural networks (abbreviated as PINNs in what follows) [29–31, 53], among
others [56, 70, 72] has been utilized to solve Dirichlet and Neumann subproblems within
the classical Dirichlet-Neumann algorithm [39], which is named “DeepDDM” and ap-
plied to several interface problems as a proof of concept. To further enhance its scal-
ability properties, the DeepDDM method is extended with the aid of coarse space cor-
rection [45, 52]. Note that in the degenerate case of homogeneous jump conditions, the
continuity of averaged solution between neighbouring subdomains, as well as its first
and higher-order derivatives, are explicitly enforced through additional penalty terms in
a series of papers [22,24,27,43,55,67]. Designing specific network architectures is another
way of dealing with the complex geometry and jump condition [10, 21, 61, 64], e.g., using
adaptive activation functions [25, 26], augmenting an additional coordinate variable as
the input of the solution ansatz [32], replacing neural network structures with extreme
learning machines [10, 11] or graph neural networks [59], to name a few. Additionally,
an efficient hybrid approach [4, 64] is developed to address the singular and regular so-
lutions using neural network and finite difference methods, respectively.

However, when solving the Dirichlet subproblem using neural networks, the gradi-
ent of trained model often exhibits higher errors at the boundary compared to its in-
terior domain, which poses challenges when explicitly enforcing the flux transmission
condition along subdomain interfaces. In contrast, a novel Dirichlet-Neumann learning
algorithm using neural network extension operators is studied in this work for tackling
high-contrast coefficients as well as irregular interfaces, alleviating the issue of inaccurate
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Dirichlet-to-Neumann map by resorting to the variational principle. Moreover, a rigor-
ous error analysis is established to estimate the discrepancies caused by the penalty treat-
ment of boundary conditions† [7, 47, 71], which also sheds light on the setup of penalty
coefficients. Additionally, we present a comparative study to theoretically illustrate the
robustness and effectiveness of our methods over the DeepDDM scheme [38], followed
by a series of numerical examples to validate our findings.

The rest of this paper is organized as follows. In Section 2, we begin by recalling
the Dirichlet-Neumann algorithm for solving elliptic interface problems in the contin-
uous level, then the subproblem solver using mesh-based and mesh-free methods are
briefly reviewed and compared. We also conduct experiments to illustrate the motiva-
tion behind our work, with a particular focusing on the Dirichlet-to-Neumann map of
trained network solutions for the Dirichlet subproblem. To combine domain decom-
position methods with deep learning solvers in a consistent manner, a rigorous error
analysis of boundary penalty treatment for both Dirichlet and Neumann subproblems
is presented in Section 3, followed by implementation details of our Dirichlet-Neumann
learning algorithm. Next, numerical results on a series of benchmark problems are re-
ported in Section 4. Finally, we summarize our work in Section 5.

2 Preliminaries and motivation

2.1 Elliptic interface problem with high-contrast coefficients

Let Ω⊂Rd be a bounded domain with Lipschitz boundary ∂Ω, which is assumed to be
composed of two non-overlapping subdomains as illustrated in Fig. 1, that is,

Ω=Ω1∩Ω2, Ω1∩Ω2=∅, Γ=∂Ω1∩∂Ω2.

We consider in this work an elliptic interface problem with high-contrast coefficients and
natural jump conditions [40], which is often formally written as:

−∇·(c(x)∇u(x))+u(x)= f (x) in Ω,
u(x)=0 on ∂Ω,

Ju(x)K=0 and Jc(x)∇u(x)·nK=q(x) on Γ.
(2.1)

Here, f (x) represents a given function in L2(Ω), n=n2 (n1) the unit outer normal vector
for subdomain Ω2 (Ω1), and J·K the difference of quantity across the interface, i.e.,

lim
x|Ω1→X

u(x)= lim
x|Ω2→X

u(x) and − lim
x|Ω1→X

c(x)∇u(x)·n1− lim
x|Ω2→X

c(x)∇u(x)·n2=q(X)

†Essential boundary conditions are included as additional penalty terms, posed in a ”soft” manner.
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Figure 1: A Lipschitz domain Ω⊂R2 or R3 that is decomposed into two subdregions.

for any point X∈ Γ. In particular, c(x) is a piecewise constant function that has a finite
jump of function value across the interface Γ, that is,

c(x)=

{
c1>0 in Ω1,
c2≫ c1 in Ω2,

which is typically caused by the abrupt change in material properties or the interaction
of fluid dynamics [40]. Notably, c1 = c2 can be regarded as a degenerate case of (2.1). By
setting Vi =

{
vi∈H1(Ωi)

∣∣vi|∂Ω∩∂Ωi =0
}

, V0
i =H1

0(Ωi), and defining

bi(ui,vi)=
∫

Ωi

(ci∇ui ·∇vi+uivi)dx, ( f ,vi)i =
∫

Ωi

f vi dx, and (q,v2)L2(Γ)=
∫

Γ
qvds,

for i = 1,2, the Green’s formula implies that the weak formulation of interface problem
(2.1) reads: find u1∈V1 and u2∈V2 such that

b1(u1,v1)=( f ,v1)1 for any v1∈V0
1 ,

u1=u2 on Γ,
b2(u2,v2)=( f ,v2)2+( f ,R1γ0v2)1−b1(u1,R1γ0v2)−(q,v2)L2(Γ) for any v2∈V2,

(2.2)

where γ0v=v|Γ is the restriction of v∈H1(Ωi) on the interface Γ and Ri : H
1
2
00(Γ)→Vi any

differentiable extension operator.
By choosing a suitable relaxation parameter ρ∈ (0,ρmax), an iterative scheme, known

as the Dirichlet-Neumann algorithm [52, 68], can be established for solving (2.2): given

an initial guess of the unknown solution at the interface u[0]
Γ ∈H

1
2
00(Γ), then solve for k≥0,

1) u[k]
1 = argmin

u1∈V1, u1|Γ=u[k]
Γ

1
2

b1(u1,u1)−( f ,u1)1; (2.3)

2) u[k]
2 =argmin

u2∈V2

1
2

b2(u2,u2)−( f ,u2)2+b1(u
[k]
1 ,R1γ0u2)−( f ,R1γ0u2)1+(q,u2)L2(Γ); (2.4)
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3) u[k+1]
Γ =ρu[k]

2 +(1−ρ)u[k]
Γ on Γ, (2.5)

until certain stopping criteria are met [52, 60]. Here, the flux transmission between (2.3)
and (2.4) is enforced without explicitly computing the Dirichlet-to-Neumann map [58].

Remark 2.1. Though the entire solution of problem (2.1) lies in the space H1+ϵ(Ω) with
ϵ > 0 possibly close to zero [44], solutions of decomposed subproblems (2.3) and (2.4)
are typically regular under mild geometric assumptions on the boundary [11, 13]. More
precisely, we assume that u[k]

1 ∈H2(Ω1) and u[k]
2 ∈H2(Ω2) for error estimates in Section 3.

Remark 2.2. In the case of an inhomogeneous jump condition Ju(x)K= p(x) ̸=0 in (2.1),
the update of solution value at the interface (2.5) turns out to be [1, 68]

u[k+1]
Γ =ρu[k]

2 +(1−ρ)u[k]
Γ +p on Γ.

2.2 Related work

Traditional numerical methods for tackling elliptic interface problems can be roughly cat-
egorized into two groups by using either an interface-fitted or -unfitted mesh in the dis-
cretization of domain. Provided a mesh that aligns precisely with the boundary of each
subdomain, the former enables absorption of interface jump conditions into the finite
element formulation [3], leading to accurate approximations with nearly optimal error
bounds [6]. However, it necessitates the requirement of an interface-fitted mesh genera-
tor, which can be time consuming for intricate geometries in two and higher dimensions.
In contrast, the latter employs interface-unfitted meshes (e.g., the Cartesian mesh) and is
renowned for its easiness of mesh generation, but necessitates the construction of basis
functions that fulfill the interface jump conditions. A rich literature in this direction in-
cludes immersed interface methods [36], extended finite element methods [12], to name
a few. In recent years, there has also been a rapid emergence of methods that integrate
classical numerical methods with contemporary deep learning techniques, which have
achieved success to a certain extent.

For instance, the Dirichlet-Neumann algorithm illustrated in section 2.1, which is of-
ten expressed in terms of differential operators [60], namely, for k≥1,

−∇·(c1∇u[k]
1 )+u[k]

1 = f in Ω1,

u[k]
1 =0 on ∂Ω1\Γ,

u[k]
1 =ρu[k−1]

2 +(1−ρ)u[k−1]
1 on Γ,

(Dirichlet subproblem)


−∇·(c2∇u[k+1]

2 )+u[k+1]
2 = f in Ω2,

u[k+1]
2 =0 on ∂Ω2\Γ,

c2∇u[k+1]
2 ·n2=−q−c1∇u[k]

1 ·n1 on Γ,

(Neumann subproblem)

(2.6)
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is also a continuous method for solving the elliptic interface problem (2.1), thereby mak-
ing it feasible to integrate with techniques from the deep learning community [14, 29].
Specifically, one of the most straightforward method [39] is to employ PINNs [53] for
solving all the decomposed subproblems in (2.6). It is also worthwhile to note that similar
idea has been applied in areas of overlapping domain decomposition methods [37–39,54],
where updated interface conditions are of Dirichlet type and are taken from the interior
of neighbouring subdomains.

In fact, the advantage of mesh-free feature has spurred the proposal of various neural
network models for addressing the elliptic interface problem (2.1). A deep Ritz-type ap-
proach is developed in [63] through the usage of one single neural network, whereas an
improved procedure involves employing a piecewise neural network on multiple sub-
domains [15, 17]. In addition, configuring appropriate penalty weights among various
loss terms is a critical yet laborious task, which can be mitigated by assigning adaptive
weights to different loss terms [62,65]. Note that in the case of homogeneous jump condi-
tions, the continuity of averaged solution between neighbouring subdomains, as well as
its first and higher-order derivatives [22, 24,27, 55, 67], can be explicitly enforced through
additional penalty terms posed on the interface. A convergence analysis of PINNs in
conjunction with domain decomposition techniques for solving elliptic interface prob-
lems has recently been established under sufficient regularity assumptions [66]. Another
way of dealing with the jump conditions is to design specific network architectures that
can capture jump discontinuities across subdomain interfaces [21, 32, 61, 64] or employ
hybrid schemes that can take both advantages of neural network and finite difference
methods [4, 64].

2.3 Motivation of our work

Undoubtedly, flux transmission between neighboring subdomains plays a crucial role in
(2.6), however, gradients of trained models often exhibit higher errors at the boundary
compared to its interior domain [1, 8, 58, 62], which may degrade the numerical perfor-
mance. As an illustrative example, we consider the Dirichlet subproblem† in (2.6) with

Ω1=

{
(x,y)

∣∣∣√x2+y2≤ 1
2
+

1
4

sin
(

12arctan
(y

x

))}
, Γ=∂Ω1,

c1=1, f (x,y) and u1(x,y)|Γ being derived from the exact solution

u1(x,y)=(x2+y2)
3
2 sin

(
2π
√

x2+y2−π−π

2
sin
(

12arctan
(y

x
)))

.

We begin our exploration by studying the soft-constrained PINNs approach [53], adopt-
ing the ResNet structure (depth=8, width=100) [18] with a constant penalty coefficient

†Here, the superscript [k] of u[k]
i is omitted for brevity and ûi indicates the network solution for i=1, 2.
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Table 1: Trained models û1 of Dirichlet subproblem using different strategies, as well as their error profiles.

for solving the Dirichlet subproblem. As can be observed from the error profile |u1−û1|
in Table 1, the trained network solution closely aligns with the true solution. However,
the accuracy of derivatives ∂xû1 and ∂yû1, particularly at and near the boundary, is not
that satisfactory. Next, we use the transformer network architecture, accompanied by an
adaptive strategy for fine-tuning the penalty coefficient [62]. Numerical results shown in
Table 1 reveal similar error patterns as before, with a marginally improved performance.
Finally, we conduct an experiment using the hard-constraint strategy [57], where the sat-
isfactory of Dirichlet boundary conditions is significantly improved. Unfortunately, ac-
curacy in the corresponding derivative values deteriorates as shown in Table 1.

Consequently, when solving the Neumann subproblem through (2.6), the flux trans-
mission condition is approximately enforced by

c2∇û2 ·n2≈−q−c1∇û1 ·n1 on Γ,

which ends up with the following error estimation

∇û2−∇u2≈
c1

c2

(
∇û1−∇u1

)
on Γ. (2.7)

This indicates that the error incurred by ∇û1−∇u1 along the interface, as shown in Ta-
ble 1, may propagate to neighbouring subdomains through (2.7). Such an issue is often
overlooked due to the impact of high-contrast coefficients c1≪ c2 but should not be dis-
regarded especially when c1 and c2 are of comparable magnitude.
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Moreover, considering the experimental observation that the Dirichlet-to-Neumann
map of trained network solution‡ often exhibits higher errors at the interface, it also mo-
tivates us to use the interior solution ∇û1|Ω1 for flux exchange rather than the straight-
forward approach in (2.6).

3 Method

In this section, we begin by revisiting variational problems (2.3) and (2.4) from the per-
spective of network training. Then, the convergence analysis of our Dirichlet-Neumann
learning algorithm for solving (2.1) is studied in the weak sense, which also sheds light
on the setup of penalty coefficients during the training process. Finally, implementation
details for realizing our learning approach is summarized in Algorithm 1, accompanied
by discussions on additional tricks to further enhance the numerical performance.

3.1 Variational problem revisited

To realize the iterative scheme (2.3-2.5) using neural networks [14], the essential bound-
ary condition of Dirichlet subproblem (2.3) is treated in a “soft” manner by augmenting
the energy functional with boundary penalty terms [29, 56, 70], namely,

û[k]
1 = argmin

û1∈H1(Ω1)

1
2

b1(û1,û1)−( f ,û1)1+
βD

2

(
∥û1∥2

L2(∂Ω1∩∂Ω)+∥û1−u[k]
Γ ∥

2
L2(Γ)

)
, (3.1)

at the k-th outer iteration, where βD >0 is a user-defined penalty coefficient [62].
On the other hand, by extending the local solution u2∈V2 of Neumann subproblem

(2.4) to its neighboring subdomain (not relabelled for notational simplicity),

R1γ0u2(x)=u2(x)∈V1, (3.2)

the modified loss functional associated with our Neumann subproblem (2.4) gives

û[k]
2 = argmin

û2∈H1(Ω)

1
2

b2(û2,û2)−( f ,û2)2+b1(û
[k]
1 ,û2)−( f ,û2)1+

βN

2
∥û2∥2

L2(∂Ω)

+(q,û2)L2(Γ), (3.3)

where βN>0 represents another penalty coefficient. Obviously, the interior data∇û[k]
1 |Ω1

is employed for flux exchange in (3.3), rather than the Neumann trace ∇û[k]
1 |Γ. It is also

noteworthy that the minimizer of functional (3.3) is now defined globally over the entire
domain, which differs from the traditional mesh-based treatment [60].

‡Here and in what follows, we exclude the hard-constraint strategy and defer it for future investigation.
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3.2 Error estimates

Before introducing the neural network parametrization of unknown solutions, the error
estimation induced by the relaxation from exact boundary or interface conditions to a
penalization-based approach are established for (3.1) and (3.3) in what follows.

Theorem 3.1. Let u[k]
1 and û[k]

1 be the solution of minimization problems (2.3) and (3.1) respec-
tively, then there holds

∥û[k]
1 −u[k]

1 ∥H1(Ω1)
≤C(Ω1,u[k]

1 )
c1

βD

√
ĉ1

č1
, (3.4)

where ĉ1 =max{c1,1}, č1 =min{c1,1}, and C(Ω1,u[k]
1 ) represents a generic constant that de-

pends on the subdomain Ω1 and the solution u[k]
1 of Dirichlet subproblem (2.3).

Proof. Step 1) We first denote by L1(û1) the loss function of problem (3.1), that is, a func-
tional on H1(Ω1) taking on the form

L1(û1)=
1
2

b1(û1,û1)−( f ,û1)1+
βD

2

(
∥û1∥2

L2(∂Ω1∩∂Ω)+∥û1−u[k]
Γ ∥

2
L2(Γ)

)
, (3.5)

and then derive optimality conditions that are satisfied by the unique global minimizer.
To be precise, the function û1 ∈H1(Ω1) is decomposed as a sum of two local functions,
i.e., û1= û[k]

1 +g with û[k]
1 ∈H1(Ω1) satisfying
−∇·(c1∇û[k]

1 )+û[k]
1 = f in Ω1,

û[k]
1 +c1β−1

D ∇û[k]
1 ·n1=0 on ∂Ω1∩∂Ω,

û[k]
1 +c1β−1

D ∇û[k]
1 ·n1=u[k]

Γ on Γ,

(3.6)

in the sense of distributions. Then, by applying the Green’s formula [11] to (3.6), a direct
calculation of (3.5) implies that* for any û1∈H1(Ω1),

L1(û1)=L1(û
[k]
1 )+

∫
Ω1

(
c1

2
|∇g|2+ 1

2
|g|2

)
dx+

βD

2

∫
∂Ω1

|g|2ds≥L1(û
[k]
1 ).

Or, equivalently, the unique weak solution of elliptic equations (3.6) is the global mini-
mizer of energy functional (3.5). Notably, when comparing (3.6) with the Dirichlet sub-
problem (2.3) (written in terms of differential operators), i.e.,

−∇·(c1∇u[k]
1 )+u[k]

1 = f in Ω1,

u[k]
1 =0 on ∂Ω1∩∂Ω,

u[k]
1 =u[k]

Γ on Γ,

(3.7)

∗More details can be found in the technical Appendix A.
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the Dirichlet boundary condition is modified to be of a Robin type due to the boundary
penalty treatment in (3.1).

Step 2) Now, we are ready to quantitatively estimate the error induced from the soft
boundary enforcement, that is, the distance between weak solutions of (3.7) and (3.6).
To deal with the inhomogeneous boundary conditions in (3.7) and (3.6), let us write
u[k]

1 =w1+g1 with an extension g1∈V1 of u[k]
Γ into Ω1 [13], namely,

{
−∇·(c1∇w1)+w1= f in Ω1,

w1=0 on ∂Ω1,


−∇·(c1∇g1)+g1=0 in Ω1,

g1=0 on ∂Ω1∩∂Ω,

g1=u[k]
Γ on Γ,

(3.8)

and û[k]
1 = ŵ1+ ĝ1 with another extension ĝ1∈H1(Ω1) of u[k]

Γ into Ω1, that is,

{
−∇·(c1∇ŵ1)+ŵ1= f in Ω1,

ŵ1+c1β−1
D ∇ŵ1 ·n1=0 on ∂Ω1,


−∇·(c1∇ĝ1)+ ĝ1=0 in Ω1,

ĝ1+c1β−1
D ∇ĝ1 ·n1=0 on ∂Ω1∩∂Ω,

ĝ1+c1β−1
D ∇ĝ1 ·n1=u[k]

Γ on Γ,

(3.9)

then it immediately follows from the triangle inequality that

∥û[k]
1 −u[k]

1 ∥H1(Ω1)
=∥(ŵ1+ ĝ1)−(w1+g1)∥H1(Ω1)

≤∥ŵ1−w1∥H1(Ω1)
+∥ĝ1−g1∥H1(Ω1)

.

Step 3) Based on the variational formulation, the extension function g1 in (3.8) satisfies

b1(g1, ĝ1)=
∫

Ω1

(c1∇g1 ·∇ĝ1+g1 ĝ1)dx=
∫

∂Ω1

(c1∇g1 ·n1)ĝ1 ds=(c1∇g1 ·n1, ĝ1)L2(∂Ω1),

with ĝ1∈H1(Ω1) being used as the test function, while the extension function ĝ1 of (3.9)
is the minimizer of energy functional*

F1(ĝ1)=
1
2

b1(ĝ1, ĝ1)+
βD

2

(
∥ĝ1∥2

L2(∂Ω1∩∂Ω)+(ĝ1−2u[k]
Γ , ĝ1)L2(Γ)

)
−b1(g1, ĝ1)

+(c1∇g1 ·n1, ĝ1)L2(∂Ω1)

=
1
2

b1(ĝ1−g1, ĝ1−g1)+
βD

2

(
∥ĝ1+c1β−1

D ∇g1 ·n1∥2
L2(∂Ω1∩∂Ω)

+∥ĝ1+c1β−1
D ∇g1 ·n1−u[k]

Γ ∥
2
L2(Γ)

)
− 1

2
b1(g1,g1)

− βD

2

(
∥c1β−1

D ∇g1 ·n1∥2
L2(∂Ω1∩∂Ω)+∥c1β−1

D ∇g1 ·n1−u[k]
Γ ∥

2
L2(Γ)

)
,

∗Here, we do not distinguish between the non-optimal and the optimal solution for notational simplicity.
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and from which we can conclude that the function ĝ1 is also the minimizer of

G1(ĝ1)=
1
2

b1(ĝ1−g1, ĝ1−g1)+
βD

2

(
∥ĝ1+c1β−1

D ∇g1 ·n1∥2
L2(∂Ω1∩∂Ω)

+∥ĝ1+c1β−1
D ∇g1 ·n1−u[k]

Γ ∥
2
L2(Γ)

)
.

On the one hand, by defining č1=min{c1,1}, it is obvious that

G1(ĝ1)≥
1
2

b1(ĝ1−g1, ĝ1−g1)=
∫

Ω1

(
c1

2
|∇(ĝ1−g1)|2+

1
2
|ĝ1−g1|2

)
dx

≥ č1

2
∥ĝ1−g1∥2

H1(Ω1)
. (3.10)

On the other hand, due to the fact that g1∈H2(Ω1) under mild assumptions [11], we have
by using the trace theorem [41] that (∇g1 ·n1)|∂Ω1 ∈H

1
2 (∂Ω1) and therefore there exists a

function ϕ∈H1(Ω1) such that ϕ|∂Ω1 =−(∇g1 ·n1)|∂Ω1 .
Then, by choosing ḡ= c1β−1

D ϕ+g1 and using boundary conditions of g1 (3.8), the op-
timality of ĝ1 among all functions in H1(Ω1) implies that

G1(ĝ1)≤G1(ḡ)= c2
1β−2

D

∫
Ω1

(
c1

2
|∇ϕ|2+ 1

2
|ϕ|2

)
dx

+
βD

2

(
∥g1∥2

L2(∂Ω1∩∂Ω)+∥g1−u[k]
Γ ∥

2
L2(Γ)

)
≤ ĉ1

2
c2

1β−2
D ∥ϕ∥

2
H1(Ω1)

,

where ĉ1=max{c1,1}. As a direct result, we have by (3.10) that

∥ĝ1−g1∥H1(Ω1)
≤ c1

βD

√
ĉ1

č1
∥ϕ∥H1(Ω1)

.

Step 4) It remains to show that the solution ŵ1∈H1(Ω1) of Robin problem (3.9) can con-
verge to the solution w1 ∈H1

0(Ω1) of Dirichlet problem (3.8) as βD→∞ [7, 71]. Similar
as before, by employing ŵ1 ∈ H1(Ω1) as the test function in (3.8) and resorting to the
variational problem of (3.9), the weak solution ŵ1∈H1(Ω1) minimizes

I1(ŵ1)=
1
2

b1(ŵ1,ŵ1)−( f ,ŵ1)1+
βD

2
∥ŵ1∥2

L2(∂Ω1)
−b1(w1,ŵ1)+( f ,ŵ1)

+(c1∇w1 ·n1,ŵ1)L2(∂Ω1)

=
1
2

b1(ŵ1−w1,ŵ1−w1)+
βD

2
∥ŵ1+c1β−1

D ∇w1 ·n1∥2
L2(∂Ω1)

− 1
2

b1(w1,w1)−
βD

2
∥c1β−1

D ∇w1 ·n1∥2
L2(∂Ω1)

,

and therefore is also the minimizer of the energy functional

J1(ŵ1)=
1
2

b1(ŵ1−w1,ŵ1−w1)+
βD

2
∥ŵ1+c1β−1

D ∇w1 ·n1∥2
L2(∂Ω1)

.
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Note that w1∈H2(Ω1) under the same geometric assumption, the trace theorem implies
that (∇w1 ·n1)|∂Ω1 ∈H

1
2 (∂Ω1) and therefore there exists a function φ∈H1(Ω1) such that

φ|∂Ω1 =−(∇w1 ·n1)|∂Ω1 [41]. As a consequence, by employing a particular function w̄=
c1β−1

D φ+w1∈H1(Ω1) and using the boundary condition of w1 in (3.8), we have

J1(ŵ1)≤J1(w̄)= c2
1β−2

D

∫
Ω1

(
c1

2
|∇φ|2+ 1

2
|φ|2

)
dx+

βD

2
∥w1∥2

L2(∂Ω1)

≤ ĉ1

2
c2

1β−2
D ∥φ∥2

H1(Ω1)
.

On the other hand, it is obvious that

J1(ŵ1)≥
1
2

b1(ŵ1−w1,ŵ1−w1)=
∫

Ω1

(
c1

2
|∇(ŵ1−w1)|2+

1
2
|ŵ1−w1|2

)
dx

≥ č1

2
∥ŵ1−w1∥2

H1(Ω1)
,

which leads to the error estimation

∥ŵ1−w1∥H1(Ω1)
≤ c1

βD

√
ĉ1

č1
∥φ∥H1(Ω1)

,

that completes the proof.

Theorem 3.2. Assume that βD→∞ in (3.1) (or Theorem 3.1), let u[k]
2 and û[k]

2 be the solution
of minimization problems (2.4) and (3.3) respectively, then there holds*

∥û[k]
2 |Ω2−u[k]

2 ∥H1(Ω2)≤C(Ω2,u[k]
2 )

c2

βN

√
ĉ2

č2
, (3.11)

where ĉ2 =max{c2,1}, č2 =min{c2,1}, and C(Ω2,u[k]
2 ) represents a generic constant that de-

pends on the subdomain Ω2 and the solution u[k]
2 of Neumann subproblem (2.4).

Proof. Step 1) We first denote by L2(û2) the loss function of problem (3.3), that is, a func-
tional on H1(Ω)

L2(û2)=
1
2

b2(û2,û2)−( f ,û2)2+b1(û
[k]
1 ,û2)−( f ,û2)1+(q,û2)L2(Γ)+

βN

2
∥û2∥2

L2(∂Ω), (3.12)

and then derive optimality conditions that are satisfied by its global minimizer. Notably,
the function û2∈H1(Ω) is defined over the entire domain, which greatly differs from the
standard Neumann subproblem (2.4) that only depends on the subdomain Ω2.

∗Here, the minimizer û[k]
2 ∈H1(Ω) of functional (3.3) is restricted on the subdomain Ω2 (denoted by û[k]

2 |Ω2 ).
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As such, we decompose û2 ∈H1(Ω) as a sum of two global functions, namely, û2 =

û[k]
2 +g, where the restriction of û[k]

2 ∈H1(Ω) on subdomain Ω2 (not relabelled) is required
to satisfy the equations

−∇·(c2∇û[k]
2 )+û[k]

2 = f in Ω2,

û[k]
2 +c2β−1

N ∇û[k]
2 ·n2=0 on ∂Ω2∩∂Ω,

c2∇û[k]
2 ·n2=−q−c1∇û[k]

1 ·n1 on Γ,

(3.13)

in the sense of distributions. The extension of function û[k]
2 |Ω2 to the other subdomain Ω1

is required to be weakly differentiable and to satisfy the Robin boundary condition

û[k]
2 +c1β−1

N ∇û[k]
1 ·n1=0 on ∂Ω1∩∂Ω, (3.14)

in the sense of distributions. Then, by applying the Green’s formula to equations (3.13),
(3.6), and using the jump condition (2.1), it can be deduced directly from (3.12) that*

L2(û2)=L2(û
[k]
2 )+

∫
Ω2

(
c2

2
|∇g|2+ 1

2
|g|2

)
dx+

βN

2

∫
∂Ω
|g|2ds≥L2(û

[k]
2 ),

namely, the global minimizer of (3.12) can be characterized by the function û[k]
2 ∈H1(Ω)

that satisfies (3.13) and (3.14). It’s worth noting that only the restricted solution û[k]
2 |Ω2 ∈

H1(Ω2), or equivalently, the weak solution of subproblem (3.13) is relevant for the fol-
lowing error estimation, which is still denoted by û[k]

2 for short in the remaining of this
proof. It is also noteworthy that when compared to the original Neumann subproblem
(2.4) (written in terms of differential operators), that is,

−∇·(c2∇u[k]
2 )+u[k]

2 = f in Ω2,

u[k]
2 =0 on ∂Ω2∩∂Ω,

c2∇u[k]
2 ·n2=−q−c1∇u[k]

1 ·n1 on Γ,

(3.15)

a Robin boundary condition is imposed on ∂Ω2∩∂Ω instead of the Dirichlet type, while
the interface condition can be rigorously maintained as βD→∞ in (3.1) or Theorem 3.1.

Step 2) To simplify the error analysis, we assume that the parameter βD→∞, namely,
û[k]

1 =u[k]
1 in (3.13) and (3.15). With the weak solution û[k]

2 ∈H1(Ω2) being used as the test
function, the integration by parts for subproblem (3.15) implies that

b2(u
[k]
2 ,û[k]

2 )+(q+c1∇u[k]
1 ·n1,û[k]

2 )L2(Γ)−(c2∇u[k]
2 ·n2,û[k]

2 )L2(∂Ω2∩∂Ω)=( f ,û[k]
2 )2,

∗More details can be found in the technical Appendix B.
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which can be employed to reformulate the energy functional of subproblem (3.13), i.e.,

F2(û
[k]
2 )=

1
2

b2(û
[k]
2 ,û[k]

2 )−( f ,û[k]
2 )2+(q+c1∇û[k]

1 ·n1,û[k]
2 )L2(Γ)+

βN

2
∥û[k]

2 ∥
2
L2(∂Ω2∩∂Ω)

=
1
2

b2(û
[k]
2 ,û[k]

2 )−b2(u
[k]
2 ,û[k]

2 )+(c2∇u[k]
2 ·n2,û[k]

2 )L2(∂Ω2∩∂Ω)+
βN

2
∥û[k]

2 ∥
2
L2(∂Ω1∩∂Ω)

=
1
2

b2(û
[k]
2 −u[k]

2 ,û[k]
2 −u[k]

2 )+
βN

2
∥û[k]

2 +c2β−1
N ∇u[k]

2 ·n2∥2
L2(∂Ω2∩∂Ω)

− 1
2

b2(u
[k]
2 ,u[k]

2 )− βN

2
∥c2β−1

N ∇u[k]
2 ·n2∥2

L2(∂Ω2∩∂Ω).

As a result, we conclude that the weak solution û[k]
2 ∈H1(Ω2) of (3.13) is also the mini-

mizer of functional

G2(û
[k]
2 )=

1
2

b2(û
[k]
2 −u[k]

2 ,û[k]
2 −u[k]

2 )+
βN

2
∥û[k]

2 +c2β−1
N ∇u[k]

2 ·n2∥2
L2(∂Ω2∩∂Ω).

Clearly, be defining č2=min{c2,1}, it is obvious that

G2(û
[k]
2 )≥ 1

2
b2(û

[k]
2 −u[k]

2 ,û[k]
2 −u[k]

2 )=
∫

Ω2

(
c2

2
|∇(û[k]

2 −u[k]
2 )|2+ 1

2
|û[k]

2 −u[k]
2 |

2
)

dx

≥ č2

2
∥û[k]

2 −u[k]
2 ∥

2
H1(Ω2)

. (3.16)

On the other hand, note that u[k]
2 ∈H2(Ω2) under same assumptions [11, 13], we have by

the trace theorem [41] that (∇u[k]
2 ·n2)|∂Ω2 ∈H

1
2 (∂Ω2), and therefore there exists a func-

tion ζ ∈ H1(Ω2) such that ζ|∂Ω2 =−(∇u[k]
2 ·n2)|∂Ω2 . Moreover, the trace operator has a

continuous linear right inverse and hence there holds

∥ζ∥H1(Ω2)≤C∥∇u[k]
2 ·n2∥H

1
2 (∂Ω2)

≤C∥u[k]
2 ∥H2(Ω2),

where C>0 is a generic constant that only depends on the subdomain Ω2 [2].
Then by setting ū2=c2β−1

N ζ+u[k]
2 and using the boundary condition u[k]

2 =0 on ∂Ω2∩∂Ω
in (3.15), the optimality of û[k]

2 among all functions in H1(Ω2) implies that

G2(û
[k]
2 )≤G2(ū2)= c2

2β−2
N

∫
Ω1

(
c1

2
|∇ζ|2+ 1

2
|ζ|2
)

dx+
βN

2
∥u[k]

2 ∥
2
L2(∂Ω1∩∂Ω)

≤ ĉ2

2
c2

2β−2
N ∥ζ∥

2
H1(Ω1)

,

where ĉ2=max{c2,1}. Consequently, we have by (3.16) that

∥û[k]
2 −u[k]

2 ∥H1(Ω1)
≤ c2

βN

√
ĉ2

č2
∥ζ∥H1(Ω1)

,

which completes the proof.
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In other words, by sending penalty coefficients βD→∞ in (3.1) and βN→∞ in (3.3),
minimizers of our relaxed optimization problems (3.1, 3.3) could converge to that of the
classical Dirichlet-Neumann algorithm (2.3, 2.4), which provides the theoretical ground-
work for establishing the Dirichlet-Neumann learning algorithm. Moreover, our quanti-
tative error analysis also indicates that the choice of penalty coefficient is closely tied to
values of high-contrast coefficients, e.g., βD =400c1 and βN =400c2, differing from other
work that set βD =βN [39] during training.

3.3 Dirichlet-Neumann learning algorithm

Next, unknown solutions in (3.1) and (3.3) are parametrized using neural networks [14]

û[k]
1 (x)= û1(x;θ[k]1 ) and û[k]

2 (x)= û2(x;θ[k]2 ),

where θ
[k]
i represents the collection of trainable parameters at the k-th outer iteration for

i=1, 2. For example, fully-connected neural networks [51], ResNets [18], or other kinds
of architectures can be adopted to construct the solution ansatz (more details about our
model setup are included in Appendix C). Extensive studies have thus been conducted
on the approximation error [7, 20, 47], which is not discussed here. Moreover, thanks to
the mesh-free feature of neural networks, the extension operator in (3.2) can be realized
in a very straightforward way, that is,

R1γ0û2(x,θ2)= û2(x,θ2), (3.17)

and is required to be differentiable within Ω1 and to satisfy the zero boundary values on
∂Ω1∩∂Ω through an additional penalty term in (3.3). One can also employ a piecewise
neural network [17] to realize the extension operation (3.17).

Next, to discretize the functionals (3.1) and (3.3), the routine way of generating train-
ing sample points inside each subdomain and at its boundary is to use the Monte Carlo
method or its variants [46], namely,

XΩi =
{

xΩi
n
}NΩi

n=1, XDi =
{

xDi
n
}NDi

n=1, and XΓ =
{

xΓ
n
}NΓ

n=1,

where Di := ∂Ωi∩∂Ω, NΩi , NDi , and NΓ denote the sample size of training datasets XΩi ,
XDi , and XΓ, respectively. As a result, by defining the empirical loss functions

LΩi(ûi)=
1

NΩi

NΩi

∑
n=1

( ci

2
|∇ûi(xΩi

n ;θi)|2− f (xΩi
n )ûi(xΩi

n ;θi)
)

,

LDi(ûj)=
1

NDi

NDi

∑
n=1
|ûj(xDi

n ;θj)|2,
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LΓD(û1,u[k]
Γ )=

1
NΓ

NΓ

∑
n=1
|û1(xΓ

n;θ1)−u[k]
Γ (xΓ

n)|2, LΓN (û2)=
1

NΓ

NΓ

∑
n=1

q(xΓ
n)û2(xΓ

n;θ2),

LN(û2,û1)=
1

NΩ1

NΩ1

∑
n=1

(
c1∇û1(xΩ1

n ;θ[k]1 )·∇û2(xΩ1
n ;θ2)− f (xΩ1

n )û2(xΩ1
n ;θ2)

)
,

for 1≤ i, j≤2, the learning task associated with our Dirichlet subproblem (3.1) reads

θ
[k]
1 =argmin

θ1

LΩ1(û1)+
βD

2

(
LD1(û1)+LΓD(û1,u[k]

Γ )
)

. (3.18)

We also note that as an alternative to the deep Ritz method (3.18) [70], the Dirichlet sub-
problem (3.1) or (2.6) can also be solved using PINNs [53], which is known to empirically
work better for local problems with sufficient smooth solutions. To be precise, by incor-
porating the residual into the loss function, the learning task of Dirichlet subproblem in
(2.6) can also be formulated as

θ
[k]
1 =argmin

θ1

LPINN
Ω1

(û1)+
βD

2
(LD1(û1)+LΓD(û1)), (3.19)

where

LPINN
Ωi

(ûi)=
1

NΩi

NΩi

∑
n=1

∣∣∣−∇·(ci∇ûi(xΩi
n ;θi)

)
+ûi(xΩi

n ;θi)− f (xΩi
n )
∣∣∣2 for i=1,2.

On the other hand, the learning task of Neumann subproblem (3.3) takes on the form

θ
[k]
2 =argmin

θ2

LΩ2(û2)+LN(û2,û[k]
1 )+LΓN (û2)+

βN

2
(LD1(û2)+LD2(û2)). (3.20)

It is noteworthy that though the loss value of (3.18) or (3.19) continues to decrease as
the training proceeds, the gradient of trained model is often observed to possess higher
precision inside the domain rather than at its interface [1,8,58,62], which may degenerate
the performance when explicitly exchanging the flux data through (2.6). Fortunately, by
employing our learning algorithm (3.20), the flux transmission condition is enforced in a
variational way, employing ∇û[k]

1 |Ω1 rather than ∇û[k]
1 |Γ that allows for better precision.

In addition, domain decomposition leads to simpler functions to be learned on each
subdomain, which allows us to incorporate the residual loss into (3.20), that is,

θ
[k]
2 =argmin

θ2

LΩ2(û2)+LN(û2,û[k]
1 )+LΓN (û2)+

βN

2
(LD1(û2)+LD2(û2))

+λN LPINN
Ω2

(û2),
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Algorithm 1 Dirichlet-Neumann Learning Algorithm

% Initialization
– specify the network architecture ûi(x;θi) (i=1, 2) for each subproblem;
– generate the Monte Carlo sampling points XΓ, XΩi , and XDi for i=1, 2;
% Outer Iteration Loop
Start with the initial guess u[0]

Γ of unknown solution values at the interface Γ;
for k←0 to K (maximum number of outer iterations) do

while stopping criteria are not satisfied do
% Dirichlet Subproblem-Solving via the Deep Ritz or PINNs Approach

θ
[k]
1 =argmin

θ1

LΩ1(û1)+
βD

2

(
LD1(û1)+LΓ(û1,u[k]

Γ )
)

,

% Neumann Subproblem-Solving via our Compensated Deep Ritz Method

θ
[k]
2 =argmin

θ2

LΩ2(û2)+LN(û2,û[k]
1 )+LΓN (û2)+

βN

2
(LD1(û2)+LD2(û2)),

% Update of Unknown Solution Values at Interface

u[k+1]
Γ (xΓ

n)=ρû2(xΓ
n;θ[k]2 )+(1−ρ)u[k]

Γ (xΓ
n), i=1,··· ,NΓ,

end while
end for

where λN ∈R+ is set by the user. The last loss term can be regarded as a regularization
term that helps improve the approximation accuracy and prevent the training process
(3.20) from getting trapped in trivial solutions especially when c2≫1.

More specifically, the detailed iterative scheme is summarized in Algorithm 1 and
Fig. 2, where the stopping criteria can be constructed by measuring the difference in nu-
merical solutions between two consecutive iterations [17, 39]. Moreover, our learning al-
gorithm can be naturally modified to adapt to a parallel computing environment [68]. We
also note that, in addition to the previously mentioned approximation error, the general-
ization error of trained network models has been extensively studied [7,42,66]. However,
the quantification of optimization error [16,28,33] remains an open issue due to the highly
non-convex nature of the loss landscape and the substantial number of trainable param-
eters. Therefore, a comprehensive error analysis of our proposed learning algorithm is
deferred to future research.

4 Numerical experiments

In this section, numerical experiments on a series of interface problems (2.1) are carried
out to showcase the effectiveness of Dirichlet-Neumann learning algorithm (referred to as
DNLA hereafter, with the type of deep learning solver used for solving the Dirichlet sub-
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Figure 2: Computational graph of our Dirichlet-Neumann learning algorithm for (2.6).

problem specified in the bracket). Throughout all experiments, we employ ResNets [18]
for addressing our local problems, deferring the exploration of more intricate architec-
tures [21, 23] to future investigations. Additionally, to meet the smoothness requirement
of the extension operator (3.17) (see also (3.2) or (3.15)), we select the hyperbolic tangent
activation function rather than the ReLU activation function [14].

As a comparison to our algorithm, we also conduct numerical experiments using the
most straightforward approach, that is, employing PINNs [53] for solving all the decom-
posed subproblems (2.6) as proposed in [39], which is referred to as “DeepDDM”. For a
fair comparison, the same relaxation parameter ρ is set for both equations (2.6) and (2.5),
and the mean value and standard deviation of the discrete relative L2 error

ϵ=

√
∑M

m=1
∣∣u(xm)−û[k](xm)

∣∣2√
∑M

m=1 |u(xm)|2
, where û[k](x)=

{
û1(x;θ[k]1 ) if x∈Ω1,

û2(x;θ[k]2 ) if x∈Ω2,

along outer iterations are reported over 5 independent simulations. Here, {xm}M
m=1 rep-

resents testing points that are uniformly distributed over the domain Ω. When the maxi-
mum number of outer iterations is reached, i.e., k=K in Algorithm 1, the trained model
is denoted by û(x) instead of û[K](x;θ) or û(x;θ[K]) for notational simplicity.

Additional details regarding our experimental setup, such as the depth and width of
network, training and testing datasets, and penalty coefficients, can be found Appendix
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C. The stopping criterion of our method requires that either the relative L2 error of two
consecutive iterations is less than 0.001 or the number of outer iterations reaches 30. All
experiments are conducted using PyTorch [49, 50] on Nvidia GeForce RTX 3090 cards§.

4.1 Flower-shape interface problem in two dimension

First, we consider an interface problem (2.1) whose solution is continuous [40], i.e.,

−∇·(ci∇ui(x,y))+ui(x,y)= fi(x,y) in Ωi,
u2(x,y)= g2(x,y) on ∂Ω2∩∂Ω,

u1(x,y)=u2(x,y) and −c1∇u1(x,y)·n1−c2∇u2(x,y)·n2=q(x,y) on Γ=∂Ω1,

(4.1)

for i=1, 2, where

Ω=(−1,1)2 and Ω1=

{
(x,y)

∣∣∣√x2+y2≤ 1
2
+

1
4

sin
(

12arctan
y
x

)}
.

The source term fi(x,y), boundary data g2(x,y) and jump condition q(x,y) in equations
(4.1) are derived from the exact solution

u(x,y)=

{
c−1

1 (x2+y2)
3
2 sin

(
2π
√

x2+y2−π− π
2 sin(12arctan y

x )
)

for (x,y)∈Ω1,
c−1

2 (x2+y2)
3
2 sin

(
2π
√

x2+y2−π− π
2 sin(12arctan y

x )
)

for (x,y)∈Ω2.

More specifically, the exact solution is shown in Fig. 3, where the high-contrast coeffi-
cients are given by (c1,c2)= (1,1) and (1,103) respectively. Clearly, both cases should be
resolved with a reasonable good accuracy to meet the robustness requirement regarding
varying coefficients. The initial guess of the unknown value at interface is set to be

u[0]
Γ (x,y)=u(x,y)−1000x(x−1)y(y−1).

Table 2 shows the error profile |û(x,y)−u(x,y)| of different methods in a typical simula-
tion¶, while the discrete relative L2 error is reported in Table 3. Clearly, problem (4.1) with
a high-contrast coefficient (c1,c2)=(1,103) could be effectively solved via the DeepDDM
scheme [39]. However, its effectiveness degrades when coefficients are set to be (c1,c2)=
(1,1). On the other hand, our methods consistently demonstrate promising performance
in all scenarios.

In addition, we report the error profile ∥∇û−∇u∥ℓ2 of trained network solutions in
Table 4. Obviously, the precision of Dirichlet-to-Neumann map for Dirichlet subproblem
is not as satisfactory as that of the gradient in the interior domain, therefore our learning
methods have demonstrated superior performance in both cases of Table 3. Moreover,
it can be inferred from (3.20) that the Neumann subproblem solver could benefit from a
good approximation of∇u[k]

1 within the subdomain Ω1, thus DNLA (PINNs) empirically
performs better than DNLA (deep Ritz) as shown in Table 2.

§Source code is available on GitHub at https://github.com/AI4SC-TJU/DNLA-IntfcProb.
¶The corresponding iterative solutions are depicted in Appendix C owing to space constraints.
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Figure 3: Exact and network solutions for testing example (4.1) with (c1,c2)= (1,1) and (1,103), where the
DNLA (PINNs) is employed.

Table 2: Error profile |û−u| of different methods for testing example (4.1).

4.2 Citrus interface problem in three dimension

In addition to the mesh-free feature, which is attractive for addressing intricate interface
geometries, another key advantage of using artificial neural networks is their ability to
tackle challenges stemming from the curse of dimensionality. To this end, we consider a



268 Q. Sun, X. Xu and H. Yi / Commun. Comput. Phys., 38 (2025), pp. 248-284

Table 3: Relative L2 errors (mean ± standard deviation over 5 runs) for example (4.1).

Coefficients
Outer Iterations

1 2 10 15

(1,103)

DeepDDM 296.91 ± 0.17 0.58± 0.33 0.04 ± 0.02 -
DNLA (PINNs) 296.17 ± 0.14 0.02± 0.01 0.01 ± 0.00 -

DNLA (Deep Ritz) 295.49 ± 0.45 0.07 ± 0.03 0.05 ± 0.01 -

(1,1)
DeepDDM 52.21 ± 2.22 37.85 ± 3.39 8.64 ± 2.63 3.12 ± 1.46

DNLA (PINNs) 31.01 ± 0.02 15.52 ± 0.00 0.07 ± 0.00 0.02 ± 0.00
DNLA (Deep Ritz) 30.96 ± 0.05 15.48± 0.03 0.07 ± 0.00 0.03 ± 0.01

Table 4: Error profiles ∥∇û−∇u∥ℓ2 of different methods for testing example (4.1).

three-dimensional problem with homogeneous jump conditions, i.e.,

−∇·(ci∇ui(x,y))= fi(x,y) in Ωi,
u2(x,y)= g2(x,y) on ∂Ω2∩∂Ω,

u1(x,y)=u2(x,y) and −c1∇u1(x,y)·n1−c2∇u2(x,y)·n2=0 on Γ=∂Ω1,

(4.2)
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Figure 4: Exact and network solutions for the Dirichlet subproblem of testing example (4.2) with (c1,c2)=
(1,103) and (1,1), where the DNLA (PINNs) is employed.

Figure 5: Exact and network solutions for the Neumann subproblem of testing example (4.2) with (c1,c2)=
(1,1) and (1,103), where the DNLA (PINNs) is employed.

for i=1, 2, where

Ω=(−0.5,0.5)×(−0.5,2.5)×(−0.5,0.5),

Ω1=
{
(x,y,z)|16(x2+z2)+y3(y−2)3<0

}
.

The source term fi(x,y) and boundary data g2(x,y) are derived from the exact solution

u(x,y,z)=

{
2c−1

1 lnγ(x,y,z)+0.5 for (x,y,z)∈Ω1,
2c−1

2 lnγ(x,y,z)+(c−1
1 −c−1

2 )ln4+0.5 for (x,y,z)∈Ω2,
(4.3)

where γ(x,y,z)=y(y−2)3+16(x2+z2)+2. More specifically, the exact solution is shown
in Fig. 4 and Fig. 5, where the high-contrast coefficients are given by (c1,c2)= (1,1) and
(1,103) respectively. The initial guess of the unknown value at interface is set to be

u[0]
Γ (x,y,z)=u(x,y,z)−1000cos(2πx)sin(2π(y−1))sin(2πz).

Considering the increased complexity of problem (4.2), the maximum number of epochs
for each subproblem is 3k, with an initial learning rate set to 10−4.

Error profiles |ûi−ui|, ∥∇ûi−∇ui∥ℓ2 , and relative L2 errors for different learning
methods in a typical simulation are displayed in Table 6, Table 7, and Table 5, respec-
tively. The solution of Dirichlet subproblem is depicted on a citrus subdomain with a
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Table 5: Relative L2 errors (mean ± standard deviation over 5 runs) for example (4.2).

Coefficients
Outer Iterations

1 2 10 15

(1,103)

DeepDDM 76.69±0.27 0.08±0.00 0.01±0.00 -
DNLA (PINNs) 62.46±1.43 0.00±0.00 0.00±0.00 -

DNLA (deep Ritz) 63.58±1.04 0.01±0.00 0.00±0.00 -

(1,1)
DeepDDM 54.41±0.66 21.37±2.77 0.02±0.00 0.01±0.00

DNLA (PINNs) 36.26±3.16 23.36±1.63 0.11±0.00 0.01±0.00
DNLA (Deep Ritz) 50.41±0.23 25.06±0.06 0.10±0.00 0.02±0.00

quarter of its volume removed and the same is applied to the Neumann subproblem. No-
tably, by fine-tuning the hyperparameter at each outer iteration, it can be observed from
Table 6 that the trained network solution of DeepDDM approach aligns closely with the
true solution for (c1,c2)= (1,1). However, its corresponding Dirichlet-to-Neumann map
still exhibits significant errors as shown in Table 7.

On the contrary, our learning algorithms rely on a variational approach rather than
directly exchanging the Dirichlet-to-Neumann map. Moreover, as indicated in Table 7,
the accuracy of gradient for Dirichlet subproblem is higher within the interior domain
than at the boundary, therefore achieving superior performance as shown in Table 5.

4.3 Octagonal interface problem in two dimension

Finally, we consider the following elliptic interface problem

−∇·(ci∇ui(x,y))= fi(x,y) in Ωi,
u2(x,y)= g2(x,y) on ∂Ω2∩∂Ω,

u1(x,y)=u2(x,y) and −c1∇u1(x,y)·n1−c2∇u2(x,y)·n2=q(x,y) on Γ=∂Ω1,

(4.4)

for i=1, 2, where

Ω=(−1,1)×(−1,1) and Ω1=

{
(x,y)

∣∣∣√x2+y2≤
3(676−26cos(25arctan y

x ))

6250

}
.

Differing from example (4.1), the exact solution of (4.4) is set to be

u(x,y)=0.5+(x2+y2)
3
2 sin

(
8π
√

x2+y2−
3π(81−9cos(8arctan y

x ))

80

)
,

thereby the force term of (4.4) may manifest multiscale phenomena due to the impact of
high-contrast coefficients. When solving the Neumann subproblem (2.6) via the usage of
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Table 6: Error profile |ûi−ui| of different methods for testing example (4.2).

PINNs [53], the inclusion of a relatively large force function within the residual loss can
pose additional difficulties for network training.

Similar to previous examples, we set (c1,c2)= (1,103) and (1,1) to assess the robust-
ness with respect to varying coefficients, and the exact solution is displayed in Fig. 6.
Moreover, the initial guess of the unknown solution’s value at interface is set to be

u[0]
Γ (x,y)=u(x,y)−100cos(100πx)cos(100πy),

while error profiles |ûi−ui|, ∥ûi−∇ui∥ℓ2 , and relative L2 errors for different methods in
a typical simulation are presented in Table 9, Table 10, and Table 8, respectively.
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Table 7: Error profiles ∥∇ûi−∇ui∥ℓ2 of different methods for testing example (4.2).

As can be seen from Table 9 and Table 8, the performance of DeepDDM approach is
unsatisfactory even for high-contrast coefficients (c1,c2)= (1,103), primarily attributable
to the large force function within the residual loss term. In contrast, our learning algo-
rithms circumvent this issue by utilizing the variational form (3.20). Additionally, our
methods demonstrate superior performance even in the case of inaccurate Dirichlet-to-
Neumann map shown in Table 10.

Notably, our method utilizes variational loss functionals to enforce flux transmission
and addresses the decomposed subproblem through a standard network training pro-
cess, thereby possessing the potential to handle higher-dimensional problems.
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Figure 6: Exact and network solutions for testing example (4.4) with (c1,c2)= (1,1) and (1,103), where the
DNLA (PINNs) is employed.

Table 8: Relative L2 errors (mean ± standard deviation over 5 runs) for example (4.4).

Coefficients
Outer Iterations

1 2 4 10

(1,103)

DeepDDM 11.06±0.85 1.45±0.51 1.51±0.38 1.52±0.77
DNLA (PINN) 10.53±1.12 0.04±0.01 0.03±0.01 -

DNLA (deep Ritz) 11.62±0.73 0.04±0.01 0.04±0.01 -

(1,1)
DeepDDM 18.95±2.96 10.88±1.79 7.52±0.79 3.35±0.25

DNLA (PINN) 11.59±1.16 5.35±1.36 1.41±0.27 0.03±0.01
DNLA (Deep Ritz) 12.93±2.54 6.43±1.31 1.67±0.34 0.03±0.01

5 Conclusion

Motivated by the continuous formulation of classical Dirichlet-Neumann algorithm, the
adoption of deep learning techniques as subproblem solvers has recently attracted con-
siderable research interest owing to their meshless feature and effectiveness in address-
ing high-dimensional problems. However, when employing artificial neural networks
to solve the Dirichlet subproblem, it is often empirically observed that the gradient of
trained network solution often exhibits higher errors at the boundary compared to its in-
terior domain. Such a pattern of error distribution may result in a degradation of overall
performance when the flux transmission condition is explicitly enforced between neigh-
bouring subdomains. Thanks to the variational principle, the exchange of flux data can
be facilitated using the interior gradient instead of the Neumann trace, thereby motivat-
ing the development of our Dirichlet-Neumann learning algorithm. Moreover, a rigorous
error analysis is established to obtain the error bound of boundary penalty treatment for
both the Dirichlet and Neumann subproblems, which also sheds light on the setup of
penalty coefficients. Finally, a wide variety of numerical examples are carried out to vali-
date the effectiveness and robustness of our methods, achieving promising performance
even in the presence of inaccurate Dirichlet-to-Neumann map.
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Table 9: Error profile |ûi−ui| of different methods for testing example (4.4).

Table 10: Error profiles ∥∇ûi−∇ui∥ℓ2 of different methods for testing example (4.4).
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We believe that our theoretical and experimental studies could be generalized to the
Robin-Robin algorithm [48, 52], while substantial improvements can be made by using
coarse grid correction [45], adaptive sampling strategy [17], special network structures
[38], and more comprehensive error analysis [7, 71].
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Appendices

A Detailed proof of Step 1) in Theorem 3.1

Recall that the function û1∈H1(Ω1) is decomposed as a sum of two local functions, i.e.,
û1= û[k]

1 +g, then

L2(û2)=
1
2

b1(û
[k]
1 +g,û[k]

1 +g)+
βD

2

(
∥û[k]

1 +g∥2
L2(∂Ω1∩∂Ω)+∥û

[k]
1 +g−u[k]

Γ ∥
2
L2(Γ)

)
−( f ,û[k]

1 +g)1

= L1(û
[k]
1 )+b1(û

[k]
1 ,g)−( f ,g)1+βD

(
(û[k]

1 ,g)L2(∂Ω1∩∂Ω)+(û[k]
1 −u[k]

Γ ,g)L2(Γ)

)
+

1
2

b1(g,g)+
βD

2
∥g∥2

L2(∂Ω1)
.

Note that the function û[k]
1 ∈H1(Ω1) is required to satisfy Eq. (3.6) in the sense of distri-

butions, that is,

b1(û
[k]
1 ,g)+βD

(
(û[k]

1 ,g)L2(∂Ω1∩∂Ω)+(û[k]
1 −u[k]

Γ ,g)L2(Γ)

)
=( f ,g)1 for any g∈H2(Ω1),



280 Q. Sun, X. Xu and H. Yi / Commun. Comput. Phys., 38 (2025), pp. 248-284

and therefore we arrive at

L1(û1)=L1(û
[k]
1 )+

∫
Ω1

(
c1

2
|∇g|2+ 1

2
|g|2

)
dx+

βD

2

∫
∂Ω1

|g|2ds≥L1(û
[k]
1 ),

for any û1∈H1(Ω1).

B Detailed proof of Step 1) in Theorem 3.2

Recall that the function û2∈H1(Ω) is decomposed as a sum of two global functions, i.e.,
û2= û[k]

2 +g, then

L2(û2)=
1
2

b2(û
[k]
2 +g,û[k]

2 +g)−( f ,û[k]
2 +g)2+b1(û

[k]
1 ,û[k]

2 +g)−( f ,û[k]
2 +g)1

+(q,û[k]
2 +g)L2(Γ)+

βN

2
∥û[k]

2 +g∥2
L2(∂Ω)

= L2(û
[k]
2 )+b2(û

[k]
2 ,g)−( f ,g)2+b1(û

[k]
1 ,g)−( f ,g)1+(q,g)L2(Γ)

+βN(û
[k]
2 ,g)L2(∂Ω)+

1
2

b2(g,g)+
βN

2
∥g∥2

L2(∂Ω),

for any g∈H1(Ω) defined over the entire domain. Note that û[k]
1 ∈H1(Ω1) and û[k]

2 |Ω2 ∈
H1(Ω2) are required to satisfy (3.6) and (3.13) in the sense of distributions, namely,

b1(û
[k]
1 ,g1)−(c1∇û[k]

1 ·n1,g1)L2(∂Ω1)=( f ,g1)1 for any g1∈H1(Ω1),

and
b2(û

[k]
2 ,g2)−(c2∇û[k]

2 ·n2,g2)L2(∂Ω2)=( f ,g2)2 for any g2∈H1(Ω2),

respectively, we then have by the boundary conditions imposed in (3.14) and (3.13) that

L2(û2)=(c1∇û[k]
1 ·n1+βN û[k]

2 ,g)L2(∂Ω1∩∂Ω)+(c2∇û[k]
2 ·n2+βN û[k]

2 ,g)L2(∂Ω2∩∂Ω)

+ (c1∇û[k]
1 ·n1+c2∇û[k]

2 ·n2+q,g)L2(Γ)+
1
2

b2(g,g)+
βN

2
∥g∥2

L2(∂Ω)+L2(û
[k]
2 )

=L2(û
[k]
2 )+

∫
Ω2

(
c2

2
|∇g|2+ 1

2
|g|2

)
dx+

βN

2

∫
∂Ω
|g|2ds≥L2(û

[k]
2 ),

for any û2∈H1(Ω).

C

The hyperparameter configuration used for our numerical experiments is summarized in
Table 11, followed by the iterative network solutions using different deep learning-based
methods for each numerical example.
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Table 11: Hyperparameter configuration used for our experiments.

Training
Datasets

(NΩi , NDi , NΓ)

Penalty
Coefficients

(βD, βN)

Network
(depth, width)

Trainable
Parameters

c2=103
DeepDDM (20k,5k,5k) 2k (4,100) 20701

DNLA
(PINNs) (20k,5k,5k) (2k,2m) (4,100) 20701

DNLA
(deep Ritz) (20k,5k,5k) (2k,2m) (4,100) 20701

c2=1
DeepDDM (2k,5k,5k) (2k,2k) (4,100) 20701

DNLA
(PINNs) (2k,5k,5k) (2k,2k) (4,100) 20701

DNLA
(deep Ritz) (2k,5k,5k) (2k,2k) (4,100) 20701

Table 12: Iterative solutions û[k] of different methods for (4.1) with (c1,c2)=(1,103).
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Table 13: Iterative solutions û[k] of different methods for (4.1) with (c1,c2)=(1,1).

Table 14: The iterative solutions û[k](x,y;θ) of different methods for numerical example (4.4) with (c1,c2)=
(1,103).
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Table 15: The iterative solutions û[k](x,y;θ) of different methods for numerical example (4.4) with (c1,c2)=
(1,1).

Table 16: Iterative solutions û[k] of different methods for (4.2) with (c1,c2)=(1,1).
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Table 17: Iterative solutions û[k] of different methods for (4.2) with (c1,c2)=(1,103).
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