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Abstract. In this paper, we develop a novel control volume method that is locally
conservative and locking-free for linear elasticity problem on quadrilateral grids. The
symmetry of stress is weakly imposed through the introduction of a Lagrange multi-
plier. As such, the method involves three unknowns: stress, displacement and rotation.
To ensure the well-posedness of the scheme, a pair of carefully defined finite element
spaces is used for the stress, displacement and rotation such that the inf-sup condi-
tion holds. An appealing feature of the method is that piecewise constant functions
are used for the approximations of stress, displacement and rotation, which greatly
simplifies the implementation. In particular, the stress space is defined delicately such
that the stress bilinear form is localized around each vertex, which allows for the lo-
cal elimination of the stress, resulting in a cell-centered system. By choosing different
definitions of the space for rotation, we develop two variants of the method. In partic-
ular, the first method uses a constant function for rotation over the interaction region,
which allows for further elimination and results in a cell-centered system involving
displacement only. A rigorous error analysis is performed for the proposed scheme.
We show the optimal convergence for L2-error of the stress and rotation. Moreover,
we can also prove the superconvergence for L2-error of displacement. Extensive nu-
merical simulations indicate that our method is efficient and accurate, and can handle
problems with discontinuous coefficients.
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1 Introduction

Mixed finite element methods in stress-displacement formulation for linear elasticity is
popular in solid mechanics since they avoid locking and provide a direct approxima-
tion to the stress that is the primary physical interest. Numerous methods have been
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developed in the context of strong stress symmetry [9, 10, 18, 25] and weak stress sym-
metry [7, 8, 11, 29]. From the computational point of view, the introduction of the stress
element will lead to a saddle-point system and result in additional computational costs,
therefore, many of these methods could suffer from extra computational costs. The com-
mon approaches to overcome this issue lie in hybridization and reduction to cell-centered
system. The former has been successfully applied in the context of nonconforming mixed
finite element (MFE) methods [6] and hybridizable discontinuous Galerkin methods [26].
The latter is to design suitable strategies to treat the stress part such that the local elimina-
tion can be applied to obtain a reduced system. In this context, we mention in particular
the multipoint stress mixed finite element method [4, 5]. Therein, MFE spaces with the
lowest order Brezzi-Douglas-Marini (BDM1) degrees of freedom is used for the stress and
piecewise constant approximation is used for the displacement. In addition, the vertex
quadrature rule is used for the computation of the stress bilinear form, which localizes
the stress degrees of freedom. As such, the mass matrix for stress is block-diagonal, and
thus allows local elimination of the stress. The resulting system is symmetric and posi-
tive definite, which enhances the computational efficiency. This method is motivated by
the multipoint flux mixed finite element (MFMFE) method [21,27,28] for Darcy flow that
is closely related to the multipoint flux approximation (MPFA) method [1–3, 14, 15]. The
MFMFE method invokes BDM1 on simplicial and quadrilateral grids. As an alternative,
a MFEM based on broken Raviart-Thomas velocity space is proposed in [23,24]. All these
methods share the similar idea that a vertex quadrature rule is applied for the compu-
tation of the mass matrix, which results in a block-diagonal mass matrix. Therefore, the
flux can be locally eliminated, which leads to a cell-centered pressure system, rendering
the method computationally attractive.

In this paper we aim to develop a new method that only uses piecewise constant ap-
proximations for the involved unknowns, that can be further reduced to a symmetric pos-
itive definite system. Our method is closely related to the multipoint stress mixed finite
element method proposed in [4, 5], but with much simpler construction and implemen-
tation in the sense that no special quadrature rule is needed. The devising of the stress
space is more subtle as it needs to be carefully balanced with the displacement such that
the inf-sup condition holds. To this end, we divide the quadrilateral element into four
smaller quadrilaterals by connecting the interior points to the midpoint of each edge and
then define the stress space as a constant function over each smaller quadrilateral, and at
the same time it is normal continuous over the edges lying on the quadrilaterals, but no
continuity is imposed for the new edges generated by the subdivision. As a consequence,
the bilinear form associated with the stress is localized around each vertex, which resem-
bles the vertex quadrature rule used in multipoint stress mixed finite element method.
The major difference is that we use piecewise constant function to avoid the quadrature
rule. Then we develop two variants of the method by choosing different spaces for the ro-
tation. In the first method, we let the rotation be a constant function over each interaction
region formed by the four smaller quadrilaterals sharing the original vertex. Then the
system can be further reduced to achieve a symmetric and positive definite cell-centered
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system for the displacement only. In the second method, we choose the rotation to be
a constant function over each quadrilateral. In this case, the rotation can not be further
eliminated, but this variant can handle discontinuous coefficients accurately. In particu-
lar, a simple element-wise reconstruction will lead to H(div;Ω)-conforming stress. Our
method can also be viewed as a mixed-type finite volume method, but we can carry out
the error analysis in the framework of finite element methods. This can simplify the
analysis as it is well-known it is not always easy to analyze finite volume method. We
emphasize that the current approach shares a conceptual similarity with the method pro-
posed in [29], particularly in the use of primal and dual grids to ensure method stability.
The first method introduced in this paper, after the elimination of stress and rotation vari-
ables, results in a smaller system compared to that of [30], potentially leading to faster
computations. The second method presented here incorporates displacement and rota-
tion in the final system, with its size determined by the number of primal elements. In
contrast, the size of the final system in the method proposed by [30] is dependent on the
number of primal edges. Moreover, the method from [30] is capable of handling highly
distorted grids, however, the current methods require the O(h2) mesh condition.

We perform a rigorous error analysis for the proposed scheme. The unique solvabil-
ity of the solution is established. Our method also inherits the locking-free property of
standard mixed finite element method. Besides, we also prove the superconvergence of
L2-error of displacement under the assumption that the solution is smooth enough. In
summary, our method owns several appealing features, which include: (1) the method
enjoys local conservation, and a simple reconstruction will yield H(div;Ω)-conforming
stress; (2) it is locking-free, which allows to handle problems with nearly incompressible
materials; (3) piecewise constant functions are used for all the unknowns, which makes
the implementation easy; (4) the stress bilinear form is block-diagonal, which allows lo-
cal elimination of stress and reduction to a cell-centered system. All these salient features
make our method a good candidate for handling problems arising from practical appli-
cations.

Extensive numerical simulations including three-dimensional tests are carried out.
We observe that both methods deliver at least first-order convergence for all variables in
either structured or smooth unstructured grids, superconvergence of displacements and
rotation are observed. Moreover, by taking average of stress tensor inside each element
also leads to superconvergence in structured and some types of smooth unstructured
grids. Besides, our methods are observed to be much more accurate than BDM1 with
mass lumping strategies, locking-free properties are found as expected and the ability to
solve challenging highly heterogeneous media are demonstrated.

The major contributions of the paper can be summarized as follows:

1. We design a locally conservative and locking-free method in stress-displacement
formulation with piecewise constant approximations that allows reduction to a cell-
centered system.

2. We prove the convergence error estimates for all the involved variables. Moreover,
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the superconvergence for displacement can be proved under the assumption that
the solution is smooth smooth.

3. We perform extensive numerical simulations including three-dimensional tests to
demonstrate the performance of the scheme. Furthermore, the numerical results
indicate that our method has superior performance in terms of accuracy and effi-
ciency.

The rest of the paper is organized as follows. In the next section, we introduce the model
problem and present the corresponding weak formulation. In Section 3, we describe the
proposed methods. The comprehensive error analysis and the superconvergence for L2-
error of displacement are performed in Section 4. The extension of the proposed scheme
to Darcy equations and the Stokes equations are given in Section 5. In Section 6, extensive
numerical simulations including three-dimensional tests are carried out to demonstrate
the capability, efficiency and superior performance of the proposed methods.

2 The mathematical model

Let Ω⊂Rd,d=2,3 be a polygonal domain. We consider the following model problem

Aσ= ε(u) in Ω, (2.1)
−divσ= f in Ω, (2.2)

where u=0 on ∂Ω and A is the compliance tensor determined by material parameters of
the elastic medium. In a homogeneous isotropic elastic medium, A has the form

AG=
1

2µ

(
G− λ

dλ+2µ
tr(G)I

)
.

Here λ and µ are positive, called the Lamé parameters, tr(G) is the trace of function G,
and I is the identity matrix. We define ∥G∥2

A=(AG,G). Now we introduce some notation
that will be used throughout the paper. The norms and seminorms of the Sobolev spaces
Wk,p(O), k∈R, p>0 are denoted by ∥·∥Wk,p(O) and |·|Wk,p(O), respectively, where O⊂Ω,
Ω ⊂Rd. When p=2, we use Hr(O) to represent the corresponding space. The spaces
of vector- and matrix-valued functions with all the components in Hr(O) will be respec-
tively denoted as Hr(O) and Hr(O). The corresponding norm and semi-norm are respec-
tively denoted as ∥·∥Hr(O) and |·|Hr(O). We use (·,·)D to represent the standard L2-inner
product over D⊂Rd and when D coincides with Ω, the subscript will be omitted. The cor-
responding norm is denoted as ∥·∥L2(D). We define H(div;Ω):={v∈L2(Ω),∇·v∈L2(Ω)},
which is equipped with the norm ∥v∥2

div = ∥v∥2
L2(Ω)

+∥∇·v∥2
L2(Ω)

. In addition, we use
H(div;Ω) to represent the tensor field where each row belongs to H(div;Ω).

We define the following spaces:

Σ :={τ∈H(div;Ω)}, U :=L2(Ω), Γ :=L2(Ω).
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Moreover, we define the constant tensor

δ=

(
0 −1
1 0

)
.

Introducing the Lagrange multiplier γ= rot(u), where

rot(u)=
1
2

(
− ∂u1

∂y
+

∂u2

∂x

)
for u=(u1,u2)T, we have Aσ=∇u−γδ. Then we can propose the following weak formu-
lation when d=2: Find (σ,u,γ)∈Σ×U×Γ such that

(Aσ,w)+(u,divw)+(as(w),γ)=0, ∀w∈Σ,
−(divσ,v)=( f ,v), ∀v∈U,
(as(σ),ξ)=0, ∀ξ∈Γ,

where as(w)=w12−w21. When d=3, we should define

Γ :={w∈L2(Ω);w=−wT}, as(w)=(w32−w23,w31−w13,w21−w12)
T.

Moreover,

E(p)=

 0 −p3 p2
p3 0 −p1
−p2 p1 0

 for p∈R3.

Then the weak formulation can be written as follows: Find (σ,u,γ)∈Σ×U×Γ such that

(Aσ,w)+(u,divw)+(w,γ)=0, ∀w∈Σ,
(divσ,v)=( f ,v) ∀v∈U,
(σ,ξ)=0, ∀ξ∈Γ.

Here for any w∈L2(Ω) and ξ∈Γ, we have

(w,ξ)=(as(w),E−1(ξ)).

The well-posedness of the weak formulation can be found in [7,8], which is omitted here
for simplicity.

3 Description of the new scheme

In this section, we will introduce the discrete formulation and state the main results of this
paper. To simplify the presentation, we limit to d=2 for the construction and analysis of
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Figure 1: The macro-element cell is divided into four subcells (left); the black solid lines represent the primal edges and
the red dashed lines represent the dual edges (inner subcell edges). The interaction region is formed by the union of four
subcells Ei , i=1,··· ,4 sharing the common vertex (right). The filled dots denote the cell displacement {ui} and the blue
dots denote the stress {σi}.

the proposed scheme. The proposed scheme can be extended to d=3 naturally. Moreover,
we also carry out numerical simulations for d=3. To begin, we introduce some notation
that will be used throughout the paper. We let TM represent the partition of the domain
Ω into quadrilateral meshes. Each element M∈TM is considered as the macro-element.
The union of all the edges generated in this partition is denoted by Fpr. For each macro-
element M, we choose one interior point and connect it to the midpoints of the edges of
M, then M is decomposed into the union of four subcells. Owing to this subdivision,
each edge e∈Fpr is divided into two equal half edges, and the union of all the half edges

is denoted as F
1
2
pr; see Fig. 1 for an illustration. Furthermore, four inner subcell edges are

generated in each macro-element, and the union of all the new edges lying inside of the

macro-element is denoted as Fdl . We let Fh :=F
1
2
pr∪Fdl . The union of subcells is denoted

as Th. In addition, we use D to represent the interaction region, which is formed by
the four subcells sharing the common vertex; see Fig. 1. The union of all the interaction
regions is denoted by TD. We let hD represent the diameter of the element D, where D
could be the macro-element or the subcell and we let h :=max{hD}. Moreover, we use
he to represent the length of edge e. For on boundary facet e, we use ne to represent the
unit normal vector of pointing outside of Ω. For an interior edge, we fix ne as one of the
two possible unit vectors. When there is no ambiguity, we use n to simplify the notation.
Let k≥0 represent the polynomial order. We use Pk to represent the polynomial function
whose order is less than or equal to k and use Qk to represent the space of polynomials
of order at most k in each variable. Let q, v and ω be scalar-, vector- and matrix-valued
functions, respectively. For any two adjacent elements E+ and E− sharing the common
facet e, i.e., e=∂E+∩∂E−, the jumps of q, v and ω are given by

JqK :=q|E+−q|E− , JvK :=v|E+−v|E− , JωK :=ω|E+−ω|E− .

On a boundary facet, we set JqK :=q, JvK :=v, JωK :=ω.
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3.1 Preliminaries

• (Method 1). We define the following spaces, which are important to define our
multipoint stress control volume method:

Σ∗
h :={wh ∈P0(E), ∀E∈Th, Jwh ·nK|e =0, ∀e∈F

1
2
pr\∂Ω},

Uh :=[Uh]
2={vh ∈P0(M), ∀M∈TM},

Γ1
h :={µ∈P0(D), ∀D∈TD}.

The right panel of Fig. 1 displays the degrees of freedom of Σ∗
h and Uh over each

interaction region, which also indicates the stress is localized around each interac-
tion region and can be locally eliminated, which inherits the similar idea to that of
multipoint stress mixed finite element method [28].

• (Method 2). The stress and displacement spaces of Method 2 are the same to that
of Method 1, the only difference lies in the definition of the rotation space. To this
end, we define the following finite dimensional space:

Γ2
h :={µh ∈P0(M), ∀M∈TM}.

We remark that the differences between these two method are the choice of the
space for the rotation. In Method 1, we can apply local elimination for both stress
and rotation. In Method 2, we can only apply local elimination for stress. More
details can be found in Section 4.4.

The basis functions for Σ∗
h over each interaction region (cf. Fig. 1) are defined as

v1=


1

t4×t1
(t1

4,t2
4), (x,y)∈E1,

1
t2×t1

(t1
2,t2

2), (x,y)∈E2,
v2=


1

t1×t2
(t1

1,t2
1), (x,y)∈E2,

1
t3×t2

(t1
3,t2

3), (x,y)∈E3,

v3=


1

t2×t3
(t1

2,t2
2), (x,y)∈E3,

1
t4×t3

(t1
4,t2

4), (x,y)∈E4,
v4=


1

t3×t4
(t1

3,t2
3), (x,y)∈E4,

1
t1×t4

(t1
1,t2

1), (x,y)∈E1,

where ti := (t1
i ,t2

i )
T, i = 1,··· ,4 represents the unit tangential vector of ei. Here a×b :=

a1b2−a2b1 for a=(a1,a2)T and b=(b1,b2)T.
When the quadrilateral grid is reduced to the rectangular gird, then we can get the

following simplified basis functions

v1=(1,0), E1∪E2, v2=(0,1), E2∪E3,
v3=(−1,0), E3∪E4, v4=(0,−1), E4∪E1.
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Figure 2: Two subcells E1 and E2 associated with a common face F in 3D, u1 and u2 are the centers of two macro
elements, each black dot denotes a cell displacement, cyan dot denotes the stress σ1, the dashed edges are edges in dual
grid, the solid edges are edges in macro-element.

One can observe from the above definitions that the basis functions associated with Σh
are rather easy to construct. Since we only use piecewise constant functions, the imple-
mentation is pretty simple, moreover, direct implementation on the physical element is
enough. Compared to the methods proposed in [5], our method is easier to construct, and
no special quadrature rule is needed. In particular, our numerical simulations indicate
that the accuracy of our method is quite good.

In 3D, we only consider the partition of grid as rectangular cuboid and the basis func-
tions are defined in a similar way to the above. For example, let E1 and E2 are two subcells
in 3D associated with a face F (see Fig. 2), then we can define the basis function as

v1=(1,0,0), E1∪E2.

We remark that Σ∗
h is a vector field, we can extend it to define the stress space, i.e., Σh :=

[Σ∗
h]

2. We specify the degrees of freedom for Σ∗
h as follows: for e∈F

1
2
pr

ϕe(v) :=
∫

e
v·n. (3.1)

Lemma 3.1. Σ∗
h is uniquely determined by the degrees of freedom given in (3.1).

Proof. Since v is a vector function with two components and each component is a constant
over each subcell, then we have

dim(Σ∗
h)=2|Th|−|F

1
2
pr\∂Ω|.

Let SD represent the degrees of freedom corresponding to (3.1), then we have |SD|=|F
1
2
pr|.

We can associate each edge in F
1
2
pr\∂Ω to two subcells in Th and associate each edge in ∂Ω

to one subcell in Th, therefore, we have dim(Σ∗
h)−|SD|= 0. Then it suffices to show the

uniqueness. Suppose v∈Σ∗
h is defined such that all degrees of freedom corresponding to

(3.1) are equal to zero. Then we have for v restricted to each subcell E satisfying v·n1=0,

v·n2=0, where ni, i=1,2, are the unit normal vector of the edge in F
1
2
pr∩∂E. Then we can

infer that v=0. Thus, the proof is completed.
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To favor later analysis, we define the following semi-norm/norm

∥vh∥2
1,h = ∑

e∈F
1
2

pr

h−1
e ∥JvhK∥2

L2(e), ∥(vh,ηh)∥2
h =∥vh∥2

1,h+∥ηh∥2
L2(Ω).

3.2 The discrete formulation and statement of the main results

In the following we use Γh to represent Γ1
h and Γ2

h if there is no need to distinguish them.
The discrete formulation for (2.1)-(2.2) reads as follows: Find (σh,uh,γh) ∈ Σh×Uh×Γh
such that

(Aσh,wh)− ∑
e∈Fdl

(uh,JwhnK)e+(as(wh),γh)=0, ∀wh ∈Σh, (3.2)

− ∑
e∈F

1
2

pr

(σhn,JvhK)e =( f ,vh), ∀vh ∈Uh, (3.3)

(as(σh),ξh)=0, ∀ξh ∈Γh. (3.4)

We remark that the first term on the left-hand side of (3.2) is block-diagonal, thereby, we
can locally eliminate σh to get a reduced system. This is further explained in Section 4.4.

Remark 3.1 (Local conservation). For each macro-element M, setting v=1 in M and zero
otherwise, we can achieve the following local conservation owing to (3.3)

−(σhn,1)∂M =
∫

M
f .

This local conservation is important in many applications. Moreover, it is also crucial for
constructing equilibrated stress in the context of a posteriori error estimation.

Remark 3.2 (Link to existing methods). Our method is closely related to the method pro-
posed in [4, 5]. In [4, 5], BDM1 is used for the approximation of stress, and piecewise
constant function is used for the approximation of displacement, then a vertex quadra-
ture rule is invoked to localize the stress degrees of freedom around each vertex, which
allows the local elimination of the stress, resulting in a cell-centered system. Our meth-
ods use piecewise constant functions for all the invoked unknowns. Instead of using the
vertex quadrature rule, we choose the stress space to be broken H(div;Ω)-conforming,
which can naturally localize the stress degrees of freedom. As such, the stress bilinear
form is block-diagonal, which resembles the methods proposed in [4, 5].

On the other hand, we also compare our method with the staggered cell-centered DG
method developed by L. Zhao and E.-J. Park [29]. In [29], the method is constructed by
connecting the interior points to the vertices of the macro-element, and the stress space
is defined to be normal continuous over the dual edges (our current method is normal
continuous over the primal half edges), which is the key difference to our current setting.
Both the method proposed in [29] and our current method allow local elimination of the
stress.
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Remark 3.3. For problems with discontinuous compliance tensor A, the rotation maybe
discontinuous across the elements sharing the vertex, then the rotation space in Method
1 may result in huge error near the interface of high and low coefficient regions. To
this end, we consider a modified variational formulation based on the scaled rotation
γ̃=A−1γ by observing σ=A−1∇u−A−1γ. If A is strong discontinuous, σ is smoother
than Aσ which means γ̃ is smoother than γ. As a result, the modified weak formulation
is to find (σh,uh,γ̃h)∈Σh×Uh×Γh such that

(Aσh,wh)− ∑
e∈Fdl

(uh,JwhnK)e+(as(Awh),γ̃h)=0, ∀wh ∈Σh, (3.5)

− ∑
e∈F

1
2

pr

(σhn,JvhK)e =( f ,vh), ∀vh ∈Uh, (3.6)

(as(Aσh),ξh)=0, ∀ξh ∈Γh. (3.7)

By the definition of A, as(Aσh)=1/(2µ)as(σh). We will provide an example with highly
heterogeneous A to illustrate the performance of (3.5)-(3.7). To have a uniform presenta-
tion in relation to Method 2, in the following, we carry out the well-posedness and error
analysis for (3.2)-(3.4). The analysis for the modified formulation (3.5)-(3.7) is similar.

Before closing this section, we state the main results of the paper.
Let (σ,u,γ) be the exact solution of (2.1)-(2.2) and let (σh,uh,γh)∈Σh×Uh×Γh be the

discrete solution of (3.2)-(3.4) obtained by either Method 1 or Method 2. Assume that
(σ,u)∈ H1(Ω)×H1(Ω), then there exists a positive constant C independent of the mesh
size such that

∥σ−σh∥L2(Ω)≤Ch
(
∥σ∥H1(Ω)+∥γ∥H1(Ω)

)
,

∥u−uh∥L2(Ω)+∥γ−γh∥L2(Ω)≤Ch
(
∥σ∥H1(Ω)+∥γ∥H1(Ω)

)
.

In addition, if we assume divσ∈H1(Ω), then the following superconvergence holds

∥Qhu−uh∥L2(Ω)≤Ch2
(
∥σ∥H1(Ω)+∥γ∥H1(Ω)+∥divσ∥H1(Ω)

)
,

where Qh is defined in (4.1).

4 Error analysis

In this section, we show the unique solvability of the discrete formulation (cf. Theo-
rem 4.1) and prove the convergence error estimates for L2-error of stress and rotation; see
Theorem 4.2.
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4.1 Some elementary properties

To begin, we introduce the bilinear bijection mapping to facilitate later analysis. For any
element E∈Th there exists a bilinear bijection mapping F : Ê→E, where Ê=[0,1]2 is the
reference square. Denote the Jacobian matrix by DF and let J = |det(DF)|. For x= F(x̂),
we have

DF−1(x)=(DF)−1(x̂), JF−1 =
1

J(x̂)
.

Let Ê has vertices r̂1=(0,0)T, r̂2=(1,0)T, r̂3=(1,1)T and r̂4=(0,1)T. The bilinear mapping
F and its Jacobian matrix are given by

F(r̂)= r1+r21 x̂+r41ŷ+(r34−r21)x̂ŷ,
DF=[r21,r41]+[(r34−r21)ŷ,(r34−r21)x̂],

where rij = ri−rj. In addition, we recall the Piola transformation defined as follows

v=
1
J

DFv̂◦F−1.

∥v∥L2(M) and ∥v̂∥L2(M) are equivalent uniformly in h. Moreover, it is shown in [16,
Lemma 5.5] that

|v̂|j,M̂ ≤Chj∥v∥j,M, j≥0.

For the rest of the paper, we assume that the quadrilateral elements are O(h2)-perturbations
of parallelograms, following terminology from [16]. Elements of this type are obtained
by uniform refinements of general quadrilateral grids. In this case, we have

|DF|W1,∞(M)≤Ch2 and
∣∣∣1

J
DF
∣∣∣
W j,∞(M)

≤Chj−1, j=1,2.

We let Pi
h be the L2-orthogonal projection onto Γh, i=1,2 corresponding to Method 1

and Method 2. More specifically, for Method 1, we have

(Phq,µ)D =(q,µ)D, ∀µ∈P0(D), D∈TD,

and for Method 2, we have

(Phq,µ)M =(q,µ)M, ∀µ∈P0(M), M∈TM.

The following approximation properties holds for Pi
h

∥q−P1
h q∥L2(D)≤ChD∥∇q∥L2(D), ∀q∈H1(D),

∥q−P2
h q∥L2(M)≤ChM∥∇q∥L2(M), ∀q∈H1(M).
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We use Qh to represent the L2-orthogonal projection onto Uh, i.e.,

(Qhv,θ)M =(v,θ)M, ∀θ∈P0(M), M∈TM. (4.1)

It holds

∥v−Qhv∥L2(M)≤ChM∥v∥H1(M), ∀v∈H1(M), M∈TM.

We define for E∈Th and v∈H1(E)

(J v·n,µ)e =(v·n,µ)e, ∀µ∈P0(e), e∈F
1
2
pr∩∂E, (4.2)

which is well-defined owing to the degrees of freedom given in (3.1). It is easy to check
that Πuv=v if v is a constant vector over each macro-element M, then an application of
the Bramble-Hilbert lemma yields

∥v−J v∥L2(M)≤Ch|v|H1(M), ∀v∈H1(M), M∈TM.

We denote the lowest order Raviart-Thomas space on rectangular mesh as URT
h (cf. [13]).

The projection operator Πh : H1(M)→URT
h is defined such that the following holds

(Πhv·n,q)e =(v·n,q)e, ∀q∈P0(e), v∈H1(M), M∈TM, s⊂∂M. (4.3)

When v∈Uh, this means v /∈H1(M), (4.3) can be interpreted as

(Πhv·n,q)e =
2

∑
k=1

(v·n,q)ek ,

where ek ∈F
1
2
pr is the half edge of e. In addition, the following holds (cf. [28, (3.9)])

∥Πhv∥H1(M)≤C∥v∥H1(M), ∀v∈H1(M), M∈TM.

Furthermore, the following error estimates also hold

∥v−Πhv∥L2(M)≤ChM|v|H1(M), ∀v∈H1(M), M∈TM, (4.4)

∥∇·(v−Πhv)∥L2(M)≤Chr∥∇·v∥Hr(M), 0≤ r≤1. (4.5)

For a vector field v :=(v1,v2)T, we define

curlv=
(

∂yv1 −∂xv1
∂yv2 −∂xv2

)
.
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We use Ie
h and Πh to represent the extension of J and Πh to the matrix field, i.e., Ie

h=[Πu]2

and Πh =[Πh]
2. We can deduce from the definition of Πh that

(vh,divΠhwh)= ∑
M∈TM

(vh,Πhwhn)∂M = ∑
M∈TM

(vh,whn)∂M

= ∑
e∈F

1
2

pr

(JvhK,whn)e, ∀vh ∈Uh,wh ∈Σh.

Therefore, the discrete formulation can be recast into the following equivalent form: Find
(σh,uh,γh)∈Σh×Uh×Γh such that

(Aσh,wh)+(uh,divΠhwh)+(as(wh),γh)=0, ∀wh ∈Σh, (4.6)
−(divΠhσh,vh)=( f ,vh), ∀vh ∈Uh, (4.7)
(as(σh),ξh)=0, ∀ξh ∈Γh. (4.8)

It follows from (4.7) that

divΠhσh =−Qh f . (4.9)

We can observe from (4.9) that we can construct the H(div;Ω)-conforming stress by sim-
ply applying the projection operator Πh, which is computationally cheap.

Now we recall the following stabilized Q1−Q0 pair for the Stokes equations (cf. [22]).

Lemma 4.1. We define the finite element spaces for each macro-element M,M∈Tpr as follows:

Vh(M) :={q=(q1,q2)
T ∈H1

0 (M) : q|E ∈Q1(E), ∀E∈Th such that E⊂M},

Wh(M) :={w∈L2(Ω) : w|E ∈Q0(E), ∀E∈Th such that E⊂M}.

Then, there exists a unique solution (ρh,p∗h)∈Vh(M)×Wh(M) to the following system

(∇ρh,∇v)M+(p∗h,∇·v)M =( f ,v)M, ∀v∈Vh(M), (4.10)

(divρh,q)M+β ∑
e∈Fdl∩M

he(Jp∗hK,JqK)e =(g,q)M, ∀q∈Wh(M), (4.11)

where β>0 is the stabilization parameter. Moreover, it holds

∥ρh∥H1(Ω)≤C∥g∥L2(Ω), (4.12)

where ρh over each macro-element is defined by (4.10)-(4.11).

Lemma 4.2 (inf-sup condition). For Method 2, there exists a positive constant C independent
of the mesh size such that

sup
0 ̸=wh∈Σh

∑
e∈F

1
2

pr

(whn,JvhK)e+(as(wh),ηh)

∥wh∥L2(Ω)
≥C∥(vh,ηh)∥h, ∀(vh,ηh)∈Uh×Γh. (4.13)
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Proof. Over each subcell E∈Th, we define

(ψ
1
n,µ)e =h−1

e (JvhK,µ)e, ∀µ∈P0(e), e∈F
1
2
pr∩∂E, (4.14)

which implies that

∑
e∈F

1
2

pr

(ψ
1
n,JvhK)e = ∑

e∈F
1
2

pr

h−1
e ∥JvhK∥2

L2(e)=∥vh∥2
1,h.

Moreover, the scaling arguments and (4.14) imply

∥ψ
1
∥L2(Ω)≤C∥vh∥1,h. (4.15)

We define ψ
2
∈Σh by

ψ
2
=curl(ρh). (4.16)

Since (ρh)|M ∈Vh(M), it is easy to check that curl(ρh)∈Σh. Therefore, in view of (4.11)
with g=ηh−as(ψ

1
), we can obtain

(as(ψ
1
+ψ

2
),ηh)=(as(ψ

1
),ηh)+(divρh,ηh)=∥ηh∥2

L2(Ω).

Here we use the fact that ηh is a constant function over each macro-element M, and thus,
the jump term for pressure vanishes.

It follows from (4.12) and (4.15) that

∥ψ
2
∥L2(Ω)≤C∥ρh∥H1(Ω)≤C∥ηh−as(ψ

1
)∥L2(Ω)≤C∥(vh,ηh)∥h. (4.17)

Then, we define wh =ψ
1
+ψ

2
, it will lead to

∑
e∈F

1
2

pr

(whn,JvhK)e+(as(wh),ηh)= ∑
e∈F

1
2

pr

h−1
e ∥JvhK∥2

L2(e)+∥ηh∥2
L2(Ω),

where we use curl(ρh)n|e=0 for any e∈F
1
2
pr if ρh=0 on ∂M. This, (4.15) and (4.17) complete

the proof.

Lemma 4.3 (inf-sup condition). For Method 2, there exists a positive constant C such that

sup
0 ̸=w∈Σh

(v,divΠhw)+(as(w),η)
∥w∥L2(Ω)

≥C(∥v∥L2(Ω)+∥η∥L2(Ω)), ∀(v,η)∈Uh×Γh.
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Proof. For v∈L2(Ω), there exists θ∈H1(Ω) (see, for example, [17]), such that

divθ=v, ∥θ∥H1(Ω)≤C∥v∥L2(Ω). (4.18)

It follows from the trace inequality and the interpolation error estimate that

∥Ie
hθ∥L2(Ω)≤C∥θ∥H1(Ω). (4.19)

We can infer from (4.18) and (4.2) that

∥v∥2
L2(Ω)=(v,divθ)= ∑

e∈F
1
2

pr

(JvK,θn)e = ∑
e∈F

1
2

pr

(JvK, Ie
hθn)e.

Then we have

(v,divΠh Ie
hθ)= ∑

M∈TM

(v,Πh Ie
hθn)∂M

= ∑
M∈TM

(v, Ie
hθn)∂M = ∑

e∈F
1
2

pr

(JvK, Ie
hθn)e =∥v∥2

L2(Ω). (4.20)

We define w2=curl(ρh) with g=η− Ie
hθ (cf. Lemma 4.1). Then we have divw2=0 and an

application of Lemma 4.1 yields

(as(Ie
hθ+w2),η)=∥η∥2

L2(Ω) and ∥w2∥L2(Ω)≤C∥v∥L2(Ω).

This and (4.20) complete the proof by taking w= Ie
hθ+w2.

Remark 4.1. We remark that the proof for Lemma 4.2 and Lemma 4.3 can be easily ex-
tended to proving the inf-sup condition for Method 1. The only difference is to define
the Stokes pair used in Lemma 4.1 for each D,D∈TD; indeed, we treat D as the “macro-
element” in this case.

Theorem 4.1 (Existence and uniqueness). There exists a unique solution to (3.2)-(3.3). In
addition, there exists a positive constant C independent of the mesh size such that the following
estimate holds

∥σh∥L2(Ω)+∥(uh,γh)∥h ≤C∥ f∥L2(Ω). (4.21)

Proof. We first show the stability estimate (4.21). Taking wh =σh, vh =uh, ξh =γh in (3.2)-
(3.3) and summing up the resulting equations, we have

∥σh∥2
A=( f ,uh). (4.22)

Next, it follows from Lemma 4.2 and (3.2) that

∥(uh,γh)∥h ≤C∥Aσh∥L2(Ω).
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This, (4.22), the Cauchy-Schwarz inequality and the discrete Poincaré inequality give
(cf. [12])

∥σh∥A≤C∥ f∥L2(Ω)∥uh∥L2(Ω)≤C∥ f∥L2(Ω)∥uh∥1,h ≤C∥ f∥L2(Ω)∥σh∥A,

which combined with Young’s inequality implies

∥σh∥A≤C∥ f∥L2(Ω).

As such, we have ∥(uh,γh)∥h ≤C∥ f∥L2(Ω).
Since (3.2)-(3.3) is a square linear system, the uniqueness of solution implies the exis-

tence. Setting f =0 in (4.21) implies σh =0, uh =0 and γh =0.

The trapezoidal quadrature rule is exact for scalar linear functions, therefore, we have∫
Ê

v̂k =
1
4

4

∑
i=1

v̂k | eik, k=1,2,

where eik is the half edge of e∈∂M.

Lemma 4.4. For χ∈P0(M̂), M∈TM, where M̂ is the reference element corresponding to M, it
holds

(χ,v−Πhv)M̂ =0, ∀v∈Σ∗
h.

Proof. Let v = (v1,v2), then the exactness of the trapezoidal quadrature rule for scalar
linear functions imply that∫

M̂
(Πhv)k =

1
4

4

∑
i=1

(Πhv)k |eik , k=1,2.

As s consequence, it holds ∫
M̂
((I−Πh)v)k =0,

which completes the proof.

Lemma 4.5. For any wh ∈Σh and θ∈H1(Ω), we have

(Πhwh−wh,θ)≤Ch∥Πhwh−wh∥L2(Ω)|θ|H1(Ω).

Proof. On the reference element, we have

(Π̂hŵh−ŵh, θ̂)M̂ ≤C∥Π̂hŵh−ŵh∥L2(M̂)∥θ̂∥H1(M̂).

Owing to Lemma 4.4, we have

(Π̂hŵh−ŵh, θ̂)M̂ ≤C∥Π̂hŵh−ŵh∥L2(M̂)∥∇θ̂∥L2(M̂).

Then the transformation back to the element M yields the desired estimate.
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4.2 The convergence error analysis

Lemma 4.6. Let (u,p) be the exact solution and let (uh,ph)∈Uh×Ph be the discrete solution of
(4.6)-(4.7). Then, the following error equations hold

(A(σ−σh),w)+(u−uh,divΠhw)+(γ−γh,as(w))

=(Aσ+γδ,w−Πhw), ∀w∈Σh, (4.23)
(divΠh(σ−σh),v)=0, ∀v∈Ph, (4.24)
(as(σ−σh),ξ)=0, ∀ξ∈Γh. (4.25)

Proof. First, we have from integration by parts that

(u,divΠhw)=−(∇u,Πhw)=−(Aσ+γδ,Πhw),

thereby,

(Aσ,w)+(u,divΠhw)+(γ,as(w))=(Aσ+γδ,w−Πhw),

which combined with (4.6) implies (4.23). Then (4.24) follows directly from the definition
of Πh and (4.7).

Theorem 4.2. Let (σ,u) be the exact solution and let (σh,uh)∈Σh×Uh be the discrete solution of
(4.6)-(4.7). Assume that (σ,γ)∈H1(Ω)×H1(Ω), then the following convergence error estimates
hold

∥σ−σh∥L2(Ω)≤Ch
(
∥σ∥H1(Ω)+∥γ∥H1(Ω)

)
and

∥Qhu−uh∥L2(Ω)+∥γh−Phγ∥L2(Ω)≤Ch
(
∥σ∥H1(Ω)+∥γ∥H1(Ω)

)
.

Proof. Taking w= Ie
hσ−σh, v=Qhu−uh and ξ=Phγ−γh in (4.23)-(4.25), then it holds

(A(σ−σh), I
e
hσ−σh)+(u−uh,divΠh(Ie

hσh−σh))+(γ−γh,as(Ie
hσ−σh))

=(Aσ+γδ, Ie
hσ−σh−Πh(Ie

hσ−σh)),
(divΠh(σ−σh),Qhu−uh)=0,
(as(σ−σh),Phγ−γh)=0.

The definition of Πh (cf. (4.3)) yields

(divΠh(σ−σh),Qhu−uh)=(div(σ−Πhσh),Qhu−uh).
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We can infer from the definition of Πh (cf. (4.3)), integration by parts and (4.2) that

(u−uh,divΠh(Ie
hσ−σh))=(Qhu−uh,divΠh(Ie

hσ−σh))

= ∑
T∈TM

(Qhu−uh,Πh(Ie
hσ−σh)n)∂T = ∑

T∈TM

(Qhu−uh,(Ie
hσ−Πhuh)n)∂T

= ∑
T∈TM

(Qhu−uh,(σ−Πhσh)n)∂T =(Qhu−uh,div(σ−Πhσh)).

In view of Lemma 4.4 and the Piola transformation, we have

(Aσ+γδ, Ie
hσ−σh−Πh(Ie

hσ−σh))≤Ch(∥σ∥H1(Ω)+∥γ∥H1(Ω))∥Ie
hσ−σh∥L2(Ω).

Therefore, we have from the Cauchy-Schwarz inequality that

∥Ie
hσ−σh∥2

L2(Ω)=(Ie
hσ−σ, Ie

hσ−σh)+(Aσ+γδ, Ie
hσ−σh−Πh(Ie

hσ−σh))

−(γ−Phγ,as(Ie
hσ−σh))−(as(σ− Ie

hσ),Phγ−γh)

≤C
(

h(∥σ∥H1(Ω)+∥γ∥H1(Ω))+∥Phγ−γh∥L2(Ω)

)
∥Ie

hσ−σh∥L2(Ω). (4.26)

We have from the inf-sup condition (cf. Lemma 4.3) and (4.23) that

∥Qhu−uh∥L2(Ω)+∥γh−Phγ∥L2(Ω)

≤C sup
0 ̸=w∈Σh

(Qhu−uh,divΠhw)+(as(w),Phγ−γh)

∥w∥L2(Ω)

=C sup
0 ̸=w∈Σh

−(A(σ−σh),w)+(Aσ+γδ,w−Πhw)−(γ−Phγ,as(w))

∥w∥L2(Ω)
. (4.27)

The Cauchy-Schwarz inequality and the discrete Poincaré inequality lead to

−(A(σ−σh),w)−(γ−Phγ,as(w))≤C
(
∥σ−σh∥A+∥γ−Phγ∥L2(Ω)

)
∥w∥L2(Ω).

An appeal to Lemma 4.4 yields

(Aσ+γδ,w−Πhw)≤Ch(∥σ∥H1(Ω)+∥γ∥H1(Ω))∥w∥L2(Ω).

Therefore, we have

∥Qhu−uh∥L2(Ω)+∥γh−Phγ∥L2(Ω)

≤C
(
∥σ−σh∥A+∥γ−Phγ∥L2(Ω)+h(∥σ∥H1(Ω)+∥γ∥H1(Ω))

)
. (4.28)

Combining the above with (4.26) implies

∥Ie
hσ−σh∥L2(Ω)≤Ch(∥σ∥H1(Ω)+∥γ∥H1(Ω)).
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As a consequence of the triangle inequality and the interpolation error estimate, one has

∥σ−σh∥L2(Ω)≤∥σ− Ie
hσ∥L2(Ω)+∥Ie

hσ−σh∥L2(Ω)≤Ch(∥σ∥H1(Ω)+∥γ∥H1(Ω)).

This and (4.28) give

∥Qhu−uh∥L2(Ω)+∥γh−Phγ∥L2(Ω)≤Ch(∥σ∥H1(Ω)+∥γ∥H1(Ω)).

Therefore, the proof is completed.

4.3 Superconvergence

In this subsection, we show the superconvergence for ∥Qhu−uh∥L2(Ω), for which we shall
apply the duality argument. To this end, we consider the dual problem

divψ=Qhu−uh in Ω, (4.29)

Aψ=−ε(ϕ) in Ω, (4.30)

which satisfies the following elliptic regularity estimate

∥ϕ∥H2(Ω)≤C∥Qhu−uh∥L2(Ω). (4.31)

This estimate is known to hold, for instance, if the domain Ω is convex (cf. [19]).
In addition, we let Aψ=−∇ϕ+ζδ, where ζ=rot(ϕ). We let ϕh, ψ

h
and ζh denote the

corresponding approximations of ϕ, ψ and ζ based on the discrete formulation (3.2)-(3.4)
with the right-hand side f replaced by Qhu−uh. Then it holds in view of Theorem 4.2
and (4.31)

∥ψ−ψ
h
∥L2(Ω)+∥ζ−ζh∥L2(Ω)≤C

(
h∥ψ∥H1(Ω)+h∥ζ∥H1(Ω)+h∥Qhu−uh∥L2(Ω)

)
≤Ch∥Qhu−uh∥L2(Ω). (4.32)

In the next theorem, we show the superconvergence, for which we assume that the solu-
tion is smooth enough.

Theorem 4.3 (Superconvergence). Let (σ,u) be the exact solution and let (σh,uh,γh)∈Σh×
Uh×Γh be the discrete solution of (3.2)-(3.4) obtained by either Method 1 or Method 2. Assume
that σ∈H1(Ω) with divσ∈H1(Ω) and γ∈H1(Ω), then the following convergence error estimate
holds

∥Qhu−uh∥L2(Ω)≤Ch2
(
∥σ∥H1(Ω)+∥γ∥H1(Ω)+∥divσ∥H1(Ω)

)
.

Proof. We multiply (4.29) by σ−σh and (4.30) by Qhu−uh, and using the fact that Aψ=
−∇ϕ+ζδ, we have

∥Qhu−uh∥2
L2(Ω)=(Qhu−uh,divψ)+(Aψ,σ−σh)+(∇ϕ,σ−σh)

−(ζ,as(σ−σh))+(as(ψ),γ−γh). (4.33)
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In view of the definition of Πh, we can obtain

(divΠh(σ−σh),v)=0, ∀v∈Uh. (4.34)

Taking v=divΠh(σ−σh) in (4.34) above, we have

divΠh(σ−σh)=0,

which yields

div(σ−Πhσh)=div(σ−Πhσ). (4.35)

It follows from (4.23)-(4.25) by setting w=ψ
h
, v=ϕh and ξ= ζh that

(A(σ−σh),ψh
)+(u−uh,divΠhψ

h
)+(γ−γh,as(ψ

h
))=(Aσ+γδ,ψ

h
−Πhψ

h
), (4.36)

(divΠh(σ−σh),ϕh)=0. (4.37)
(as(σ−σh),ζh)=0. (4.38)

As a consequence of (4.36)-(4.38) and (4.33), we have

∥Qhu−uh∥2
L2(Ω)=(Qhu−uh,divψ)+(Aψ,σ−σh)+(∇ϕ,σ−σh)

−(ζ−ζh,as(σ−σh))+(as(ψ),γ−γh)

=(Qhu−uh,div(ψ−Πhψ
h
))+(A(σ−σh),ψ−ψ

h
)+(∇ϕ,σ−σh)

+(Aσ+γδ,ψ
h
−Πhψ

h
)−(ζ−ζh,as(σ−σh))

+(γ−γh,as(ψ−ψ
h
)). (4.39)

As ψ
h

is the approximation of ψ, it holds by proceeding similarly to (4.34)

(Qhu−uh,div(ψ−Πhψ
h
))=0.

The Cauchy-Schwarz inequality and (4.2) lead to

(A(σ−σh),ψ−ψ
h
)≤∥σ−σh∥A∥ψ−ψ

h
∥L2(Ω)

≤Ch2
(
∥σ∥H1(Ω)+∥γ∥H1(Ω)

)
∥Qhu−uh∥L2(Ω).

Now we estimate the third term on the right-hand side of (4.39). To this end, an applica-
tion of integration by parts implies

(∇ϕ,σ−σh)=(∇ϕ,σ−Πhσh)+(∇ϕ,Πhσh−σh)

=−(ϕ,div(σ−Πhσh))−(Πhσh−σh,Aψ−ζδ),
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which coupled with (4.37) and (4.35) yields

(∇ϕ,σ−σh)=−(ϕ−ϕh,div(σ−Πhσh))−(Πhσh−σh,Aψ−ζδ)

=−(ϕ−ϕh,div(σ−Πhσ))−(Πhσh−σh,Aψ−ζδ).

The first term on the right-hand side is bounded by the Cauchy-Schwarz inequality and
the interpolation error estimate

(ϕ−ϕh,div(σ−Πhσ))≤Ch2∥ϕ∥H2∥divσ∥H1(Ω).

It follows from Lemma 4.5 that

(Πhσh−σh,Aψ−ζδ)≤Ch(∥ψ∥H1(Ω)+∥ζ∥H1(Ω))∥Πhσh−σh∥L2(Ω).

The triangle inequality yields

∥Πhσh−σh∥L2(Ω)≤∥Πh(σh−σ)∥L2(Ω)+∥Πhσ−σ∥L2(Ω)+∥σ−σh∥L2(Ω). (4.40)

It holds in view of (4.3)

(Πh(σ−σh)n,µ)e =((Πhσ−σh)n,µ)e, ∀µ∈P0(e), e∈Fpr.

Then the equivalence of norms on finite dimensional spaces yields

∥Πh(σ−σh)∥L2(Ω)≤C∥Πhσ−σh∥L2(Ω).

This, (4.40), the interpolation error estimate and Theorem 4.2 yield

∥Πhσh−σh∥L2(Ω)≤C(h∥σ∥H1(Ω)+h∥γ∥H1(Ω)).

Similarly, the fourth term on the right-hand side of (4.39) can be estimated by Lemma 4.5

(Aσ+γδ,ψ
h
−Πhψ

h
)≤Ch(∥σ∥H1(Ω)+∥γ∥H1(Ω))∥ψ

h
−Πhψ

h
∥L2(Ω)

≤Ch2(∥σ∥H1(Ω)+∥γ∥H1(Ω))∥Qhu−uh∥L2(Ω).

The last two terms on the right-hand side of (4.39) can be bounded by the Cauchy-
Schwarz inequality, Theorem 4.2 and (4.32). The proof is completed by using the above
estimates.

Remark 4.2. Since Qhu is O(h2)-close to u at the center of mass of each element, the above
theorem implies that

∥u−uh∥0,h ≤Ch2,

where

∥u−uh∥0,h =
(

∑
M∈TM

|M|(u(mM)−uh)
2
)1/2

and mM is the center of mass of M∈TM.
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4.4 Reduction to a cell-centered system

The algebraic system yielded by (3.2)-(3.4) has the following form

u=

Aσσ AT
σu AT

σγ

Aσu 0 0
Aσγ 0 0

σ
u
γ

=

0
F
0

, (4.41)

where (Aσσ)ij=(Awj,wi), (Aσu)ij=∑e∈Fdl
(vj,JwinK)e, and (Aσγ)ij=(as(σj),ξi). The defi-

nitions of stress basis functions wi result in matrix Aσσ being block-diagonal with blocks
associated with the mesh vertices. Specifically, for a vertex p shared by k edges for faces
e1,··· ,ek (k=4 in 2D and k=12 in 3D) as shown in Fig. 1. Let w1,w2,··· ,wd,··· ,wdk be the
stress basis functions associated with the vertex p, based on the definition of wi, (A·,·)
localizes basis functions interaction around mesh vertices by decoupling them from the
rest of the basis functions, as a result, the matrix Aσσ is block-diagonal with dk×dk blocks
associated with mesh vertices. It is obvious the bilinear form (Aσ,w) is an inner prod-
uct on Σh and (Aσ,σ)1/2 is a norm in Σh equivalent to ∥·∥L2(Ω), therefore, the blocks of
Aσσ are symmetric and positive definite. Therefore, the stress σ can be easily eliminated
from (4.41) by inverting small local linear systems, which yields a displacement-rotation
system (

Aσu A−1
σσ AT

σu Aσu A−1
σσ AT

σγ

Aσγ A−1
σσ AT

σu Aσγ A−1
σσ AT

σγ

)(
u
γ

)
=

(
F̃
H̃

)
. (4.42)

Clearly, the matrix in (4.42) is symmetric, the inf-sup condition (4.13) implies it is also
positive definite. Indeed, we can state the following lemma.

Lemma 4.7. The displacement-rotation system (4.42) is symmetric and positive definite.

Proof. We only need to prove the positive definiteness. To this end, for any (vT ξT) ̸=0,
we have

(vT ξT)

(
Aσu A−1

σσ AT
σu Aσu A−1

σσ AT
σγ

Aσγ A−1
σσ AT

σu Aσγ A−1
σσ AT

σγ

)(
v
ξ

)
=(AT

σuv+AT
σγξ)T A−1

σσ (AT
σuv+AT

σγξ)>0

owing to the inf-sup condition (4.13).

For Method 2, Eq. (4.42) can not be reduced further since the displacement and ro-
tation are coupled and thus it is the final linear system we need to solve. However, for
Method 1, we can further eliminate the rotation. More precisely, the stress basis and ro-
tation basis associated with a vertex have no interaction with stress basis and rotation
basis associated with an another vertex, which implies that Aσγ is block-diagonal with
d(d−1)/2×dk blocks, which means the rotation matrix Aσγ A−1

σσ AT
σγ is also block-diagonal
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with d(d−1)/2×d(d−1)/2 blocks and thus can be easily inverted. After elimination of
rotation, Equation (4.42) is reduced to(

Aσu A−1
σσ AT

σu−Aσu A−1
σσ AT

σγ(Aσγ A−1
σσ AT

σγ)
−1Aσγ A−1

σσ AT
σu
)
u= F̂. (4.43)

The matrix in (4.43) is symmetric and positive definite, since it is a Schur complement
of the symmetric and positive definite matrix in (4.42); see [20]. We remark that one can
easily design multigrid preconditioners to efficiently solve (4.42) and (4.43).

5 Extension to Darcy flow and the Stokes equations

In this section, we show the extension of the proposed scheme for Darcy flow and the
Stokes equations.

5.1 Darcy flow

We consider the following Darcy flow

u=−∇p in Ω,
∇·u= f in Ω.

The discrete formulation reads as follows: Find (uh,ph)∈Uh×Γ2
h such that

(uh,v)+ ∑
e∈Fdl

(ph,Jv·nK)e =0, ∀v∈Uh, (5.1)

∑
e∈F

1
2

pr

(uh ·n,JqK)e =( f ,q), ∀q∈Γ2
h. (5.2)

The mass matrix corresponding to the first term of (5.1) is block diagonal, and we can
eliminate uh using (5.1). More specifically, uh can be expressed in terms of ph over each
interaction region, that is,

uh =A−1b,

where A is the mass matrix for uh corresponding to each interaction region and p=−(p2−
p1,p3−p2,p3−p4,p4−p1); see Fig. 3. We can observe that this elimination is in a similar
fashion to that of [23, 3.13].

5.2 The Stokes equations

In this subsection, we consider the Stokes equations given by

−∆u+∇p= f in Ω, (5.3)
∇·u=0 in Ω, (5.4)
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e1

Figure 3: One interaction region with four subcells numbered Ei , i=1,··· ,4, in the reference space. The filled dots denote
the cell pressure {pi} and the blue dots denote the velocity {ui}.

which are supplemented with homogeneous Dirichlet boundary condition.
We introduce the auxiliary unknown w =∇u, then (5.3)-(5.4) can be recast into the

following equivalent form

w=∇u in Ω,
−divw+∇p= f in Ω,
∇·u=0 in Ω.

We define the following bilinear forms

Bh(w,v)=− ∑
e∈F

1
2

pr

(wn,JvK)e, B∗
h(v,w)= ∑

e∈Fdl

(v,JwnK)e

and

b∗h(q,v)= ∑
e∈F

1
2

pr

(q,Jv·nK)e, bh(v,q)=− ∑
e∈Fdl

(v·n,JqK)e.

Then the discrete formulation for the Stokes equations reads as follows: Find (wh,uh,ph)∈
Σh×Uh×Γh such that

Bh(wh,v)+b∗h(ph,v)=( f ,v), ∀v∈Uh (5.5)
(wh,H)=B∗

h(uh,H), ∀H∈Σh, (5.6)
bh(uh,q)=0, ∀q∈Γh. (5.7)

In addition, the following adjoint properties hold

Bh(w,v)=B∗
h(v,w), ∀(w,v)∈Σh×Uh,

bh(v,q)=b∗h(q,v), ∀(v,q)∈Uh×Γh.
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Then one can perform the error analysis in a similar fashion to that of the linear elasticity
problem. We can also apply local elimination for the velocity gradient to improve the
computational efficiency.

6 Numerical experiments

In this section, we present several examples to verify the convergence of our method.
Specifically, the relative errors of displacement uh, stress tensor σh and rotation γh and the
corresponding convergence rates will be reported. For simplicity of notation, we denote
∥a−b∥L2(Ω) as the relative L2-error between a and b instead of using ∥a−b∥L2(Ω)/∥b∥L2(Ω).
Moreover, σh has different values in subcells of an macro-element, we compute the mean
value of σh over a macro-element denoted by Mσh and its relative error against exact
solution in the center of each macro-element.

Data availability: The source code for generating the data in all tables can be found
in https://github.com/aggietx/a-new-mixed-fem.

6.1 Example 1: 2D structured grid case

In the first example, the analytical solution is given by

u=
(

cos(πx)sin(2πy)
cos(πy)sin(πx)

)
with Dirichlet boundary condition, and the body force is then computed using Lamé co-
efficients λ=123, µ=79.3. Table 1 shows errors and convergence rates on a sequence of
uniform mesh refinements, computed using rotation over the interaction region (Method
1) and macro-element (Method 2). Convergence rates of uh and σh agree with the theoret-
ical error analysis. Superconvergence of Mσh and rotation γh are observed. Fig. 4 shows
an example of residual distribution which clearly demonstrates the local conservation
property (see Remark 3.1) of the proposed method.

6.2 Example 2: 3D structured grid case

The second example aims to illustrate the convergence behavior of our methods in three
dimension, in particular, the analytical solution is

u=

 0
−(ex−1)(y−cos( π

12 )(y−
1
2 )+sin( π

12 )(z−
1
2 )−

1
2 )

−(ex−1)(z−sin( π
12 )(y−

1
2 )−cos( π

12 )(z−
1
2 )−

1
2 )


and Dirichlet boundary condition is considered with λ = µ = 79.3. Relative errors and
convergence rates for both methods are presented in Table 2. It is observed for rotation
defined over the macro-element, convergence rates of all variables are similar as the first
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Figure 4: residual distribution, h=1/32, Example 1.

example, for rotation defined over the interaction region, convergence rate of γh and
σh are in accordance with error analysis, there are also superconvergence of Mσh and
rotation γh.

6.3 Example 3: heterogeneous materials

The third example is taken from [4] and we aim to demonstrating the performance of the
proposed methods for heterogeneous materials. We set the analytical solution u as

u=
1

(1−χ)+κχ

(
sin(3πx)sin(3πy)
sin(3πx)sin(3πy)

)
,

where χ(x,y) is defined as

χ(x,y)=
{

1, if min(x,y)> 1
3 and max(x,y)< 2

3 ,
0, otherwise.

We set κ=106 and λ=µ=(1−χ)+κχ. Since the coefficient here is highly heterogeneous,
we consider the modified weak formulation (3.5)-(3.7) for Method 1. Table 3 lists errors
and convergences rates of this heterogeneous example. Similar convergence rates as ex-
ample 2 can be found, it is worthwhile to mention superconvergence of Mσh and rotation
γh are also observed. The computed displacement for this example are displayed in the
left panel of Fig. 6.
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Table 1: Relative errors and convergence rates for Example 1, structured mesh.

Method 1-rotation on the interaction region

h
∥σ−σh∥L2(Ω) ∥σ−Mσh∥L2(Ω) ∥u−uh∥L2(Ω) ∥γ−γh∥L2(Ω)

Error Rate Error Rate Error Rate Error Rate
1/4 1.9615E-01 / 8.4922E-02 / 1.1917E-01 / 1.4999E-01 /
1/8 1.0045E-01 0.9655 2.6872E-02 1.6600 2.8380E-02 2.0701 4.4583E-02 1.7503
1/16 4.8951E-02 1.0371 6.9991E-03 1.9409 6.9959E-03 2.0203 1.1770E-02 1.9214
1/32 2.4525E-02 0.9971 1.7713E-03 1.9824 1.7429E-03 2.0050 2.9897E-03 1.9770
1/64 1.2262E-02 1.0001 4.4436E-04 1.9950 4.3534E-04 2.0013 7.5065E-04 1.9938

1/128 6.1292E-03 1.0004 1.1120E-04 1.9986 1.0881E-04 2.0003 1.8787E-04 1.9984
Method 2-rotation on the macro-element

h
∥σ−σh∥L2(Ω) ∥σ−Mσh∥L2(Ω) ∥u−uh∥L2(Ω) ∥γ−γh∥L2(Ω)

Error Rate Error Rate Error Rate Error Rate
1/4 1.5018E-01 / 6.9032E-02 / 1.0630E-01 / 9.8917E-02 /
1/8 6.9372E-02 1.1143 1.7791E-02 1.9561 2.5806E-02 2.0424 1.4475E-02 2.7727
1/16 3.3279E-02 1.0597 4.4027E-03 2.0147 6.3922E-03 2.0133 3.2254E-03 2.1660
1/32 1.6393E-02 1.0215 1.0989E-03 2.0023 1.5939E-03 2.0038 7.8548E-04 2.0378
1/64 8.1559E-03 1.0072 2.7458E-04 2.0008 3.9819E-04 2.0010 1.9511E-04 2.0093

1/128 4.0720E-03 1.0021 6.8639E-05 2.0001 9.9529E-05 2.0003 4.8698E-05 2.0024

Table 2: Relative errors and convergence rates for Example 2, three dimensional tests, structured mesh.

Method 1-rotation on the interaction region

h
∥σ−σh∥L2(Ω) ∥σ−Mσh∥L2(Ω) ∥u−uh∥L2(Ω) ∥γ−γh∥L2(Ω)

Error Rate Error Rate Error Rate Error Rate
1/4 2.2111E-01 / 3.7442E-02 / 2.5009E-03 / 9.4630E-02 /
1/8 9.9777E-02 1.1480 7.1351E-03 2.3917 9.4662E-04 1.4016 3.3204E-02 1.5109
1/16 4.8401E-02 1.0437 1.7323E-03 2.0422 2.9016E-04 1.7059 1.1610E-02 1.5160
1/32 2.4226E-02 0.9985 4.9775E-04 1.7992 7.9064E-05 1.8758 4.0702E-03 1.5122
1/64 1.2184E-02 0.9916 1.5365E-04 1.6958 2.0493E-05 1.9479 1.4311E-03 1.5080

1/128 6.1189E-03 0.9936 4.9127E-05 1.6451 5.2025E-06 1.9779 5.0423E-04 1.5050
1/256 3.0673E-03 0.9963 1.6135E-05 1.6063 1.3012E-06 1.9994 1.7791E-04 1.5029

Method 2-rotation on the macro-element

h
∥σ−σh∥L2(Ω) ∥σ−Mσh∥L2(Ω) ∥u−uh∥L2(Ω) ∥γ−γh∥L2(Ω)

Error Rate Error Rate Error Rate Error Rate
1/4 1.1010E-01 / 1.8332E-03 / 4.6044E-05 / 4.7322E-04 /
1/8 5.4722E-02 1.0086 4.8802E-04 1.9094 1.1665E-05 1.9808 1.3065E-04 1.8568
1/16 2.7326E-02 1.0018 1.3006E-04 1.9078 3.1004E-06 1.9117 3.4599E-05 1.9169
1/32 1.3659E-02 1.0004 3.4524E-05 1.9135 7.9405E-07 1.9652 9.0687E-06 1.9318
1/64 6.8288E-03 1.0001 9.1124E-06 1.9217 2.0016E-07 1.9881 2.3667E-06 1.9380

1/128 3.4143E-03 1.0000 2.3924E-06 1.9294 5.0178E-08 1.9960 6.2229E-07 1.9272

6.4 Example 4: nearly incompressible materials

Example 4 intends to check the locking-free property of the proposed method, specifi-
cally, the exact solution is given by

u=
(

sin(πx)sin(πy)+ 1
2λ x

cos(πx)cos(πy)+ 1
2λ y

)
,
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Table 3: Relative errors and convergence rates for Example 3, highly heterogeneous material tests, structured mesh.

Method 1-scaled rotation on the interaction region

h
∥σ−σh∥L2(Ω) ∥σ−Mσh∥L2(Ω) ∥u−uh∥L2(Ω) ∥γ̃−γ̃h∥L2(Ω)

Error Rate Error Rate Error Rate Error Rate
1/6 4.3083E-01 / 2.4907E-01 / 3.4472E-01 / 5.9065E-01 /

1/12 2.0504E-01 1.0712 7.2653E-02 1.7775 9.0011E-02 1.9373 3.0859E-01 0.9366
1/24 1.0119E-01 1.0188 2.1522E-02 1.7552 2.4867E-02 1.8559 1.1538E-01 1.4193
1/48 5.0426E-02 1.0048 6.2383E-03 1.7866 6.5215E-03 1.9310 3.8841E-02 1.5707
1/96 2.5183E-02 1.0017 1.8072E-03 1.7874 1.6566E-03 1.9770 1.3056E-02 1.5729

Method 2- rotation on the macro-element

h
∥σ−σh∥L2(Ω) ∥σ−Mσh∥L2(Ω) ∥u−uh∥L2(Ω) ∥γ−γh∥L2(Ω)

Error Rate Error Rate Error Rate Error Rate
1/6 3.8757E-01 / 2.2966E-01 / 2.8285E-01 / 2.8291E-01 /

1/12 1.6938E-01 1.1942 5.7321E-02 2.0024 6.7366E-02 2.0699 5.3597E-02 2.4001
1/24 8.2636E-02 1.0354 1.4342E-02 1.9988 1.6690E-02 2.0130 1.2312E-02 2.1221
1/48 4.1202E-02 1.0041 3.5902E-03 1.9981 4.1680E-03 2.0016 3.1044E-03 1.9877
1/96 2.0604E-02 0.9998 8.9868E-04 1.9982 1.0422E-03 1.9997 8.1350E-04 1.9321

Table 4: Relative errors and convergence rates for Example 4, looking free tests, µ=1 and λ=106, structured mesh.

Method 1-rotation on the interaction region

h
∥σ−σh∥L2(Ω) ∥σ−Mσh∥L2(Ω) ∥u−uh∥L2(Ω) ∥γ−γh∥L2(Ω)

Error Rate Error Rate Error Rate Error Rate
1/4 3.4578E-01 / 6.2566E-02 / 7.7210E-02 / 1.9954E-01 /
1/8 1.6957E-01 1.0280 2.2109E-02 1.5007 2.0867E-02 1.8876 7.8194E-02 1.3515

1/16 8.9611E-02 0.9201 7.0519E-03 1.6485 5.3078E-03 1.9750 2.6940E-02 1.5373
1/32 4.6001E-02 0.9620 1.9090E-03 1.8852 1.3310E-03 1.9956 9.1864E-03 1.5522
1/64 2.3153E-02 0.9905 4.8827E-04 1.9671 3.3295E-04 1.9991 3.1666E-03 1.5366
1/128 1.1596E-02 0.9976 1.2287E-04 1.9905 8.3247E-05 1.9998 1.1030E-03 1.5215

Method 2-rotation on the macro-element

h
∥σ−σh∥L2(Ω) ∥σ−Mσh∥L2(Ω) ∥u−uh∥L2(Ω) ∥γ−γh∥L2(Ω)

Error Rate Error Rate Error Rate Error Rate
1/4 3.4495E-01 / 3.6450E-02 / 7.3956E-02 / 2.4462E-02 /
1/8 1.7079E-01 1.0142 7.6524E-03 2.2519 1.9286E-02 1.9391 6.4972E-03 1.9127

1/16 9.0944E-02 0.9092 1.8491E-03 2.0491 4.8739E-03 1.9844 1.6847E-03 1.9473
1/32 4.6223E-02 0.9764 4.6841E-04 1.9810 1.2210E-03 1.9970 4.2476E-04 1.9878
1/64 2.3182E-02 0.9956 1.1794E-04 1.9897 3.0536E-04 1.9995 1.0636E-04 1.9977
1/128 1.1600E-02 0.9989 2.9552E-05 1.9967 7.6345E-05 1.9999 2.6600E-05 1.9995

and the load f is

f =
(

2π2sin(πx)sin(πy)
2π2cos(πx)cos(πy)

)
.

Here, we choose µ= 1 and λ= 106. The analytical solution has vanishing divergence in
the limit λ→+∞, besides, f does not depend on λ, therefore, this is an ideal example for
checking numerically that our proposed method is indeed locking-free. We report errors
and convergence rates in Table 4, as expected, no deteriorate of convergence rates are
observed which clearly demonstrates the locking-free property of the proposed method.
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(a) Parallelogram mesh, h=1/32.
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(b) Smooth quadrilateral mesh, h =
1/32.
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(c) Randomly perturbed grids h2, h =
1/32.

Figure 5: Examples of unstructured meshes.
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(a) Computed displacement of Exam-
ple 3, h=1/48
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(b) Computed displacement of Exam-
ple 1 on a h2-parallelogram mesh, h=
1/32
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(c) Computed displacement of Exam-
ple 1 on a quadrilateral mesh, h=1/32

Figure 6: Computed displacements.

6.5 Example 5: 2D unstructured grid cases

We next study convergence of the proposed methods on three different types of unstruc-
tured grids, we only report results of rotation defined over the interaction region (Method
1). For the first test, we first partition the unit square into a 4×4 square mesh with h= 1

4 ,
and then move the mesh points by applying a map

x= x̂+0.03cos(3πx̂)cos(3πŷ), y= ŷ−0.04cos(3πx̂)cos(3πŷ),

which yields a deformed computational domain with 4×4 quadrilateral grid. We then
apply a uniform refinement of this 4×4 quadrilateral grid to generate a sequence of grids
(see an example in Fig. 5(a)), the resulting sequence of mesh satisfies the h2-parallelogram
property. Convergence rates on this grid are shown in Table 5, at least first-order conver-
gence for all variables in their respective norms are observed, there are no significant
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Table 5: Relative errors and convergence rates for Example 1, parallelogram mesh, Method 1-rotation on the interaction
region.

h
∥σ−σh∥L2(Ω) ∥σ−Mσh∥L2(Ω) ∥u−uh∥L2(Ω) ∥γ−γh∥L2(Ω)

Error Rate Error Rate Error Rate Error Rate
1/4 2.1107E-01 / 9.2463E-02 / 1.3043E-01 / 1.5986E-01 /
1/8 1.0759E-01 0.9722 3.2100E-02 1.5263 3.1790E-02 2.0366 6.3990E-02 1.3209

1/16 5.3408E-02 1.0104 8.8784E-03 1.8542 8.0459E-03 1.9822 2.7066E-02 1.2414
1/32 2.6938E-02 0.9874 2.5908E-03 1.7769 2.0474E-03 1.9745 9.9050E-03 1.4503
1/64 1.3501E-02 0.9966 7.8447E-04 1.7236 5.1790E-04 1.9830 3.3807E-03 1.5508
1/128 6.7604E-03 0.9979 2.4824E-04 1.6600 1.3003E-04 1.9938 1.1457E-03 1.5611

Table 6: Relative errors and convergence rates for Example 1, smooth quadrilateral mesh, Method 1-rotation on the
interaction region.

h
∥σ−σh∥L2(Ω) ∥σ−Mσh∥L2(Ω) ∥u−uh∥L2(Ω) ∥γ−γh∥L2(Ω)

Error Rate Error Rate Error Rate Error Rate
1/4 2.2844E-01 / 1.2264E-01 / 1.4740E-01 / 2.4499E-01 /
1/8 1.3232E-01 0.7878 4.8392E-02 1.3416 4.7768E-02 1.6256 1.3381E-01 0.8725

1/16 6.7906E-02 0.9624 1.6935E-02 1.5148 1.4576E-02 1.7124 6.6473E-02 1.0093
1/32 3.4512E-02 0.9764 5.3464E-03 1.6634 4.0691E-03 1.8408 2.3594E-02 1.4943
1/64 1.7404E-02 0.9877 1.6989E-03 1.6540 1.0603E-03 1.9402 7.5525E-03 1.6434
1/128 8.7378E-03 0.9941 5.6783E-04 1.5811 2.6858E-04 1.9810 2.4374E-03 1.6316

degeneration of the convergence rate. For the second unstructured grid test, we compute
solution on a sequence of smooth quadrilateral meshes which is obtained by applying a
smooth map

x= x̂+0.1sin(2πx̂)sin(2πŷ), y= ŷ+0.1sin(2πx̂)sin(2πŷ),

to a uniformly refined square mesh (see an example in Fig. 5(b)). We reported errors and
convergence rates on this meshes in Table 6, similar convergence behaviors as parallelo-
gram mesh are found. Displacement computed on this type of mesh are depicted in right
panel of Fig. 6.

We also test our method on sequences of quadrilateral grids generated by random
perturbation of uniform grids (see an example in Fig. 5(c)). Specifically, at each refine-
ment level, the vertices are randomly perturbed within a circle whose radius is h2. Results
for these meshes are reported in Table 7, again, the proposed method delivers supercon-
vergence of displacement and at least first-order convergence of other variables.
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Table 7: Relative errors and convergence rates for Example 1, randomly perturbed grids h2, Method 1-rotation on the
interaction region.

h
∥σ−σh∥L2(Ω) ∥σ−Mσh∥L2(Ω) ∥u−uh∥L2(Ω) ∥γ−γh∥L2(Ω)

Error Rate Error Rate Error Rate Error Rate
1/4 1.9552E-01 / 9.8976E-02 / 1.3217E-01 / 2.1107E-01 /
1/8 1.0162E-01 0.9441 2.7386E-02 1.8536 2.8569E-02 2.2099 4.5648E-02 2.2091
1/16 4.9652E-02 1.0333 7.5703E-03 1.8550 7.1306E-03 2.0024 1.3117E-02 1.7991
1/32 2.4909E-02 0.9952 2.1222E-03 1.8348 1.7565E-03 2.0213 3.6408E-03 1.8491
1/64 1.2447E-02 1.0009 6.7770E-04 1.6468 4.3809E-04 2.0034 1.2704E-03 1.5190

1/128 6.2262E-03 0.9994 2.8947E-04 1.2272 1.0955E-04 1.9996 5.3802E-04 1.2396
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