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Abstract. We construct a two-dimensional fourth-order space-time conservation ele-
ment and solution element (CESE) schemes for solving the ideal magnetohydrody-
namics (MHD) equations. In the CESE scheme, the flow variables are calculated by
using the same procedure as that of the original second-order CESE scheme. The
scheme preserves most favorable attributes of the original second-order CESE method.
Moreover, it is simple and easy to program. The numerical example for the smooth
Alfvén wave problem suggests that the scheme can achieve the fourth-order accuracy
for smooth solutions. In order to verify the efficiency of the schemes, we simulate sev-
eral 2D MHD problems. We find that the fourth-order scheme can capture shocks and
details of complex flow structures very well, and control the magnetic divergence effi-
ciently. Moreover, the scheme is essentially CFL number insensitive schemes. The last
several complex test problems further verify the performance of proposed scheme.
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1 Introduction

Magnetohydrodynamics (MHD) play an important role in many fields including astro-
physics, space physics and plasma physics, etc. Since the solutions of the compressible
MHD equations are characterized by complicated nonlinear wave structure and admit
strong shocks and contact discontinuities, it is very difficult to analytically treat MHD
equations. A primary approach to explore the physical mechanisms in MHD is numerical
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simulation. In the past few decades, the numerical study of MHD has attracted much at-
tention, and various numerical methods have been developed for MHD equations, such
as finite-difference method (FDM), finite volume method (FVM), and spectral methods,
etc. [1,12–14,16,17,22]. The space-time conservation element and solution element (CESE)
method [5,6,15,36] is a special finite-volume-type method for solving equations of conser-
vation laws. However, the CESE method differs from other traditional well-established
methods (FVM and FDM). Particularly for the high-order scheme, the CESE scheme
avoids the common shortcomings of traditional high order schemes and demonstrates
many favorable attributes, including 1) a unified treatment of space and time, achieving
the same accuracy in time and space with a fully discrete one-stage formulation, 2) the use
of a highly compact node stencil regardless of the order of accuracy, involving only the
immediate neighboring cells surrounding the cell, and 3) the flux conservation in space
and time without using an approximated Riemann solver. Moreover, the discontinuous
Galerkin (DG) method with space-time evolution and Riemann-solver-free method also
has these attractive features, such as STDG CVS (space-time discontinuous Galerkin Cell
Vertex Schemes) [31]. Tu [31] compared three Riemann-solver-free Cell-Vertex schemes,
including include the second-order space-time CESE CVS, high-order DG CVS and high-
order semi-discrete Runge-Kutta DG CVS, for conservation laws. The interested reader
can see it.

The CESE method was originally proposed by Chang and co-workers [5, 6]. Later,
many extension and improvement of CESE schemes have been proposed [7,27,32,34–36].
Efforts have also been made to design higher-order CESE schemes [2, 8, 9, 21]. For ex-
ample, Liu and Wang [21] developed an arbitrary-order one-dimensional CESE scheme
based on arbitrary Taylor expansions in the solution elements. Chang [10] proposed a
novel approach for constructing a highly-stable high-order CESE scheme. Bilyeu et al. [3]
extended the original CESE method to the Euler solver for 2-D unstructured meshes in
two-dimensions. In the methods of Chang [10] and Bilyeu et al. [3], the even-order deriva-
tives were calculated by integrating the conservation law in the CEs and the odd-order
derivatives were treated using a central difference scheme. Shen et al. [26] proposed high-
order versions including third and fourth order for the Euler equation on hybrid grids
in two-dimensions.The second- and third-order derivatives are calculated by a modified
finite-difference/weighted-average procedure. They updated the high-order derivatives
in a descending sequence from the highest order to the second order. Yang et al. [33]
extended this CESE MHD solver to a fourth-order version based on [26]. However, the
fourth-order version is constructed on uniform rectangle meshes in Cartesian coordi-
nates. All the boundaries of the CEs are parallel to the coordinate surfaces, and the nor-
mal direction is along the coordinate axis. We extended the original CESE method to
third order for 2D MHD equations in [39]. Moreover, this method can be directly applied
to the unstructured meshes. In this paper, we extended the original CESE method to four
order for 2D MHD equations. It can also be directly applied to the unstructured meshes.

In the CESE scheme, the variables and their spatial derivatives are treated as indepen-
dent variables and are updated simultaneously by individual time marching schemes. In


