Commun. Comput. Phys. Vol. 38, No. 3, pp. 603-629
doi: 10.4208/ cicp.OA-2024-0040 September 2025

Two-Scale Neural Networks for Partial Differential
Equations with Small Parameters

Qiao Zhuang!*, Chris Ziyi Yao?, Zhonggiang Zhang!* and
George Em Karniadakis®

1 Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester,
MA 01609, USA.

2 Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK.

3 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
and Pacific Northwest National Laboratory, P.O. Box 999, Richland, 99352, WA,
USA.

Received 27 February 2024; Accepted (in revised version) 8 October 2024

Abstract. We propose a two-scale neural network method for solving partial differen-
tial equations (PDEs) with small parameters using physics-informed neural networks
(PINNs). We directly incorporate the small parameters into the architecture of neural
networks. The proposed method enables solving PDEs with small parameters in a sim-
ple fashion, without adding Fourier features or other computationally taxing searches
of truncation parameters. Various numerical examples demonstrate reasonable accu-
racy in capturing features of large derivatives in the solutions caused by small param-
eters.

AMS subject classifications: 65N35, 35B25

Key words: Two-scale neural networks, partial differential equations, small parameters, succes-
sive training.

1 Introduction

In this work, we consider physics-informed neural networks (PINNs) for the following
equation
pou—eLlou+Lou=f, xeDCRY, te(0,T], (1.1)

TCurrent address: School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO
64110, USA.

*Corresponding author. Email addresses: qzhuang@umkc.edu (Q. Zhuang), chris.yao20@imperial.ac.uk
(C. Z. Yao), zzhang7@upi . edu (Z. Zhang) george karniadakis@brown.edu (G. E. Karniadakis)

http:/ /www.global-sci.com/cicp 603 ©2025 Global-Science Press



604 Q. Zhuang et al. / Commun. Comput. Phys., 38 (2025), pp. 603-629

where some proper boundary conditions and initial conditions are imposed. Here p =0
or 1, € >0, D is the spatial domain, d€IN* and T > 0. Also, Lou consists of the leading-
order differential operator and Lou consists of lower-order linear or nonlinear differential
operators. For example, consider a singular perturbation problem where p =0, Lyu =
div(aVu) is second-order and Lou =b-Vu+cu is first-order.

Small parameters in the equation often pose extra difficulties for numerical methods,
see e.g., [29]. The difficulties come from one or more sharp transitions in regions of small
volumes, which implies large first-order derivatives or even large high-order derivatives.
When p=0, e>0is very small, Lyu=Au and Lou=1-Vu, then at least one boundary layer
arises.

When deep feedforward neural networks are used, they are usually trained with
stochastic gradient descent methods but do not resolve the issues above as they learn
functions with low frequency and small first-order derivatives, see e.g., in [3,28,40].

1.1 Literature review

To deal with functions with high-frequency components such as in singular perturbation
problems, at least four approaches have been proposed to address this issue:

¢ Adding features in the neural networks: Adding random Fourier features is proba-
bly the most non-intrusive approach. Adding cos(w,' x),sin(w;" x)’s to deep neural
networks as approximations of target functions or solutions. With an explicitly
specified range for the random frequencies, one can learn a large class of functions.
In [5,20,22,33], frequency ranges are scheduled to represent complicated solutions
to partial differential equations. See also [21, 41, 44] for more elliptic type multi-
scale PDEs. The Fourier feature networks are also used in [36,37], and see [35] for a
review.

* Enhanced loss by adding first-order and higher-order derivatives: Another ap-
proach is to include the gradient information in the loss function, e.g., in [6,13,19].
This approach has been applied to solve PDEs, e.g., in [30,42].

* Adaptive weights: In the loss function, adaptive weights are assigned to have
a better balance of each squared term in the least-squares formulation, e.g., self-
adaptive [26], attention-based weights [2], binary weights [10]. See also [25,39,43].

* Resampling: Sampling points in the loss function can be made adaptive based on
the residuals at sampling points during the training process such as in [8,9,23,38].
Also, in [27,31, 32], the density function for sampling during the training is com-
puted using the idea of importance sampling. The density function for re-sampling
is approximated by Gaussian mixtures and formulated by finding the min-max of
the loss function via fixed-point iterations.



