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Abstract. Currently existing energy-stable parametric finite element methods for sur-
face diffusion flow and other flows are usually limited to first-order accuracy in time.
Designing a high-order algorithm for geometric flows that can also be theoretically
proven to be energy-stable poses a significant challenge. Motivated by the new scalar
auxiliary variable approach [1], we propose novel energy-stable parametric finite ele-
ment approximations for isotropic/anisotropic surface diffusion flows, achieving both
first-order and second-order accuracy in time. Additionally, we apply the algorithms
to simulate the solid-state dewetting of thin films. Finally, extensive numerical exper-
iments validate the accuracy, energy stability, and efficiency of our developed numer-
ical methods. The designed algorithms in this work exhibit strong versatility, as they
can be readily extended to other high-order time discretization methods (e.g., BDFk
schemes). Meanwhile, the algorithms achieve remarkable computational efficiency
and maintain excellent mesh quality. More importantly, the algorithm can be theoreti-
cally proven to possess unconditional energy stability, with the energy nearly equal to
the original energy.
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1 Introduction

Surface diffusion (SDF) involves the movement and migration of surface atoms, atomic
clusters, and molecules on material surfaces and interfaces in solids. This phenomenon is
widely studied in materials and surface science [2], and it is crucial for various processes
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Figure 1: An illustration of SDF on a closed curve Γ(t) with anisotropic surface energy density in two
dimensions.

such as thin film growth, catalysis, epitaxial growth, and the formation of surface phases
[3]. SDF can be categorized based on the orientation of the surface lattice, leading to either
isotropic or anisotropic SDF. Anisotropic SDF, in particular, has extensive applications in
materials science and solid-state physics, including the crystal growth of nanomaterials
[4, 5], morphology development in alloys, and solid-state dewetting (SSD) [6–8].

The SSD process is a significant application of SDF occurring in solid-solid-vapor
systems. In these systems, the solid film adhering to the surface is often unstable
or metastable in its as-deposited state, leading to complex morphological evolution
driven by surface tension and capillarity effects, including edge retraction [9–11], faceting
[6, 12, 13] and fingering instabilities [14–17]. This phenomenon, commonly observed in
various thin film/substrate systems, characterized by the maintenance of the thin film
in a solid state during the process [18–20], is known as SSD. Recently, SSD has found
extensive applications in modern technology. For example, SSD of thin films in micro-
/nanodevices can lead to the surface instabilities of well-prepared patterned structures;
however, they can be leveraged for generating well-defined patterns of nanoscale particle
arrays. These arrays are subsequently applied in sensors [21], optical and magnetic de-
vices [22], as well as catalysts for the growth of carbon and semiconductor nanowire [23].

As depicted in Fig. 1, Γ(t) = (x(s,t),y(s,t))T denotes a closed curve in the two-
dimensional space, s is the arc length parametrization of Γ(t), n⃗ = (−sinθ,cosθ)T rep-
resents the unit outward normal vector to the curve with θ ∈ [−π,π] being the angle
between n⃗ and y-axis, τ⃗ denotes the unit tangent vector, and γ(θ) represents the surface
energy density function. From [24, 25], the anisotropic surface diffusion is governed by
the following partial differential equation:

∂tX⃗=∂ssµn⃗, (1.1)


