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Abstract. A new discontinuous Galerkin (DG) method is proposed and analyzed for
the Maxwell eigenproblem, featuring a local reconstruction of the curl operator in
a discontinuous finite element space. The proposed method can be penalty-free or
penalty-factor-free, depending on which discontinuous finite element space the curl
operator is locally reconstructed in. The new DG method is recast into a saddle-
point problem so that it can be analyzed from the Babuska-Osborn theory for the
finite element approximation of the spectrum of the compact operator, and the con-
vergence and the optimal error estimates are then obtained; the discrete eigenmodes
are spurious-free and spectral-correct. We provide numerical results to illustrate the
proposed method.
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1 Introduction

In mathematical and computational studies of electromagnetism, the Maxwell eigenprob-
lem and its numerical methods have been interesting, and the finite element method
prevails in seeking the discrete eigenmodes. In this paper, we are concerned with the dis-
continuous Galerkin (DG) finite element method for solving this problem, which consists
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of finding the eigenmodes (eigenvalue and eigenfunction) («w? >0,u#0) such that

curlyilcurlu:wzsu, in (),
diveu=0, in(),
nxu=0, onT, (1.1)

/ n-eu=0, 1<i<n.
I;

In the above problem, (2 C RY, d=2,3, is a bounded, Lipschitz domain, with boundary
I'=TyU/,T;, where Iy is the outermost connected boundary of () and I';, 1<i<n, are
the other connected components of I'. The two matrix-valued functions e describe the
physical properties (magnetic permeability and electric permittivity) of the media occu-
pying Q). The last integral constraints account for the nontrivial topology of () (here I
has disconnected components and introduces non trivial solutions for w?=0), cf. [22].

As a finite element method, in addition to its extensive applications elsewhere, the
DG method is also applied to numerically solving (1.1I). To study the DG method, a first
thing is to state a variational problem. A classical variational statement is to discard the
divergence constraint and the integral constraints and find the eigenmodes (w?,u#0) €
R % Hy(curl,Q2) such that

(uLcurlu,curlv) =w?(eu,v), Vve Hy(curl,Q), (1.2)

where Hy(curl,Q) = {v € H(curl,Q) : nxv|r =0}, H(curl,Q) = {v € (L2(Q))%: curlv €
(L2(Q))**=3}. This problem introduces a zero eigenvalue, whose eigenfunctions span
the kernel space of the curl operator. With the simplicity, however, has been widely
employed in the computation of the discrete eigenmodes. As is well-known, on the
other hand, some finite element methods based on (1.2) suffer from spurious and in-
correct finite element solutions. This is deeply rooted in the noncompact nature of (1.2).
The so-called edge elements, which are H(curl,Q))-conforming, is generally suitable for
spurious-free and spectral-correct discrete eigenmodes of (cf. [27]). The examples of
edge elements are the Nédélec elements on simplices [29,30]. Some conforming but non
edge element methods are referred to [20] and [19].

The DG method, as an alternative, is also valid for seeking spurious-free and spectral-
correct discrete eigenmodes. The DG method usually bears the flexibility in many aspects
such as meshes, finite element spaces and the discretizations of the partial derivatives
operators involved, etc, see a review in [2]. A common property of the DG method is
the h=1/2 penalty of the jumps, accounting for the discontinuity across the interelement
boundaries and for the nonhomogeneous boundary values. A unfavorable thing in the
penalty term is the demand of a penalty factor, which would be rather difficult to deter-
mine in advance and is usually problem-dependent, and it is very often manually tuned.
In general, such penalty-factor needs to be large enough for the stability; in some DG
methods, a large penalty-factor, which is dependent additionally on the mesh size, is in-
troduced for reasonable convergence rates or for isolating the spurious eigenmodes from



