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Abstract. A new discontinuous Galerkin (DG) method is proposed and analyzed for
the Maxwell eigenproblem, featuring a local reconstruction of the curl operator in
a discontinuous finite element space. The proposed method can be penalty-free or
penalty-factor-free, depending on which discontinuous finite element space the curl
operator is locally reconstructed in. The new DG method is recast into a saddle-
point problem so that it can be analyzed from the Babus̆ka-Osborn theory for the
finite element approximation of the spectrum of the compact operator, and the con-
vergence and the optimal error estimates are then obtained; the discrete eigenmodes
are spurious-free and spectral-correct. We provide numerical results to illustrate the
proposed method.
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1 Introduction

In mathematical and computational studies of electromagnetism, the Maxwell eigenprob-
lem and its numerical methods have been interesting, and the finite element method
prevails in seeking the discrete eigenmodes. In this paper, we are concerned with the dis-
continuous Galerkin (DG) finite element method for solving this problem, which consists
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of finding the eigenmodes (eigenvalue and eigenfunction) (ω2>0,u ̸=0) such that

curlµ−1curlu=ω2εu, in Ω,
divεu=0, in Ω,
n×u=0, on Γ,∫

Γi

n·εu=0, 1≤ i≤n.

(1.1)

In the above problem, Ω⊂Rd, d= 2,3, is a bounded, Lipschitz domain, with boundary
Γ= Γ0∪n

i=1 Γi, where Γ0 is the outermost connected boundary of Ω and Γi, 1≤ i≤ n, are
the other connected components of Γ. The two matrix-valued functions µ,ε describe the
physical properties (magnetic permeability and electric permittivity) of the media occu-
pying Ω. The last integral constraints account for the nontrivial topology of Ω (here Γ
has disconnected components and introduces non trivial solutions for ω2=0), cf. [22].

As a finite element method, in addition to its extensive applications elsewhere, the
DG method is also applied to numerically solving (1.1). To study the DG method, a first
thing is to state a variational problem. A classical variational statement is to discard the
divergence constraint and the integral constraints and find the eigenmodes (ω2,u ̸=0)∈
R×H0(curl,Ω) such that

(µ−1curlu,curlv)=ω2(εu,v), ∀v∈H0(curl,Ω), (1.2)

where H0(curl,Ω) = {v ∈ H(curl,Ω) : n×v|Γ = 0}, H(curl,Ω) = {v ∈ (L2(Ω))d : curlv ∈
(L2(Ω))2d−3}. This problem introduces a zero eigenvalue, whose eigenfunctions span
the kernel space of the curl operator. With the simplicity, however, (1.2) has been widely
employed in the computation of the discrete eigenmodes. As is well-known, on the
other hand, some finite element methods based on (1.2) suffer from spurious and in-
correct finite element solutions. This is deeply rooted in the noncompact nature of (1.2).
The so-called edge elements, which are H(curl,Ω)-conforming, is generally suitable for
spurious-free and spectral-correct discrete eigenmodes of (1.2) (cf. [27]). The examples of
edge elements are the Nédélec elements on simplices [29, 30]. Some conforming but non
edge element methods are referred to [20] and [19].

The DG method, as an alternative, is also valid for seeking spurious-free and spectral-
correct discrete eigenmodes. The DG method usually bears the flexibility in many aspects
such as meshes, finite element spaces and the discretizations of the partial derivatives
operators involved, etc, see a review in [2]. A common property of the DG method is
the h−1/2 penalty of the jumps, accounting for the discontinuity across the interelement
boundaries and for the nonhomogeneous boundary values. A unfavorable thing in the
penalty term is the demand of a penalty factor, which would be rather difficult to deter-
mine in advance and is usually problem-dependent, and it is very often manually tuned.
In general, such penalty-factor needs to be large enough for the stability; in some DG
methods, a large penalty-factor, which is dependent additionally on the mesh size, is in-
troduced for reasonable convergence rates or for isolating the spurious eigenmodes from


