A Scalable Domain Decomposition Method for Ultra-Parallel Arterial Flow Simulations

Authors

  • Leopold Grinberg & George Em Karniadakis

Abstract

Ultra-parallel flow simulations on hundreds of thousands of processors require new multi-level domain decomposition methods. Here we present such a new two-level method that has features both of discontinuous and continuous Galerkin formulations. Specifically, at the coarse level the domain is subdivided into several big patches and within each patch a spectral element discretization (fine level) is employed. New interface conditions for the Navier-Stokes equations are developed to connect the patches, relaxing the C0continuity and minimizing data transfer at the patch interface. We perform several 3D flow simulations of a benchmark problem and of arterial flows to evaluate the performance of the new method and investigate its accuracy.

Published

2008-11-05

Issue

Section

Articles