Bilinear Forms for the Recovery-Based Discontinuous Galerkin Method for Diffusion

Authors

  • Marc van Raalte & Bram van Leer

Abstract

The present paper introduces bilinear forms that are equivalent to the recovery-based discontinuous Galerkin formulation introduced by Van Leer in 2005. The recovery method approximates the solution of the diffusion equation in a discontinuous function space, while inter-element coupling is achieved by a local L2 projection that recovers a smooth continuous function underlying the discontinuous approximation. Here we introduce the concept of a local “recovery polynomial basis” – smooth polynomials that are in the weak sense indistinguishable from the discontinuous basis polynomials – and show it allows us to eliminate the recovery procedure. The recovery method reproduces the symmetric discontinuous Galerkin formulation with additional penalty-like terms depending on the targeted accuracy of the method. We present the unique link between the recovery method and discontinuous Galerkin bilinear forms. 

Published

2018-04-11

Issue

Section

Articles