Numerical Soliton Solutions for a Discrete Sine-Gordon System
Abstract
In this paper we use an analytical-numerical approach to find, in a systematic way, new 1-soliton solutions for a discrete sine-Gordon system in one spatial dimension. Since the spatial domain is unbounded, the numerical scheme employed to generate these soliton solutions is based on the artificial boundary method. A large selection of numerical examples provides much insight into the possible shapes of these new 1-solitons.