A Spectrally Accurate Boundary Integral Method for Interfacial Velocities in Two-Dimensional Stokes Flow

Authors

  • Xu Sun & Xiaofan Li

DOI:

https://doi.org/10.4208/cicp.190909.090310a

Abstract

We present a new numerical method for solving two-dimensional Stokes flow with deformable interfaces such as dynamics of suspended drops or bubbles. The method is based on a boundary integral formulation for the interfacial velocity and is spectrally accurate in space. We analyze the singular behavior of the integrals (single-layer and double-layer integrals) appearing in the equations. The interfaces are formulated in the tangent angle and arc-length coordinates and, to reduce the stiffness of the evolution equation, the marker points are evenly distributed in arc-length by choosing a proper tangential velocity along the interfaces. Examples of Stokes flow with bubbles are provided to demonstrate the accuracy and effectiveness of the numerical method.

Published

2010-08-01

Issue

Section

Articles