A Modified Nonlocal Continuum Electrostatic Model for Protein in Water and Its Analytical Solutions for Ionic Born Models

Authors

  • Dexuan Xie & Hans W. Volkmer

DOI:

https://doi.org/10.4208/cicp.170811.211011s

Abstract

A nonlocal continuum electrostatic model, defined as integro-differential equations, can significantly improve the classic Poisson dielectric model, but is too costly to be applied to large protein simulations. To sharply reduce the model's complexity, a modified nonlocal continuum electrostatic model is presented in this paper for a protein immersed in water solvent, and then transformed equivalently as a system of partial differential equations. By using this new differential equation system, analytical solutions are derived for three different nonlocal ionic Born models, where a monoatomic ion is treated as a dielectric continuum ball with point charge either in the center or uniformly distributed on the surface of the ball. These solutions are analytically verified to satisfy the original integro-differential equations, thereby, validating the new differential equation system.

Published

2013-01-05

Issue

Section

Articles