Monotone Finite Volume Scheme for Three Dimensional Diffusion Equation on Tetrahedral Meshes

Authors

  • Xiang Lai, Zhiqiang Sheng & Guangwei Yuan

DOI:

https://doi.org/10.4208/cicp.220415.090516a

Abstract

We construct a nonlinear monotone finite volume scheme for three-dimensional diffusion equation on tetrahedral meshes. Since it is crucial important to eliminate the vertex unknowns in the construction of the scheme, we present a new efficient eliminating method. The scheme has only cell-centered unknowns and can deal with discontinuous or tensor diffusion coefficient problems on distorted meshes rigorously. The numerical results illustrate that the resulting scheme can preserve positivity on distorted tetrahedral meshes, and also show that our scheme appears to be approximate second-order accuracy for solution.

Published

2018-04-08

Issue

Section

Articles