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Abstract. The aim of the paper is to recall the importance of the study of in-
vertibility and monotonicity of stress-strain relations for investigating the non-
uniqueness and bifurcation of homogeneous solutions of the equilibrium prob-
lem of a hyperelastic cube subjected to equiaxial tensile forces. In other words,
we reconsider a remarkable possibility in this nonlinear scenario: Does sym-
metric loading lead only to symmetric deformations or also to asymmetric de-
formations? If so, what can we say about monotonicity for these homogeneous
solutions, a property which is less restrictive than the energetic stability crite-
ria of homogeneous solutions for Rivlin’s cube problem. For the Neo-Hooke
type materials we establish what properties the volumetric function h depend-
ing on detF must have to ensure the existence of a unique radial solution (i.e.
the cube must continue to remain a cube) for any magnitude of radial stress
acting on the cube. The function h proposed by Ciarlet and Geymonat sat-
isfies these conditions. However, discontinuous equilibrium trajectories may
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occur, characterized by abruptly appearing non-symmetric deformations with
increasing load, and a cube can instantaneously become a parallelepiped. Up
to the load value for which the bifurcation in the radial solution is realized local
monotonicity holds true. However, after exceeding this value, monotonicity no
longer occurs on homogeneous deformations which, in turn, preserve the cube
shape.
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1 Introduction

The theory of nonlinear elasticity is undoubtedly applicable in numerous con-
texts. However, depending on the specific phenomena we aim to analyze, dif-
ferent types of elastic energies come into play. Various materials exhibit different
behaviors in terms of elasticity. In hyperelasticity, as considered here, stress is
determined by the elastic energy density, making the selection of an energy func-
tion a crucial constitutive decision. The assumptions regarding the stress-strain
relationship are referred to as constitutive requirements.

Therefore, one main task in hyperelasticity is to find an energy (or at least
a family of energies) describing the behaviour of all, or at least a large class of
materials. This question was raised by Clifford A. Truesdell (1919-2000) in “Das
ungelöste Hauptproblem der endlichen Elastizitätstheorie, Zeit. Angew. Math.
Mech. 36(3-4) (1956), 97–103”. At present, however, there is no mathematical
model in classical nonlinear elasticity which is capable of describing the correct
physical or mechanical behaviour for every elastic material, especially for large
strains and for which the existence of the minimizer of the corresponding varia-
tional problem or the Euler-Lagrange equations is ensured.

For different type of materials or for various behaviours which we wish to
capture in the modelling process, we must choose an appropriate energy. In this
contribution, we reconsider the classical compressible polyconvex Neo-Hooke-
type energies (Hadamard materials) [31]

WNH(F)=
µ

2
‖F‖2+h(detF), (1.1)

where h is a convex function1. Here, we pay special attention to the Ciarlet-

1In order to have a stress free configuration, the function h must satisfy 3µ/2+h′(1)=0.
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Geymonat-type energy2 [9, 10] for compressible materials, i.e. when the func-
tion h is of the form

hCG(x)=−µ logx+
λ

4
(x2−2logx−1), λ>0 (1.3)

with given positive constitutive parameters µ and λ. In the following, we shall
refer to this model as the Neo-Hooke-Ciarlet-Geymonat model.

This paper revisits the issue of monotonicity and invertibility of a fundamen-
tal relationship: the Biot stress-right stretch tensor relation. We use recent ana-
lytical findings in this area as a first step towards addressing the non-symmetric
bifurcation in the Rivlin cube problem associated with the Neo-Hooke-Ciarlet-
Geymonat [9, 10] energy model. In order to understand these phenomena, we
incorporate new insights pertaining to these constitutive equations. Studying the
deformations of a uniformly loaded cube [28] is an important challenge within fi-
nite elasticity, revealing intriguing behaviours even for simple energy functions.
Despite the straightforward mathematical setup of this equilibrium problem, its
resolution can pose difficulties due to its inherent nonlinearity. Understanding
the stability of solutions and the local monotonicity will add another layer of
complexity.

The equilibrium problem of a cube under equitriaxial tensions was initially ex-
plored by Rivlin [28] and then by Rivlin and Beatty [29], by Reese and Wriggers
[27], by Mihai, Woolley and Goriely [22] and by Tarantino [31], who all exposed
multiple solutions, particularly in the realm of incompressible Neo-Hookean ma-
terials and compressible Neo-Hookean materials, respectively. Surprisingly, these
solutions may lack symmetry, deviating from the (perhaps) expected behavior
even under symmetric external loads. Rivlin further found that only one solu-
tion maintains full symmetry with the loading conditions, but becomes unsta-
ble under higher tensile loads. Ball and Schaeffer [3] have further explored into
the case of incompressible Mooney-Rivlin materials, discovering the possibility
of secondary bifurcations, a phenomenon absent in the Neo-Hookean scenario.
They applied techniques from singularity theory to study the local behaviour
around bifurcation points.

2Note that the original Ciarlet-Geymonat energy reads

WCG(F)= a‖F‖2+b‖CofF‖2+c(detF)2−d log(det F), (1.2)

where a,b,c,d are positive constants. This energy is polyconvex and agrees with the Saint-Venant

energy quadratic in the Green-St Venant strain tensor E = (C−1)/2. For the original Ciarlet-
Geymonat model it follows that the associated minimization problem has at least one solution by

Ball’s theorem [1]. Due to weak coercivity, the same is not known for (1.3).
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The paper by Tarantino [31] aims to analyse both symmetric and asymmetric
equilibrium configurations of bodies composed of general compressible isotropic
materials. Special focus is put on exploring non-unique equilibrium states and
relevant bifurcation phenomena. Building upon previous contributions by Ball
[2] and Chen [6,7], in [31] a stability analysis is proposed to evaluate the stability
of various homogeneous equilibrium branches, see also [30]. In the present pa-
per, we rediscover some results obtained by Tarantino [31], but we rely on some
pertinent analytical explanations, and present them in relation to our new results
concerning the invertibility and monotonicity in nonlinear elasticity.

After a presentation of the problem and the general framework, in this arti-
cle we establish results on the invertibility and monotonicity of stress-strain re-
lations. These findings will subsequently be used for the Biot stress tensor-left
stretch tensor relation and in the study of the Rivlin cube problem. For Neo-
Hooke type materials we establish what properties the volumetric function h de-
pending on detF in (1.1) must have to ensure the existence of a unique radial
solution (i.e. the cube must continue to remain a cube) for any magnitude of ra-
dial stress acting on the cube.

In particular, we prove that the function h≡ hCG in (1.1) defining the Ciarlet-
Geymonat energies has these properties. For the Neo-Hooke-Ciarlet-Geymonat
model, after identifying the radial solutions, we identify the existence of non-
radial solutions (i.e. the cube turns into a parallelepiped) for the extension case.
These solutions do not exist for the case of compression or if the magnitude of the

forces does not exceed a certain critical value α♭. Moreover, for radial and non-
radial solutions the problem of monotonicity is studied using some new results
similar to those studied in [26, last page in the Appendix] and [14–16]. Specifi-
cally, we prove that radial solutions ensure local monotonicity up to the critical

value α∗≥ α♭ of the forces acting on the faces of the cube. This is where bifurca-
tion occurs, i.e. the solution is no longer locally unique and beyond this value
monotonicity no longer occurs in radial solutions. In this regard, we prove that
the critical value α∗ corresponds to the critical values of the stretch for which the
invertibility in terms of the principal stress-principal stretch relation is lost in ra-
dial solutions.

Starting from a value of the magnitude α♭ of the forces (less than the critical
value that produces the bifurcation) there are two other types of non-radial so-
lutions (other types are obtained by permutations of them). We show that these
types of non-radial solutions cannot all have different eigenvalues but certainly
at least two are equal. Returning to the type of non-radial solutions, both appear

in a discontinuous manner for a value α♭ of the magnitude of the forces and then
depend continuously on the intensity of the forces. One class of non-radial so-
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lutions continuously moves towards and through the bifurcation branch, while
the other moves away from the bifurcation point. Numerical tests have shown
that, while the first class does not ensure local monotonicity, the second one does
enjoy monotonicity. It is for this reason that the latter solution meets the physical
expectations in a better way.

2 Statement of the problem

Let Ω ⊂ R
3 be a bounded domain with Lipschitz boundary ∂Ω. A mapping

ϕ : Ω →R describes the deformation of the domain Ω. The domain Ω is called
the initial (undeformed) configuration, while its image Ωc := ϕ(Ω) is called the
actual (deformed) configuration. Each of these configurations could be consid-
ered as a reference configuration, depending on the practical problem we solve
or model. Since we do not allow for self-intersection of the material, there exists
the inverse mapping ϕ−1 : Ωc →Ω from the deformed configuration to its initial
configuration. Therefore, imposing the preservation of orientation, the deforma-
tion gradient defined by F :=Dϕ∈R

3×3 satisfies F∈GL+(3), i.e. J=detF>0. For
further notation, the reader is referred to Appendix A.

From a geometric or analytic point of view, this would suffice for a com-
plete description of the deformation. However, in elasticity theory we assume
that the domain Ω is filled by an elastic body. Thus, the aim is to take into ac-
count the physical response of the body, meaning the constitutive relation be-
tween stress (internal forces) and strain (amount of deformation). In the con-
text of nonlinear hyperelasticity, where generalized convexity properties have
an especially long and rich history [1, 18, 19], the material behaviour of an elas-
tic solid is described by a potential energy function W : GL+(3)→R , F 7→W(F)
defined on the group GL+(3) of invertible matrices with positive determinants.
In hyperelasticity, the tensor which describes the force of the deformed material
per original area (stress) is the first Piola-Kirchhoff stress tensor, denoted here
by S1(F), and the stress-strain relation is described by the energy density poten-
tial W :GL+(3)→R, through S1=DF[W(F)]. We assume that the material is homo-
geneous. The elastic energy potential W :GL+(3)→R is also assumed to be objec-
tive (or frame-indifferent) as well as isotropic, i.e. it to satisfy W(Q1FQ2)=W(F)

for all F ∈GL+(3) and all Q1,Q2 ∈ SO(3). Hence, W(F)= Ŵ(U), where U is the
right stretch tensor, i.e. the unique element of Sym++(3) for which U2=C :=F⊤F;
here and throughout, Sym++(3) denotes the positive definite, symmetric tensors.

In the absence of body forces, the general boundary value problem is to find
the solution ϕ of the equilibrium equation
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DivS1(Dϕ)=0 in Ω⊂R
3, (2.1)

where S1(Dϕ) is the first Piola-Kirchhoff stress tensor, subject to the boundary
conditions

S1.N= ŝ1. (2.2)

Here, N is the unit normal at the boundary ∂Ω and the vector ŝ1 is given.
In this article, we study the invertibility of the stress-stretch relation, the mo-

notonicity and the bifurcation problem for a dead loading problem. In Rivlin’s
cube problem [20, p. 15] (see also [3,29,31,33]) the unit cube is subjected to equal
and opposite normal dead loads on all faces3. Dead loading is a simple example
of a traction boundary condition where ŝ1(x) is a constant vector at each point of
the boundary ∂Ω. Thus, the boundary conditions on the face of the unit coordi-
nate normal Ni are

S1.Ni=αNi, i=1,2,3 (2.3)

with α indicating the amount of load.
A minimizer ϕ∈C2(Ω) of the total energy functional given by

I(ϕ)=
∫

Ω
W(Dϕ)dV−

∫

∂Ω
〈S1.N,ϕ〉dA

=
∫

Ω
W(Dϕ)dV−

∫

∂Ω
〈ŝ1,ϕ〉dA (2.4)

is a solution of the boundary value problem given by (2.1) and (2.2).
For Rivlin’s cube problem, the body is subjected to a uniform load on the

boundary S1.Ni =αNi, i=1,2,3. An application of the divergence theorem yields
that the total energy functional is given by

I(ϕ)=
∫

Ω
W(Dϕ)dV−

∫

∂Ω
α〈N,ϕ〉dA

=
∫

Ω
[W(Dϕ)−αdivϕ]dV=

∫

Ω
[W(Dϕ)−αtr(Dϕ)]dV. (2.5)

A deformation ϕ is homogeneous if the deformation gradient Dϕ is constant in Ω.
For a homogeneous deformation the equilibrium equations are immediately sat-
isfied, while the boundary conditions give rise to a system of nonlinear algebraic
equations.

We recall that [32, p. 144]

TBiot=R⊤S1, (2.6)

where TBiot = R⊤S1(F)=DU [Ŵ(U)] is the symmetric Biot stress tensor and R is

3“Rivlin’s solutions have been known for nearly half a century. Nevertheless, we have yet to find

an experiment that demonstrates these solutions” [8].
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the orthogonal matrix of the polar decomposition F=RU=VR, see [5,11,25]; here

V=
√

FF⊤ is the left stretch tensor. It is known that

TBiot is symmetric and represents “the principal
forces acting in the reference system”.

Since no rotations are present in the cube problem (R = 1), we are able to
rephrase Rivlin’s cube problem [26] as the algebraic nonlinear system

TBiot(U)Ni =αNi ⇐⇒
(
TBiot(U)−α·1

)
Ni =0, i=1,2,3, (2.7)

where Ni are the linearly independent normals to the faces. Here, we adopt the
convention that only homogeneous solutions U are considered. Therefore, (2.7)
is equivalent to

TBiot(U)=α·1. (2.8)

For the Neo-Hooke model, Rivlin has shown that the problem (2.8) admits
several homogeneous solutions4, see Fig. 1, and for a certain load parameter α
the (always existing) homogeneous radial solution U=β+

1, β+>0, becomes un-

Figure 1: Bifurcation for the compressible Rivlin’s cube dead load problem: equal and opposite normal
dead loads on all faces.

4The radial solution is an abbreviation for the equitriaxial stretching λ1=λ2 =λ3=β+.
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stable. Thus, an initially homogeneous and perfectly isotropic material would not
behave as we expect intuitively from an isotropic material. Whether this can be
really observed in experiments remains an open question. Discussing the related
notion of Kearsley’s instability, Batra et al. [4, pp. 710-711] “must conclude, rather
prosaically, that Treloar’s observation of two different stretches for equal loads
is nothing else but another example of a notorious quality of rubber, namely the
difficulty of quantitative reproducibility of rubber data and the unreliability of
exact numbers obtained from rubber experiments”, but provide new experimen-
tal data that indeed supports Kearsley’s claims of instabilities in rubber sheets
(cf. [13]).

For Neo-Hookean materials, the problem (2.8) admits several non-symmetric
homogeneous solutions U∈Sym++(3). Based on (2.6) we are able to investigate
several equivalent statements in terms of different stress tensors. Since in Rivlin’s
cube problem there is no cause for a non-symmetric response, it is questionable
if there should be any non-symmetric response5.

Ideally, we aim at the radial solution to be locally unique among all other
solutions. In particular, we insist on the logical rule that there is “no effect with-
out a corresponding cause”. Since in Rivlin’s cube problem there is no cause
for a non-symmetric response, there should be no admissible non-symmetric re-
sponse6. If this is or is not the case, depends on the chosen constitutive relation.

If there is a radial solution U = β+
1 of Rivlin’s cube problem then invertibil-

ity and monotonicity of TBiot : Sym++(3)→Sym(3) suffice to exclude symmetric
bifurcations altogether, as it will be seen in the rest of the paper.

3 Constitutive requirements in nonlinear elasticity

3.1 Invertibility

We consider the general isotropic constitutive equation

Σ=Σ(U), Σ : Sym++(3) → Sym(3), (3.1)

where Σ is some symmetric stress tensor and U∈Sym++(3) is the stretch tensor.
We are then interested in the following two important questions:

5Of course, rubber is not at all incompressible under high pressure; rather, for moderate pressure,

rubber “tries” to respond in a way which preserves volume due to a comparatively low shear

modulus compared to the bulk modulus
6“Experimentally” observed non-symmetric bifurcations seem to be inevitably accompanied by

permanent deformations [4].
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i) (Surjectivity) Given any symmetric tensor Σ∈Sym(3), does there exist a pos-
itive definite tensor U∈Sym++(3) such that Σ=Σ(U)?

ii) (Injectivity) For a given symmetric tensor Σ ∈ Sym(3), does there exist at
most one U∈Sym++(3) such that Σ=Σ(U)?

It is clear that when an idealised model is proposed (hence, no elasto-plastic
response is expected) the first requirement seems mandatory. The second require-
ment is the first step in order to exclude bifurcation [28] for a dead loading prob-
lem.

We have observed a possible way to study the invertibility of the map U 7→
TBiot(U). Since, in general, it is not easy to work with tensors (matrices) in three
dimensions, we consider the singular values (the principal stretches) λ1,λ2,λ3

of F, i.e. the positive eigenvalues of U. If Σ f : Sym(3)→ Sym(3) is an isotropic
tensor function satisfying

Σ f

(
Q⊤ ·diag(λ1,λ2,λ3)·Q

)
=Q⊤ ·Σ f

(
diag(λ1,λ2,λ3)

)
·Q, (3.2)

then

Σ f (U) :=Σ f

(
Q⊤ ·diag(λ1,λ2,λ3)·Q︸ ︷︷ ︸

S∈Sym(3)

)

=Q⊤ ·diag
(

f (λ1,λ2,λ3)
)
·Q

︸ ︷︷ ︸
Σ f (S)∈Sym(3)

, ∀Q∈O(3) (3.3)

with a vector-function f =( f1, f2, f3) :R3→R
3 which fulfills

fi(λπ(1),λπ(2),λπ(3))= fπ(i)(λ1,λ2,λ3)

for any permutation π : {1,2,3}→ {1,2,3}. Here, Sym(3) denotes the space of
symmetric 3×3 matrices, O(3) is the orthogonal group and diag(λ1,λ2,λ3) is the
diagonal matrix with diagonal entries λ1,λ2,λ3 . The permutation symmetry im-
plies and it is implied by isotropy.

Indeed, in many situations the stress-strain relations are characterized by the
relation between their corresponding principal values, i.e. by the relations be-
tween the principal stretches λ1,λ2,λ3 and the principal forces (principal Biot-
stresses)

Ti =
∂g(λ1,λ2,λ3)

∂λi
, i=1,2,3. (3.4)
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In (3.4), g : R
3
+→R is the unique permutation symmetric function of the singular

values of U (principal stretches) such that W(F) = Ŵ(U) = g(λ1,λ2,λ3), where
R

3
+=(0,∞)×(0,∞)×(0,∞), and

T̂ :=(T1, T2, T3)
⊤. (3.5)

The functions f and Σ f related by Eq. (3.3) share a number of properties related
to invertibility and monotonicity.

Theorem 3.1. Let f :R3
+→R

3 be symmetric.

i) The function Σ f : Sym++(3)→Sym(3) is injective if and only if f is injective.

ii) The function Σ f : Sym++(3)→Sym(3) is surjective if and only if f is surjective.

In particular, Σ f is invertible if and only if f is invertible.

In particular, using the result by Katriel [17] (see also [12]) proving the global
homeomorphism theorem of Hadamard, we obtain a sufficient criterion for the
global invertibility of an isotropic tensor function.

Proposition 3.1. Assume that Σ̃
f̃
:Sym(3)→Sym(3) is an isotropic C1-function defined

by the vector-function f̃ :R3→R
3 such that

1) D f̃ (x1,x2,x3) is invertible for any (x1,x2,x3)∈R
3,

2) ‖ f̃ (x1,x2,x3)‖R3 →∞ as ‖(x1,x2,x3)‖R3 →∞.

Then U 7→ Σ̃
f̃
(U) is a global diffeomorphism from Sym(3) to Sym(3).

Let us remark that Proposition 3.1 is not directly applicable to Σ f :Sym++(3)→
Sym(3). However, we have the following corollary to Katriel’s result:

Corollary 3.1. Assume that Σ f :Sym++(3)→Sym(3) is an isotropic C1-function such

that

1) D( f ◦exp)(x1,x2,x3) is invertible 7 for any (x1,x2,x3)∈R
3,

2) ‖( f ◦exp)(x1,x2,x3)‖R3 →∞ as ‖(x1,x2,x3)‖R3 →∞.

Then U 7→Σ f (U) is a global diffeomorphism from Sym++(3) to Sym(3).

7Here, exp(x1,x2,x3)=(expx1,expx2,expx3) for any (x1,x2,x3)∈R
3.
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Proof. Let us consider Σ̃
f̃
: Sym(3)→Sym(3) defined by

Σ̃
f̃
(S) :=(Σ f ◦exp)(S), ∀S∈Sym(3)

⇐⇒ Σ
f̃
(logU) :=Σ f (U), ∀U∈Sym++(3), (3.6)

where

logU=
3

∑
i=1

logλi Ni⊗Ni

with Ni the eigenvectors of U and λi the eigenvalues of U, is the Hencky strain

tensor [23, 24]. The function f̃ defining Σ̃
f̃

is f̃ := f ◦exp :R3→R
3. Now, Katriel’s

result applied to Σ̃
f̃

shows that if D f̃ (x1,x2,x3) is invertible for any (x1,x2,x3)∈R
3

and

‖ f̃ (x1,x2,x3)‖R3 → ∞ as ‖(x1,x2,x3)‖R3 → ∞,

then U 7→ Σ̃
f̃
(U) is a global diffeomorphism from Sym(3) to Sym(3). Then, since

the matrix logarithm function log : Sym++(3)→ Sym(3) is a global diffeomor-

phism, U 7→Σ f (U)=(Σ̃
f̃
◦log)(U) must be a global diffeomorphism as well.

Corollary 3.2. Assume that Σ f :Sym++(3)→Sym(3) is an isotropic C1-function such

that

(1) D f (λ1,λ2,λ3) is invertible for any (λ1,λ2,λ3)∈R
3
+,

(2) ‖ f (λ1,λ2,λ3)‖R3 →∞ as ‖(logλ1,logλ2,logλ3)‖R3 →∞.

Then U 7→Σ f (U) is a global diffeomorphism from Sym++(3) to Sym(3).

Proof. First, by using the chain rule and the invertibility of Dexp , we observe

that the assumption that D f (λ1,λ2,λ3) is invertible for any (λ1,λ2,λ3) ∈ R
3
+ is

equivalent to the invertibility of D( f ◦exp)(x1,x2,x3) for any (x1,x2,x3)∈R
3.

Consider now the condition ‖(x1,x2,x3)‖R3 → ∞. We will prove that under

assumption (2) in the corollary, it follows that ‖( f ◦exp)(x1,x2,x3)‖R3 → ∞. In-

deed, let (λ1,λ2,λ3)∈R
3
+ be such that xi = logλi for i=1,2,3. Then,

‖(logλ1,logλ2,logλ3)‖R3 → ∞.

From (2), this implies that

‖ f (λ1,λ2,λ3)‖=‖( f ◦exp)(x1,x2,x3)‖ → ∞.

Therefore, the requirements of Corollary 3.1 are satisfied, and this implies that

U 7→Σ f (U) is a global diffeomorphism from Sym++(3) to Sym(3).
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3.2 Hilbert-monotonicity

For our purposes, we now recall some related notions of monotonicity.

Definition 3.1 ([21]). A tensor function Σ f : Sym++(3)→ Sym(3) is called strictly

Hilbert-monotone if

〈Σ f (U)−Σ f (U),U−U〉
R3×3 >0, ∀U 6=U∈Sym++(3). (3.7)

We refer to this inequality as strict Hilbert-space matrix-monotonicity of the tensor func-

tion Σ f . A tensor function Σ f : Sym++(3)→Sym(3) is called Hilbert-monotone if

〈Σ f (U)−Σ f (U),U−U〉
R3×3 ≥0, ∀U,U∈Sym++(3). (3.8)

Definition 3.2 ([21]). A vector function f :R3
+→R

3 is strictly vector monotone if

〈 f (λ)− f (λ),λ−λ〉
R3 >0, ∀λ 6=λ∈R

3
+, (3.9)

and it is vector monotone if

〈 f (λ)− f (λ),λ−λ〉
R3 ≥0, ∀λ,λ∈R

3
+. (3.10)

Definition 3.3. A continuously differentiable tensor function Σ f :Sym++(3)→Sym(3)
is called strongly Hilbert-monotone if

〈DΣ f .H(U),H〉>0, ∀U∈Sym++(3), H∈Sym(3).

Definition 3.4 ([21]). A continuously differentiable vector function f :R3
+→R

3 is called

strongly vector monotone if

〈D f (λ).h,h〉>0, ∀λ∈R
3
+, h∈R

3.

Note that D f (λ1,λ2,λ3) in itself might not be symmetric. However, for Ti =
∂g(λ1,λ2,λ3)/∂λi, i=1,2,3,

DT̂(λ1,λ2,λ3)=D2g(λ1,λ2,λ3) :=

(
∂2g

∂λi∂λj

)

i,j=1,2,3

∈Sym(3). (3.11)

In a forthcoming paper, we discuss the following result, thereby expanding on
Ogden’s work [26, last page in the Appendix], following Hill’s seminal contribu-
tions [14–16]:
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Theorem 3.2. A sufficiently regular symmetric function f :R3
+→R

3 is (strictly/strongly)

vector-monotone if and only if Σ f is (strictly/strongly) matrix-monotone.

Hence, the following holds true for hyperelasticity, assuming sufficient regu-
larity:

U 7→TBiot(U) Hilbert-monotone

⇐⇒ (λ1,λ2,λ3) 7→ T̂(λ1,λ2,λ3) vector monotone

⇐⇒ DT̂(λ1,λ2,λ3)∈Sym+(3), ∀(λ1,λ2,λ3)∈R
3
+,

U 7→TBiot(U) strictly Hilbert-monotone

⇐⇒ (λ1,λ2,λ3) 7→ T̂(λ1,λ2,λ3) strictly vector monotone,

U 7→TBiot(U) strongly Hilbert-monotone

⇐⇒ (λ1,λ2,λ3) 7→ T̂(λ1,λ2,λ3) strongly vector monotone

⇐⇒ DT̂(λ1,λ2,λ3)∈Sym++(3), ∀(λ1,λ2,λ3)∈R
3
+.

Note that the monotonicity conditions and the invertibility condition are global
conditions. Conversely, the conditions detD f (λ1 ,λ2,λ3) 6=0 – which is equivalent

to f being a local diffeomorphism – as well as DT̂ ∈ Sym++(3) are only local
conditions.

3.3 Energetic stability

In the following, we employ the stability criterion
〈
D2

FW(F).H,H
〉
≥0, ∀H∈R

3×3 (3.12)

for the hyperelastic energy potential W, which ensures material stability under
so-called soft loads [7]. In terms of the singular values, the condition (3.12) holds
at F∈GL+(3) if and only if [6]

∂g/∂λi−ǫij ∂g/∂λj

λi−ǫij λj

∣∣∣∣
λi=λ∗

i

≥0 holds ∀i, j=1,2,3, i 6= j (no sum), (3.13)

and the Hessian matrix of g, i.e. D2g = (∂2g/(∂λi∂λj))|λi=λ∗
i

is positive semi-
definite, where

ǫij=

{
1, if {i, j}={1,2} or {2,3} or {3,1},

−1, otherwise,
(3.14)
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and λ∗
i are the singular values of F. If two singular values λ∗

i and λ∗
j , i 6= j, are

equal, the inequalities in (3.13) are interpreted in terms of their limits λ∗
i →λ∗

j ; for

instance, in the points (λ∗
1 ,λ∗

1 ,λ∗
3)=(λ∗,λ∗,λ∗

3) with λ∗
3 6=λ∗, the energetic stability

criterion (3.12) is satisfied if and only if

(
∂2g

∂λ2
1

− ∂2g

∂λ1∂λ2

)∣∣∣∣
λ1=λ2=λ∗,λ3=λ∗

3

≥0,

(
∂g/∂λ2−∂g/∂λ3

λ2−λ3

)∣∣∣∣
λ1=λ2=λ∗,λ3=λ∗

3

≥0,

(
∂g/∂λ2+∂g/∂λ1

2λ1

)∣∣∣∣
λ1=λ2=λ∗,λ3=λ∗

3

≥0,

(
∂g/∂λ2+∂g/∂λ3

λ2+λ3

)∣∣∣∣
λ1=λ2=λ∗,λ3=λ∗

3

≥0,

(3.15)

and the Hessian matrix D2g=(∂2g/(∂λi∂λj))|λ1=λ2=λ∗,λ3=λ∗
3

is positive semi-defi-
nite.

We also remark that the positive semi-definiteness of the Hessian matrix of g

is equivalent to the positive semi-definiteness of DT̂(λ1,λ2,λ3)=D2g(λ1,λ2,λ3).
Since the stability implies the positive semi-definiteness of D2g(λ1,λ2,λ3) =

DT̂(λ1,λ2,λ3), the stability implies the monotonicity of DT̂(λ1,λ2,λ3).

4 Invertibility and monotonicity of the Biot stress-

stretch relation for the compressible Neo-Hooke-

Ciarlet-Geymonat energy

In the following, we will reduce the Neo-Hooke-Ciarlet-Geymonat energy to its
one-parameter version

WM
CG(F)=

1

µ
WCG(F)

=
1

2
‖F‖2+

[
− logdetF+

(
M

4
− 1

6

)(
(detF)2−2logdetF−1

)]
(4.1)

with M :=(λ+2µ/3)/µ>2/3. All the stresses considered in the following will be
related to this one parameter energy. In terms of the singular values, WM

CG admits



126 I.-D. Ghiba et al. / Commun. Math. Anal. Appl., 4 (2025), pp. 112-150

the representation

WM
CG(F)= g(λ1,λ2,λ3)

=
1

2

[
1

6
(3M−2)

(
λ2

1λ2
2λ2

3−2log(λ1λ2λ3)−1
)

−2log(λ1λ2λ3)+λ2
1+λ2

2+λ2
3

]
. (4.2)

The corresponding first Piola-Kirchhoff stress tensor is given by

S1=F+
1

µ

(
hM

CG

)′
(detF)·CofF

=F+

[(
M

2
− 1

3

)(
detF− 1

detF

)
− 1

detF

]
·CofF, (4.3)

where

hM
CG :=

1

µ
hCG=−logx+

λ

4µ
(x2−2logx−1). (4.4)

The Biot stress tensor defined by WM
CG(F) is

TBiot(U)=DUWM
CG(U)=R⊤S1

=U+
1

µ

(
hM

CG

)′
(detF)(detU)·detU ·U−1

=U+

[(
M

2
− 1

3

)(
detU− 1

detU

)
− 1

detU

]
·detU ·U−1, (4.5)

while the principal Biot stresses are given by

T1=λ1−
1

λ1
+

(
M

2
− 1

3

)(
λ1λ2

2λ2
3−

1

λ1

)
,

T2=λ2−
1

λ2
+

(
M

2
− 1

3

)(
λ2

1λ2λ2
3−

1

λ2

)
,

T3=λ3−
1

λ3
+

(
M

2
− 1

3

)(
λ2

1λ2
2λ3−

1

λ3

)
.

(4.6)

We compute

DT̂=




D11 D12 D13

D12 D22 D23

D13 D23 D33


 , (4.7)
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where

D11=
1

λ2
1

+1+

(
M

2
− 1

3

)(
1

λ2
1

+λ2
2λ2

3

)
, D12=2

(
M

2
− 1

3

)
λ1λ2λ2

3,

D13=2

(
M

2
− 1

3

)
λ1λ2

2λ3, D22=
1

λ2
2

+1+

(
M

2
− 1

3

)(
λ2

1λ2
3+

1

λ2
2

)
,

D23=2

(
M

2
− 1

3

)
λ2

1λ2λ3, D33=
1

λ2
3

+1+

(
M

2
− 1

3

)(
λ2

1λ2
2+

1

λ2
3

)
,

and remark that
detDT̂(1,1,1)=12M, (4.8)

which is strictly positive for all M>0. However, we find that for all M>2/3 there
exists (λ1,λ2,λ3)∈R

3
+ such that

detDT̂(λ1,λ2,λ3)=0. (4.9)

A quick numerical check reveals that the Biot stress-stretch relation is in general
not invertible, see Fig. 2. However, we may equally show this analytically. In-
deed, for each material of the form (4.1) with M>2/3 we have

detDT̂(λ1,λ1,λ1)

=

[
(2−3M)λ6

1+6λ2
1+4+3M

]2[
5(3M−2)λ6

1+6λ2
1+4+3M

]

216λ6
1

, (4.10)

and therefore, U 7→TBiot(U) loses differentiable invertibility in U=λ∗
1, where λ1

is a solution of the equation (see Fig. 3)

(−3M+2)λ6
1+6λ2

1+4+3M=0. (4.11)

In Fig. 3, for fixed M, the solution is the intersection of the red line to the
blue curve. However, the analytical proof of the existence and uniqueness of the
solution λ∗ of (4.11) is also possible.

Proposition 4.1. For any M>2/3 the Biot stress-stretch relation U 7→TBiot(U) for the

Neo-Hooke-Ciarlet-Geymonat energy is in general not a diffeomorphism.

Proof. Let us consider the function

s : (0,∞)→R, s(x)=(−3M+2)x3+6x+3M+4. (4.12)
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Figure 2: For M = 1, the region of those
(λ1,λ2,λ3) for which detDT̂(λ1,λ2,λ3) 6=0.

Figure 3: The plot of the pairs (λ1,M) satisfying
(2−3M)λ6

1+6λ2
1+4+3M=0. For fixed M=2, the unique

solution is the intersection of the red line to the blue curve.

Surely, we have

s(x2)=(−3M+2)x6+6x2+4+3M. (4.13)

Therefore, (−3M+2)x6+6x2+4+3M=0 has a positive solution λ1 if and only if

s(x)=0 has a positive solution. But the function s is concave (see Fig. 4), since

s′′(x)=6(2−3M)x<0, ∀x>0, ∀M>
2

3
, (4.14)

and it attains its maximum in the stationary point, i.e. in the solution of the

equation

s′(x)=0 ⇐⇒ 6+(6−9M)x2=0 ⇐⇒ x=

√
2√

3M−2
>0. (4.15)

Note that
s(0)=3M+4>0,

s

( √
2√

3M−2

)
=3M+

4√
3M/2−1

+4>0,

lim
x→∞

s(x)=−∞.

(4.16)

Thus, by the concavity, s(x) remains positive at least until it reaches its maxi-

mum x0 and, starting from x0, s(x) is strictly monotone decreasing. Since s(x) is
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continuous and limx→∞ s(x)→−∞, there must be exactly one point x̃, for which

s(x̃)= 0 by the intermediate value theorem and the strict monotonicity (starting

from x0), meaning that x̃ is the unique solution to s(x)=0.

According to Theorem 3.2, strong monotonicity of the Biot stress-stretch re-
lation for the Neo-Hooke-Ciarlet-Geymonat energy implies the positive semi-

definiteness of the matrix DT̂. Note however that, being not invertible and sym-

metric, the matrix DT̂ is also not positive definite everywhere.
Moreover, as visualized for M=1 via numerical simulation in Fig. 5, the matrix

DT̂ is not positive semi-definite on R
3
+ in general.

Proposition 4.2. For the compressible Neo-Hooke-Ciarlet-Geymonat materials, the Biot

stress-stretch relation is in general not monotone.

Proof. Note that DT̂(λ1,λ1,λ1) is a symmetric 3×3 matrix having the principal

minors

mBiot
1 (λ1,λ1,λ1):=

(3M−2)
(

λ6
1+1

)
/6+λ2

1+1

λ2
1

>0, M>
2

3
,

mBiot
2 (λ1,λ1,λ1):=

[
3(3M−2)λ6

1+6λ2
1+4+3M

][
(2−3M)λ6

1+6λ2
1+4+3M

]

36λ4
1

,

mBiot
3 (λ1,λ1,λ1):=

[
(2−3M)λ6

1+3M+6λ2
1+4

]2[
5(3M−2)λ6

1+3M+6λ2
1+4

]

216λ6
1

.

(4.17)

Figure 4: For M=1, the plot of s:(0,∞)→R,
s(x)=(−3M+2)x3+6x+3M+4.

Figure 5: For M=1, the region plot of those (λ1,λ2,λ3)
for which the matrix DT̂ is positive definite.
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The curve of those (λ1,M)∈R+×(2/3,∞) such that (4.11) is satisfied, divides

the plane into two parts, one part at which

(2−3M)λ6
1+6λ2

1+4+3M>0

(above the blue curve) and the part at which

(2−3M)λ6
1+6λ2

1+4+3M<0

(below the blue curve). For each fixed M>2/3, see Fig. 3, for λ1 <λ∗, where λ∗

corresponds to the intersection point of the red curve with the blue curve, the

pairs (λ1,M) are on the left-hand side of the blue, so

(2−3M)λ6
1+6λ2

1+4+3M<0,

while for λ1>λ∗, the pairs (λ1,M) are on the right-hand side of the blue, so

(2−3M)λ6
1+6λ2

1+4+3M>0.

Therefore, we have

mBiot
1 (λ1,λ1,λ1)>0, mBiot

2 (λ1,λ1,λ1)>0, mBiot
3 (λ1,λ1,λ1)>0, λ1<λ∗,

mBiot
1 (λ1,λ1,λ1)>0, mBiot

2 (λ1,λ1,λ1)=0, mBiot
3 (λ1,λ1,λ1)=0, λ1=λ∗,

mBiot
1 (λ1,λ1,λ1)>0, mBiot

2 (λ1,λ1,λ1)<0, mBiot
3 (λ1,λ1,λ1)>0, λ1>λ∗,

(4.18)

and, according to the Sylvester criterion, the proof is complete.

5 Existence of the radial solution for general

Neo-Hooke models

We have shown that the map TBiot:Sym++(3)→Sym(3) is, in general, not a diffeo-
morhpism. However, even if TBiot is not surjective, in the construction of a homo-
geneous solution of Rivlin’s cube problem, this does not immediately imply that
the Eq. (2.8) does not have a solution. Moreover, since it is unclear yet whether
TBiot is injective, (2.8) could have more than one solution. Equally, after the sys-
tem

TBiot(U)=α·1 ⇐⇒ Ti(λ1,λ2,λ3)=α, i=1,2,3 (5.1)
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is solved, one may ask whether T̂(λ1,λ2,λ3) or TBiot is locally strongly mono-
tone in the solutions or if the homogeneous solutions are locally unique minimiz-
ers or energetically stable. Recall that the stability condition and global mono-
tonicity were defined in Sections 3.2 and 3.3, while local strong monotonicity in
U∈Sym++(3) means that there exists c+>0 such that for sufficiently small ε>0,

〈TBiot(Ũ)−TBiot(U),Ũ−U〉> c+‖Ũ−U‖2, ∀Ũ∈Sym++(3) (5.2)

such that ‖Ũ−U‖< ε. We also note that (local) strict monotonicity implies the
(local) uniqueness of the solution of (5.1), since otherwise, assuming that U1 and
U2 are two different solutions,

〈TBiot(U1)−TBiot(U2),U1−U2〉=0, (5.3)

which contradicts the (local) strict monotonicity.
In this section, we consider the general models for the classical Neo-Hooke-

type energies, i.e.

WNH(F)=
µ

2
〈C,1〉+h(detF)=

µ

2
‖F‖2+h(detF)=

µ

2
‖U‖2+h(detU). (5.4)

The entire study is actually equivalent to the study of the one-parameter model
described by the energy

WM
NH(F) :=

1

µ
WNH(F)=

1

2
〈C,1〉+ 1

µ
h(detF)=

1

2
‖U‖2+

1

µ
h(detU). (5.5)

The corresponding first Piola-Kirchhoff stress tensor for this one parameter en-
ergy is given by

SNH
1 =F+

1

µ
h′(detF)·CofF, (5.6)

and the Biot stress tensor is

TNH
Biot(U)=DUWNH(U)=R⊤S1=U+

1

µ
h′(detU)·detU ·U−1. (5.7)

In order to have a stress free reference configuration, the function h has to
satisfy 3/2+h′(1)/µ=0. Since µ>0, we have h′(1)<0.

The first step in the study of the Rivlin cube problem is to check if a radial Biot
stress tensor TNH

Biot=α1 leads to a unique radial solution U=β+
1 of the equation

TNH
Biot(U)=α1. (5.8)
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Proposition 5.1. For a hypperelastic material of the form (5.4), if the Eq. (5.8) has

a unique radial solution U = β+
1, β+> 0 for every α∈R, then the convex function h

satisfies

(
3
√

x+
1

µ
h′(x)

3
√

x2

)′
≥0, ∀x>0, (5.9a)

lim
x→0

(
3
√

x+
1

µ
h′(x)

3
√

x2

)
=−∞, lim

x→∞

(
3
√

x+
1

µ
h′(x)

3
√

x2

)
=∞. (5.9b)

If the convex function h satisfies

(
3
√

x+
1

µ
h′(x)

3
√

x2

)′
>0, ∀x>0,

lim
x→0

(
3
√

x+
1

µ
h′(x)

3
√

x2

)
=−∞, lim

x→∞

(
3
√

x+
1

µ
h′(x)

3
√

x2

)
=∞,

(5.10)

then the Eq. (5.8) has a unique radial solution U=β+
1, β+>0 for every α∈R.

Proof. Eq. (5.8), after multiplication with U, reads

U2+
1

µ
h′(detU)·detU ·1=α·U. (5.11)

This system has a radial solution U=β+ ·1 if β+ is a solution to the equation

β++
1

µ
h′
(
(β+)3

)
(β+)2=α, (5.12)

or with the substitution x=(β+)3, if there is a unique positive solution x of the

equation

3
√

x+
1

µ
h′(x)

3
√

x2=α. (5.13)

There exists at least one solution x of the Eq. (5.13) if and only if for each

α ∈ R the function x 7→ 3
√

x+h′(x) 3
√

x2/µ is not bounded on (0,∞). Otherwise,

there exist values of α, smaller or larger than the lower bound or upper bound,

respectively, for which the function x 7→ 3
√

x+h′(x) 3
√

x2/µ never reach these val-

ues of α. On the other hand, if the function is unbounded, then if the function

x 7→ 3
√

x+h′(x) 3
√

x2/µ were not monotone, then the Eq. (5.13) could have more

than one solution for some α∈R. In conclusion, for a given α∈R, if the Eq. (5.8)

has a unique solution then the convex function h has one of the following prop-

erties:
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(
3
√

x+
1

µ
h′(x)

3
√

x2

)′
≥0, ∀x>0,

lim
x→0

(
3
√

x+
1

µ
h′(x)

3
√

x2

)
=−∞, lim

x→∞

(
3
√

x+
1

µ
h′(x)

3
√

x2

)
=∞,

(5.14)

or
(

3
√

x+
1

µ
h′(x)

3
√

x2

)′
≤0, ∀x>0, (5.15a)

lim
x→0

(
3
√

x+
1

µ
h′(x)

3
√

x2

)
=∞, lim

x→∞

(
3
√

x+
1

µ
h′(x)

3
√

x2

)
=−∞. (5.15b)

Since h is convex, h′ is monotone increasing. Hence,

h′(x)>h′(1), ∀x>1,

h′(x)<h′(1)<0, ∀x<1.
(5.16)

The conditions (5.15b) is therefore not admissible, since (5.15b) implies that

lim
x→0

(
h′(x)

3
√

x2
)
=∞,

which is not possible (since (5.16) yields h′(x) 3
√

x2 < 0 for all x < 1). Hence, it

remains that if the system (5.8) has a unique radial solution, then h has to satisfy

the conditions (5.10).

Finally, note that, the last part of the conclusions, the uniqueness of β+ is

implied by the strict monotonicity of the mapping x 7→ ( 3
√

x+h′(x) 3
√

x2/µ) and

by the limit conditions.

6 Bifurcation in Rivlin’s cube problem for the

compressible Neo-Hooke-Ciarlet-Geymonat model

Let us now consider the Neo-Hooke-Ciarlet-Geymonat model, i.e. the Neo-Hooke
model for which h(x)/µ is given by the function

hM
CG(x)=−logx+

(
M

4
− 1

6

)
(x2−2logx−1). (6.1)

For the Neo-Hooke-Ciarlet-Geymonat model, Rivlin’s cube problem amounts to
finding the solutions of the nonlinear algebraic system

T1≡λ1−
1

λ1
+

(
M

2
− 1

3

)(
λ1λ2

2λ2
3−

1

λ1

)
=α, (6.2a)
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T2≡λ2−
1

λ2
+

(
M

2
− 1

3

)(
λ2

1λ2λ2
3−

1

λ2

)
=α, (6.2b)

T3≡λ3−
1

λ3
+

(
M

2
− 1

3

)(
λ2

1λ2
2λ3−

1

λ3

)
=α. (6.2c)

6.1 Radial solution: Three equal stretches

When we are looking for a radial solution (λ1,λ2,λ3)=(β+,β+,β+) of the system
(6.2), we are looking for a solution of the equation

T1(β
+,β+,β+)≡ (3M−2)(β+)6+6(β+)2−4−3M

6β+
=α. (6.3)

As shown, such a solution exists, and its uniqueness is equivalent to the condi-
tions on hCG from Proposition 5.1. For the Neo-Hooke-Ciarlet-Geymonat model,
condition (5.9) is

(3M−2)(5x2+7)

216x 3
√

x
+

1

3
3
√

x2
>0, ∀x>0, (6.4)

which is clearly satisfied for M= (λ+2µ/3)/µ> 2/3. The conditions (5.9b) are
also satisfied, since

lim
x→0

(
(3M−2)

3
√

x2
(

x2−7
)

72x
+ 3
√

x

)
=−∞,

lim
x→∞

(
(3M−2)

3
√

x2
(

x2−7
)

72x
+ 3
√

x

)
=∞.

(6.5)

Therefore, the corresponding radial solutions are unique.

Proposition 6.1. For the compressible Neo-Hooke-Ciarlet-Geymonat material, for all

α∈R, the constitutive equation TBiot(U)=α1 has a unique radial solution U=β+ ·13,

β+>0. Moreover, since the mapping

fBiot : (0,∞) → R,

fBiot(β
+) :=T1(β

+,β+,β+)=
(3M−2)(β+)6+6(β+)2−4−3M

6β+

(6.6)

is strictly monotone increasing, continuous and surjective (see Fig. 6), the solution β+=
β+(α) is a monotone increasing function (see Fig. 7).
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Figure 6: The plot of β+ 7→ fBiot(β+) =
T1(β+,β+,β+).

Figure 7: The solution β+ of T1(β+,β+,β+)=α
depends strictly monotone on α.

However, when the bifurcation problem is studied in the Rivlin’s cube prob-
lem, we are interested to study if for all α>0 all radial solutions U= β+ ·1 of the
equation

TNH
Biot(U)=α1 (6.7)

are locally unique in the general classes of all possible solutions U ∈ Sym++(3)
(possibly non-radial), see Table 1 for a summary of the constitutive conditions
used in this paper.

Table 1: A summary of the constitutive conditions used in this paper. Here, ǫij=1 if {i, j}={1,2} or

{2,3} or {3,1}, ǫij=−1 otherwise.

In terms of
the principal Biot stresses

T̂=(T1,T2,T3)⊤

the energy expressed in the

principal stretches

W(F)= g(λ1,λ2,λ3)

invertibility

of TBiot

DT̂(λ1,λ2,λ3) is invertible

for any (λ1,λ2,λ3)∈R
3
+

and ‖T̂(λ1,λ2,λ3)‖R3 →∞ as

‖(logλ1,logλ2,logλ3)‖R3 →∞

D2g(λ1,λ2,λ3) is invertible

for any (λ1,λ2,λ3)∈R
3
+

and ‖Dg(λ1,λ2,λ3)‖R3 →∞ as

‖(logλ1,logλ2,logλ3)‖R3 →∞

Hilbert-

monotonicity

of TBiot

DT̂(λ1,λ2,λ3)∈Sym+(3) D2g(λ1,λ2,λ3)∈Sym+(3)

strong-

monotonicity of T̂
DT̂(λ1,λ2,λ3)∈Sym++(3) D2g(λ1,λ2,λ3)∈Sym++(3)

energetic

stability

Ti−ǫij Tj

λi−ǫij λj
≥0, i 6= j no sum

and DT̂(λ1,λ2,λ3)∈Sym+(3)

∂g/∂λi−ǫij ∂g/∂λj

λi−ǫij λj
≥0, i 6=j no sum

and D2g(λ1,λ2,λ3)∈Sym+(3)
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Note that we are not interested in having a unique solution of (6.7), but a lo-
cally unique solution. This is because we have to study whether the solution may
continuously (in the sense of the continuity of the map α 7→U(α)) depart from a ra-
dial one to a non-radial one and vice-versa. This is only possible in those points
in which the mapping U 7→ TBiot(U) is not invertible, i.e. using Theorem 3.1, in
those points (λ∗

1 ,λ∗
2 ,λ∗

3) where

detDT̂(λ∗
1 ,λ∗

2 ,λ∗
3)=0. (6.8)

Specifically, we are thus interested in the existence of a radial U=λ11 such that

detDT̂(λ1,λ1,λ1)=0, (6.9)

i.e. whether the map U 7→TBiot(U) loses local differentiable invertibility in a ra-
dial U. Indeed, for each material given by M>2/3 we have that

detDT̂(λ1,λ1,λ1)

=

[
(2−3M)λ6

1+6λ2
1+4+3M

]2[
5(3M−2)λ6

1+6λ2
1+4+3M

]

216λ6
1

, (6.10)

and therefore, U 7→ TBiot(U) loses the local invertibility in U = λ∗
1, where λ∗ is

the unique solution (see the proof of Proposition 4.1) of the equation

(2−3M)λ6
1+6λ2

1+4+3M=0. (6.11)

Since for M>2/3 the above equation has a unique positive solution, see the proof
of Proposition 4.1 and Fig. 3 (for fixed M, the unique solution is the intersection
of the red line with the blue curve), we argue that the bifurcation occurs for all
admissible constitutive parameters in only one radial solution.

We recall that, from the proof of Proposition 4.2, we have

mBiot
1 (λ1,λ1,λ1)>0, mBiot

2 (λ1,λ1,λ1)>0, mBiot
3 (λ1,λ1,λ1)>0, λ1<λ∗,

mBiot
1 (λ1,λ1,λ1)>0, mBiot

2 (λ1,λ1,λ1)=0, mBiot
3 (λ1,λ1,λ1)=0, λ1=λ∗,

mBiot
1 (λ1,λ1,λ1)>0, mBiot

2 (λ1,λ1,λ1)<0, mBiot
3 (λ1,λ1,λ1)>0, λ1>λ∗,

(6.12)

where mBiot
1 (λ1,λ1,λ1),m

Biot
2 (λ1,λ1,λ1) and mBiot

1 (λ1,λ1,λ1) are the principal mi-

nors of DT̂(λ1,λ1,λ1).
Hence, even if the map α 7→β(α) giving the solution of TBiot(β1)=α1 is strictly

monotone increasing, the relation TBiot=TBiot(U) could be locally strictly mono-
tone only at those radial U =λ11 for which λ1 <λ∗, and it loses its strict mono-

tonicity on those radial U=λ11 for which λ1>λ∗, see Figs. 8 and 9. Moreover, T̂
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Figure 8: For M=1, the strong monotonicity re-
gion in the points (λ1,λ1,λ2) (the blue region)
versus the energetic stability region in the points
(λ1,λ1,λ2) (the orange region).

Figure 9: The strong monotonicity is satisfied on
the radial solutions until the bifurcation point (on
the blue curve), i.e. 0<λ1 ≤λ∗.

is strongly monotone only for λ1 <λ∗. This is unphysical, since for purely radial
deformations, the Biot stress should clearly increase with the strain; therefore,
for U=λ∗

11, λ1 ≥λ∗, the radial solution should not be considered physically ad-
missible anymore. In other words, the cube cannot remain a cube by increasing
its length above λ∗ and at the same time keeping the strict monotonicity of the
TBiot=TBiot(U) relation.

Regarding the energetic stability of the radial solution, we note that the stabil-
ity conditions (3.13) against arbitrary perturbations for radial solutions, by letting
λi →λ, read as

(
∂2g

∂λ2
1

− ∂2g

∂λ1∂λ2

)∣∣∣∣
λi=λ

≥0,

(
∂g/∂λ2+∂g/∂λ1

2λ1

)∣∣∣∣
λi=λ

≥0. (6.13)

In addition to these conditions, energetic stability requires to check the positive
semi-definiteness of the Hessian matrix evaluated in the radial solution D2g =
(∂2g/(∂λi∂λj))|λi=λ, too.

The first inequality is equivalent to

(2−3M)λ6
1+6λ2

1+3M+4

6λ2
1

≥0, (6.14)

while the second one is equivalent to

(3M−2)λ6
1+6λ2

1−4−3M

3λ2
1

≥0. (6.15)
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Note that the Hessian matrix D2g is actually DT̂(λ1,λ1,λ1), and therefore the last
condition for stability, i.e. the positive semi-definiteness of D2g, is implied by the

strict monotonicity of T̂. Moreover, the first inequality required by the stability
criterion is redundant, and so it follows from the local positive definiteness of

DT̂(λ1,λ1,λ1), see the expression of mBiot
1 (λ1,λ1,λ1). In conclusion, the stability

of the radial solutions is implied by the strong monotonicity of T̂ in the radial
solutions, which holds true only until the radial solution reaches the bifurcation
point, i.e. for λi ≤λ∗, i=1,2,3, together with

(3M−2)λ6
1+6λ2

1−4−3M≥0. (6.16)

Since,

T1(λ1,λ1,λ1)=
(3M−2)λ6

1+6λ2
1−4−3M

6λ1
,

(6.16) is possible only when TBiot(diag(λ1,λ1,λ1))=α1with α≥0. Note again that
λ1 7→ T1(diag(λ1,λ1,λ1)),λ1 >0 is strictly monotone increasing, continuous and
surjective, limλ1→∞T1(λ1,λ1,λ1)=∞, limλ1→−∞T1(λ1,λ1,λ1)=−∞ and T1(1,1,1)=0.
Hence, inequality (6.16) holds true only for λ1≥1, i.e. when the radial solution is
a uniform extension.

Hence, the radial solution is stable, see Fig. 10, only for

1≤λ1≤λ∗, (6.17)

which lets us conclude that the stability criteria for the radial solutions are more
restrictive than the monotonicity criteria.

Figure 10: Contrary to strong monotonicity, the energetic stability is satisfied on the radial solutions
only starting with 1 and until the bifurcation point (on the blue curve), i.e. 1≤λ1≤λ∗.
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6.2 Two equal principal stretches (λ1 =λ2 6=λ3)

In this subsection, we find the solutions of the form

U=




λ1 0 0
0 λ1 0
0 0 λ2


, λ1 6=λ2

of the equation TBiot(U) = α1. We show that in the neighbourhood of the uni-

que radial solution U =λ∗
11 for which detDT̂(λ∗

1 ,λ∗
1 ,λ∗

1) is not invertible, i.e. in
a neighbourhood of α∗=T1(λ

∗
1 ,λ∗

1 ,λ∗
1), the equation TBiot(U)=αǫ1 admits a solu-

tion

Uǫ=




λε
1 0 0

0 λε
1 0

0 0 λε
2


, λε

1 6=λε
2,

which tends to the radial solution

U∗=




λ∗
1 0 0

0 λ∗
1 0

0 0 λ∗
1


,

when αε goes to α∗. Hence, we have to solve the system

(3M−2)
(
λ4

1λ2
2−1

)
/6+λ2

1−1

λ1
=α,

1

6
(3M−2)λ4

1λ2−
3M+4

6λ2
+λ2=α,

(6.18)

since

T1(β,β,γ)=T2(β,β,γ)=
(3M−2)

(
β4γ2−1

)
/6+β2−1

β
,

T3(β,β,γ)=
1

6
(3M−2)β4γ− 3M+4

6γ
+γ,

or equivalently to solve the system

T1(λ1,λ1,λ2)−T3(λ1,λ1,λ2)

≡− (λ1−λ2)
(
(3M−2)λ4

1λ2
2−3M−6λ1λ2−4

)

6λ1λ2
=0,

(3M−2)
(
λ4

1λ2
2−1

)
/6+λ2

1−1

λ1
=α.

(6.19)
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Hence, λ1=λ2, i.e. yielding the radial solution obtained in the previous section, or

λ2=

√
(9M2+6M−8)λ4

1+9λ2
1+3λ1

(3M−2)λ4
1

(6.20)

with λ1 being a solution of

√
(9M2+6M−8)λ4

1+9λ2
1+(3M−2)λ5

1+3λ1

(3M−2)λ4
1

=α. (6.21)

For any M>2/3, the function

ℓ : (0,∞)→ (0,∞), ℓ(λ1)=

√
(9M2+6M−8)λ4

1+9λ2
1+(3M−2)λ5

1+3λ1

(3M−2)λ4
1

(6.22)

is convex. Moreover, we have

lim
λ1→0

ℓ(λ1)=∞= lim
λ1→∞

ℓ(λ1). (6.23)

Thus,

• For α<minλ1>0ℓ(λ1) the Eq. (6.21) has no solutions. Therefore, only the ra-
dial solution which always exists is a solution of the equation TBiot(U)=α1.

• For α=minλ1>0ℓ(λ1) the Eq. (6.21) has one solution. Hence, the equation
TBiot(U) = α1 has two solutions: one radial and another with two equal
eigenvalues.

• For all α > minλ1>0ℓ(λ1) the Eq. (6.21) has two different admissible solu-
tions, which lead to two non-radial admissible solutions of the equation
TBiot(U)= α1. Besides these two solutions we have the already found ra-
dial solution, too.

More about the behaviour of these solutions may be observed from Fig. 11,
using M = 1. For values of α below the green line, there exists only the radial
solution. Between the green and the red lines there exist the radial solution and
two other non-radial solutions with two equal eigenvalues. By approaching the
red line, one non-radial solutions goes to the radial solution situated at the inter-
section point of the orange curve with the blue curve, while the other non-radial
solution tends into the other direction of the blue curve and will never be in the
neighbourhood of a radial solution. For values of α above the red line, there are
again three different solutions.
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It is easy to find that no bifurcation occurs in compression, since for α < 0
there exists only the radial solution. Thus, at the radial solution given by the
intersection point of the blue and orange curve, the relation TBiot=TBiot(U) is not
locally invertible, since the radial solution is not locally unique.

In conclusion, a bifurcation point λ∗ is a solution of (6.11). In Fig. 14 we plot
the path of the point (λ1,λ2) as a function of α∈ [0,5] with a step size of 0.1, by
solving numerically the Eq. (6.21) for M = 1, but the analysis is completely the
same for any other value of M.

Figure 11: The plot of β 7→ ℓ(β) (blue curve) and plot of β 7→ fBiot(β) (orange curve) for M=1.

Figure 12: For M=1, radial and non-radial solutions, bifurcation.
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However, for one branch of non-radial solutions (green curve) there is no
value of the Biot-stress magnitude for which the cube may continuously switch
from the radial solution to a non-radial solution, while for the other branch of
non-radial solutions (red curve) there is a unique value of the Biot-stress mag-
nitude for which the cube may continuously switch from the radial solution to
a non-radial solution, see Figs. 13 and 14.

Regarding the strong monotonicity of the non-radial solutions, we remark that
while the principal minor

mBiot
1 (λ1,λ1,λ2) :=

(
M

4
− 1

6

)(
2λ2

1λ2
2+

2

λ2
1

)
+

1

λ2
1

+1>0 (6.24)

of DT̂(λ1,λ1,λ2) is positive (not only on this curve), the second principal minor

mBiot
2 (λ1,λ1,λ2)

:=−
(
(3M−2)λ4

1λ2
2−3M−6λ2

1−4
)(

3(3M−2)λ4
1λ2

2+3M+6λ2
1+4

)

36λ4
1

, (6.25)

Figure 13: For M = 1, the solutions of the equation Ti(λ1,λ1,λ2) = α,i = 1,2,3 for a sequence of
increasing values of α.
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Figure 14: For M=1, a zoom commented picture of radial and non-radial solutions, bifurcation.

is strictly positive only on those points on this curve for which

(2−3M)λ4
1λ2

2+3M+6λ2
1+4>0, (6.26)

i.e. for λ1 satisfying

−
6
(
−
√
(9M2+6M−8)λ2

1+9+(3M−2)λ4
1−3

)

(3M−2)λ2
1

>0

⇐⇒
(

λ4
1>

3

3M−2
and −4−3M−6λ2

1+(3M−2)λ6
1>0

)
. (6.27)

In fact, each λ1 such that 4−3M−6λ2
1+(3M−2)λ6

1 >0 satisfies λ4
1 >3/(3M−2),

too. Indeed, if λ4
1≥3/(3M−2) then

−4−3M−6λ2
1+(3M−2)λ6

1≤−4−3M−3λ2
1<0.

Therefore, a necessary condition for the strong monotonicity of a non-radial so-
lution is λ1 >λ∗. In Figs. 14 and 15, this means the part of the red curve below
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the λ1 = λ2 curve and the entire green curve. The analytic study of the sign of

the third principal minor mBiot
3 (λ1,λ1,λ2) of DT̂(λ1,λ1,λ2) is more complicated.

However, the numerical testing has shown that on the entire red curve the strong
monotonicity of the principal Biot stresses vector is lost, while on the green curve
the monotonicity holds true, see Fig. 16.

Numerical computations show that, before and after the bifurcation point the
values of the internal energy density WCG(F) as well as the absolute value of the
total energy (2.5) are smaller on the radial solutions, in comparison to the non-
radial solutions, while this is not true for the total energy (2.5), even before the
bifurcation. Note that the total energy is positive for contraction and negative for
extension.

In the following we discuss the stability of the non-radial solutions, the sta-
bility of the radial solutions being already discussed in the previous subsection.
The stability conditions (3.15) are equivalent to

(2−3M)λ4
1λ2

2+3M+6λ2
1+4

6λ2
1

≥0,
(2−3M)λ4

1λ2
2+3M+6λ1λ2+4

6λ1λ2
≥0,

(3M−2)λ4
1λ2

2−3M+6λ2
1−4

6λ2
1

≥0,
1

6

(
(3M−2)λ3

1λ2−
3M+4

λ1λ2
+6

)
≥0.

(6.28)

Figure 15: For M = 1, the strong monotonic-
ity region in the points (λ1,λ1,λ2) (the blue re-
gion) versus the energetic stability region in the
points (λ1,λ1,λ2) (the orange region) together
with the radial solutions (the black curve) and the
non-radial solutions (the red curve and the green
curve). Only one branch (the green curve) of non-
radial solutions belongs to the strong monotonic-
ity domain. The same branch (the green curve)
belongs to the energetic stability domain, too.

Figure 16: The strong monotonicity is satisfied on
the radial solutions until the bifurcation point is
reached, while after the value of α for which bi-
furcation is present, one branch of the radial solu-
tions preserves the strong monotonicity, while the
radial solutions and the other branch (red curve)
do not satisfy the strong monotonicity conditions.
In this figure, the strong monotonicity is satisfied
on the blue curves.
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The first two are equivalent to the positivity of mBiot
2 (λ1,λ1,λ2), so it implies

λ1 ≥ λ∗ while the third implies α ≥ 0 which is always satisfied since the non-
radial solution is present only in extension. For λ1 ≥λ∗ it follows that the fourth
inequality is satisfied, too.

The study of the positive semi-definiteness of D2g is similar to the study of

the strong monotonicity of T̂ on the non-radial solution, which has already been
treated above.

Summarising, the energetic stability of the non-radial solutions is equivalent
to the monotonicity of the map U 7→TBiot(U) in these points. Therefore, the radial
solutions are stable if and only if 1≥λ1 ≥λ∗, while the non-radial solutions are
energetic stable only on the green branch of the non-radial solution. The energetic
stable solutions are given in Fig. 17 by the orange curve.

Figure 17: The energetic stability is satisfied on the radial solutions only starting with λ1=1 and until
the bifurcation point is attended. However, for non-radial solutions the situation is similar to the strong
monotonicity, i.e. the stability is satisfied only on one branch of the radial solutions. In this figure, the
energetic stability is satisfied on the orange curves.

6.3 Unequal principal stretches (λi 6=λj, i 6= j)

Using the expressions (4.6) of the principal Biot stresses we find that the general
solution (λ1,λ2,λ3) of the equation TBiot(U) = α1 is described by the following
system:

− (λ1−λ3)
(
(3M−2)λ2

1λ2
2λ2

3−3M−6λ1λ3−4
)

6λ1λ3
=0,

− (λ2−λ3)
(
(3M−2)λ2

1λ2
2λ2

3−3M−6λ2λ3−4
)

6λ2λ3
=0,

1

6
(3M−2)λ2

1λ2
2λ3−

3M+4

6λ3
+λ3=α.

(6.29)
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If λ1 = λ3 or λ2 = λ3, then we are in the situation of the previous section. If
λ1 6=λ2 6=λ3 6=λ1 then

(3M−2)λ2
1λ2

2λ2
3−3M−6λ1λ3−4=0,

(3M−2)λ2
1λ2

2λ2
3−3M−6λ2λ3−4=0,

(6.30)

which implies that λ1=λ2. So the entire discussion reduces to the situation when
two singular values are equal, a conclusion which may be observed from the
numerical simulation given in Fig. 18,

Figure 18: The numerical simulation for M=1 of the solutions (λ1,λ2,λ3) of the equation TBiot(U)=
α1, α∈ [−2,5].

7 Conclusion

In this study, we investigated the invertibility and monotonicity of stress-strain
relations, specifically focusing on the Biot stress tensor-right stretch tensor re-
lation and Rivlin’s cube problem. Our primary objective was to determine the
conditions under which a unique radial solution exists for Neo-Hooke type ma-
terials, where the cube remains a cube under any magnitude of radial stress.

We established that the function h ≡ hCG defining the Ciarlet-Geymonat en-
ergies meets the necessary and sufficient properties for ensuring the existence of
a unique radial solution. For the Neo-Hooke-Ciarlet-Geymonat model, we iden-
tified both radial and non-radial solutions. In the extension case, non-radial solu-
tions arise, transforming the cube into a parallelepiped, while in compression or

below a critical force magnitude α♭, such solutions do not exist. Our analysis re-
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vealed that radial solutions maintain local monotonicity up to a critical value α∗,
beyond which bifurcation occurs and monotonicity is lost. This critical value
corresponds to the point where invertibility is lost in radial solutions, in terms
of principal Biot stresses and principal stretches. For force magnitudes starting

from α∗≥ α♭ (below the bifurcation threshold), we identified two classes of non-
radial solutions, both appearing discontinuously at α∗ and then depending con-
tinuously on the force intensity. One class of non-radial solutions approaches the
bifurcation branch, while the other set of non-radial solutions diverges from it.
Numerical tests indicated that the first class of non-radial solutions fails to ensure
strong monotonicity, whereas the second class maintains monotonicity, aligning
better with physical expectations.

These findings provide insights into the behaviour of stress-strain relations in
Neo-Hooke materials and contribute to the understanding of material response
under various loading conditions.

Having shown the possible discontinuous nature of multiple solutions with
and without symmetry for Rivlin’s cube problem, it however remains open
whether this can be observed in an experimental setup. It is then natural to
inquire as to whether the choice of another elastic energy does not exhibit this
surprising response. In other words, this would mean that such insufficiencies
stem from the restrictions on the class of elastic energies.

Appendix A. General notation

Inner product For a,b∈R
n we let 〈a,b〉Rn denote the scalar product on R

n with
associated vector norm ‖a‖2

Rn = 〈a,a〉Rn . We denote by R
n×n the set of real n×n

second order tensors, written with capital letters. The standard Euclidean scalar
product on R

n×n is given by 〈X,Y〉Rn×n=tr(XY⊤), where the superscript ⊤ is used
to denote transposition. Thus, the Frobenius tensor norm is ‖X‖2 = 〈X,X〉Rn×n ,
where we usually omit the subscript R

n×n in writing the Frobenius tensor norm.
The identity tensor on R

n×n will be denoted by 1, so that tr(X)= 〈X,1〉.
Frequently used spaces

• Sym(n),Sym+(n) and Sym++(n) denote the symmetric, positive semi-de-
finite symmetric and positive definite symmetric tensors respectively.

• GL(n) :={X∈R
n×n |detX 6=0} denotes the general linear group.

• GL+(n) := {X ∈ R
n×n |detX > 0} is the group of invertible matrices with

positive determinant.

• SL(n) :={X∈GL(n) |detX=1}.
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• O(n) :={X∈GL(n) |X⊤X=1}.

• SO(n) :={X∈GL(n,R) |X⊤X=1, detX=1}.

• so(3) :={X∈R
3×3 |X⊤=−X} is the Lie-algebra of skew symmetric tensors.

• sl(3) :={X∈R
3×3 | tr(X)=0} is the Lie-algebra of traceless tensors.

• The set of positive real numbers is denoted by R+ := (0,∞), while R+ =
R+∪{∞}.

Frequently used tensors

• C=F⊤F is the right Cauchy-Green strain tensor.

• B=FF⊤ is the left Cauchy-Green (or Finger) strain tensor.

• U=
√

F⊤F∈Sym++(3) is the right stretch tensor, i.e. the unique element of
Sym++(3) with U2=C.

• V =
√

FF⊤ ∈ Sym++(3) is the left stretch tensor, i.e. the unique element of
Sym++(3) with V2=B.

• We also have the polar decomposition F = RU =VR∈GL+(3) with an or-
thogonal matrix R∈O(3).

Further definitions and conventions

• For X∈GL(3), CofX=(detX)X−⊤ is the cofactor of X∈GL(3), while Adj(X)
denotes the tensor of transposed cofactors.

• For vectors ξ,η∈R
3, we have the tensor product (ξ⊗η)ij = ξi ηj.

• For vectors v=(v1,v2,v3)
⊤ ∈R

3, we define

diagv=




v1 0 0
0 v2 0
0 0 v3


 .

• The Fréchet derivative of a function W : R
3×3 → R at F ∈ R

3×3 applied
to the tensor-valued increment H is denoted by DF[W(F)].H. Similarly,
D2

F[W(F)].(H1 ,H2) is the bilinear form induced by the second Fréchet deri-
vative of the function W at F applied to (H1,H2).

• Let Ω⊂R
3 be a bounded open domain with Lipschitz boundary ∂Ω. The

usual Lebesgue spaces of square-integrable functions, vector or tensor fields
on Ω with values in R, R

3, R
3×3 or SO(3), respectively will be denoted by

L2(Ω;R),L2(Ω;R3),L2(Ω;R3×3) and L2(Ω;SO(3)), respectively.

• For vector fields u=(u1,u2,u3) with ui ∈H1(Ω), i= 1,2,3, we define Du :=
(Du1 |Du2 |Du3)

⊤.
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