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Abstract. This paper is concerned with a fully parabolic Patlak-Keller-Segel-
Navier-Stokes system
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nt+u·∇n=∆n−χ∇·(n∇c), (x,t)∈Ω×(0,∞),

ct =∆c−c+n, (x,t)∈Ω×(0,∞),

ut+(u·∇)u+∇P=∆u+n∇c, (x,t)∈Ω×(0,∞),

∇·u=0, (x,t)∈Ω×(0,∞),

where Ω⊂R
2 is a smoothly bounded domain and the parameter χ is positive.

The main aim of this note is to show that if
∫

Ω

n0(x)dx≤
4π

χ
,

then the solution of the above system is global and bounded in time.
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1 Introduction

In this paper, we study the following fully parabolic coupled Patlak-Keller-Segel-
Navier-Stokes equation modeling chemotaxis in a moving fluid:
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nt+u·∇n=∆n−χ∇·(n∇c), (x,t)∈Ω×(0,∞), (1.1a)

ct=∆c−c+n, (x,t)∈Ω×(0,∞), (1.1b)

ut+(u·∇)u+∇P=∆u+n∇c, (x,t)∈Ω×(0,∞), (1.1c)

∇·u=0, (x,t)∈Ω×(0,∞), (1.1d)

∂n

∂ν
=

∂c

∂ν
=0, u=0, (x,t)∈∂Ω×(0,∞), (1.1e)

n(x,0)=n0(x), c(x,0)= c0(x), u(x,0)=u0(x), x∈Ω, (1.1f)

where χ> 0,Ω⊂R
2 is a bounded domain with smooth boundary ∂Ω, and ∂/∂ν

denotes the derivative with respect to the outward normal vector ν of ∂Ω. The
initial data (n0,c0,u0) satisfies the following conditions:
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n0∈L∞(Ω), n0(x)≥0 in Ω,

c0∈W1,∞(Ω), c0(x)≥0 in Ω,

u0∈D(Aθ), θ∈

(

1

2
,1

)

,

(1.2)

where A=−P∆ represents the Stokes operator in

L2
σ(Ω) :={ϕ∈L2(Ω;R2) |∇·ϕ=0}

with its domain given by

D(A) :=W2,2(Ω;R2)∩W1,2
0 (Ω;R2)∩L2

σ(Ω),

and with P denoting the Helmholtz projection from L2(Ω;R2) into L2
σ(Ω) in [14].

In this model, the unknown functions n= n(x,t) and c= c(x,t) respectively de-
note the density of the cells and the concentration of the chemicals, and the
divergence-free vector field u=u(x,t) represents the ambient fluid velocity. The
first equation describes the time evolution of the cell density subject to chemo-
taxis-induced aggregation, diffusion caused by random Brownian motion, and
transportation by ambient fluid flow u. Since the cells secrete the chemo-attrac-
tants, there exists a deterministic relation between the two distributions n and c,
which specify this connection through the second equation when the effect of
fluid is neglected. The third equation on the divergence-free vector field u de-
scribes the fluid motion subject to forcing induced by the cells. The reasoning
behind the coupling n∇c is that in order to make the cells move without accel-
eration, the fluid exerts frictional force on the moving cells, so reaction forces act
on the fluid. The force n∇c in the Navier-Stokes equation matches the aggrega-
tion nonlinearity in the cell density evolution, which occurs in the Nernst-Planck-
Navier-Stokes system (see [3]).


