Commun. Math. Res. doi: 10.4208/cmr.2024-0002

Invariance of Conjugate Normality Under Similarity

Cun Wang^{1,*}, Meng Yu² and Minyi Liang²

Received 19 January 2024; Accepted 22 May 2024

Abstract. An operator T on a separable, infinite dimensional, complex Hilbert space \mathcal{H} is called conjugate normal if $C|T|C=|T^*|$ for some conjugate linear, isometric involution C on \mathcal{H} . This paper focuses on the invariance of conjugate normality under similarity. Given an operator T, we prove that every operator A similar to T is conjugate normal if and only if there exist complex numbers λ_1, λ_2 such that $(T-\lambda_1)(T-\lambda_2)=0$.

AMS subject classifications: Primary 47B99, 47A05; Secondary 47A10, 47A58 **Key words**: *C*-normal operators, complex symmetric operators, similarity.

1 Introduction

Let \mathcal{H} be a separate, complex Hilbert space with dim $\mathcal{H} = \infty$. We write $\mathcal{B}(\mathcal{H})$ for the collection of all bounded linear operators on \mathcal{H} .

Definition 1.1. *Let* $C: \mathcal{H} \to \mathcal{H}$ *be a map. We say that* C *is a conjugation if*

- (i) $C(ax+y) = \overline{a}Cx + Cy$ for all $x,y \in \mathcal{H}$ and any $a \in \mathbb{C}$,
- (ii) C is bijective with $C^{-1} = C$,
- (iii) $\langle Cx,Cy\rangle = \langle y,x\rangle$ for all $x,y \in \mathcal{H}$.

¹ School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 102488, P.R. China.

² School of Mathematics, Jilin University, Changchun, Jilin 130012, P.R. China.

^{*}Corresponding author. *Email addresses:* wangcun@bit.edu.cn(C. Wang), yumeng21@mails.jlu.edu.cn(M. Yu), liangminyi1216@163.com(M. Liang)

Definition 1.2. *Let* $T \in \mathcal{B}(\mathcal{H})$. *We say that* T *is conjugate normal if there exists a conjugation* C *on* \mathcal{H} *so that* $C|T|C = |T^*|$ *(in this case,* T *is said to be* C*-normal).*

The study of *C*-normal operators was initiated by Ptak *et al.* [17], where basic properties of conjugate normal operators are developed. The term "conjugate normal" was first used in [15]. The class of conjugate normal operators includes complex symmetric operators. An operator $T \in \mathcal{B}(\mathcal{H})$ is called complex symmetric if there exists a conjugation C on \mathcal{H} so that $CTC = T^*$. We refer the reader to [4–7,9,11,16,22,25] for more results concerning complex symmetric operators.

The conjugate normality is quite different from the complex symmetry. On one hand, a complex symmetric operator T must be biquasitriangular (i.e., ind (T-z)=0 whenever T-z is semi-Fredholm). However, a conjugate normal operator is not necessarily biquasitriangular (see [20, Example 4.1]). Also, the class of conjugate normal operators contains skew symmetric operators [23], which differs a lot from complex symmetric operators. On the other hand, it can be seen from [6, 8, 14, 25] that conjugate normality differs a lot from the complex symmetry for weighted shifts and partial isometries.

Recently the class of conjugate normal operators has received a lot of attention. Conjugate normal weighted shifts and partial isometries are classified in [14,15]. A refined polar decomposition of conjugate normal operators was provided in [20]. In [18], the Cartesian decomposition for conjugate normal operator was established. A representation of compact conjugate normal operators was provided in [19]. Two recent papers [12,13] are devoted to studying operator transforms of conjugate normal operators.

The aim of this paper is to explore the invariance of conjugate normality under similarity. Recall that two operator $A, B \in \mathcal{B}(\mathcal{H})$ are said to be similar if AX = XB for some invertible $X \in \mathcal{B}(\mathcal{H})$, denoted by $A \sim B$. For $A \in \mathcal{B}(\mathcal{H})$, we denote $\mathcal{S}(A) = \{X \in \mathcal{B}(\mathcal{H}) : A \sim X\}$ and call $\mathcal{S}(A)$ the similarity orbit of A.

In general, the conjugate normality is not stable under similarity.

Example 1.1. Let $T, A \in \mathcal{B}(\mathbb{C}^3)$ with

$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

relative to the canonical orthonormal basis $\{e_1, e_2, e_3\}$ of \mathbb{C}^3 . Then $T \sim A$, and T is conjugate normal with respect to the conjugation C on \mathbb{C}^3 given by

$$Ce_i = e_{4-i}, i = 1,2,3.$$