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Abstract. This work presents a stochastic Chebyshev-Picard iteration method
to efficiently solve nonlinear differential equations with random inputs. If the
nonlinear problem involves uncertainty, we need to characterize the uncer-
tainty by using a few random variables. The nonlinear stochastic problems
require solving the nonlinear system for a large number of samples in the
stochastic space to quantify the statistics of the system of response and explore
the uncertainty quantification. The computational cost is very expensive. To
overcome the difficulty, a low rank approximation is introduced to the solution
of the corresponding nonlinear problem and admits a variable-separation form
in terms of stochastic basis functions and deterministic basis functions. No it-
eration is performed at each enrichment step. These basis functions are model-
oriented and involve offline computation. To efficiently identify the stochastic
basis functions, we utilize the greedy algorithm to select some optimal sam-
ples. Then the modified Chebyshev-Picard iteration method is used to solve
the nonlinear system at the selected optimal samples, the solutions of which
are used to train the deterministic basis functions. With the deterministic basis
functions, we can obtain the corresponding stochastic basis functions by solv-
ing linear differential systems. The computation of the stochastic Chebyshev-
Picard method decomposes into an offline phase and an online phase. This is
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very desirable for scientific computation. Several examples are presented to il-
lustrate the efficacy of the proposed method for different nonlinear differential
equations.
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1 Introduction

In recent years, nonlinear dynamical systems arise in many fields of science, par-
ticular in physics, chemistry, finance and engineering problems. The real-world
models usually contain some uncertainties because of lacking enough knowl-
edge about physical properties and measurement noise. Therefore, such complex
models with uncertainties can be described by the nonlinear ordinary differential
equations with random inputs (e.g., model coefficients, external loadings or the
initial conditions). For deterministic nonlinear systems, there exist a broad class
of approaches of analytical, semi-analytical and numerical methods.

The most commonly used methods are Adomian decomposition method
(ADM) [2,19,41], the variational iteration method (VIM) [20,21], the homotopy
perturbation method (HPM) [1], the homotopy analysis method (HAM) [9] and
also other numerical methods such as one shot method [7], Runge-Kutta-Nystrom
method [3,25], Hilber-Hughes-Taylor-a& method [22] and multistep, or predictor-
corrector methods [23]. On the other hand, collocation methods using Chebyshev
and Legendre as Jacobi polynomials are presented in [4,11,15,33]. To solve for
the evolution of a nonlinear dynamical system beyond a certain time instant ¢,
the most straightforward approaches could be the direct difference method, such
as Runge-Kutta method. For nonlinear deterministic differential equations, there
are mathematical theories and computational methods. The consideration of un-
certainty in modelling has experienced a significant increase over the last few
years. For different random problems, some new methods, such as bi-orthogonal
PINN method, stochastic homogenization method and novel partitioned time-
stepping method, are proposed in [31,46,48].

By estimating the statistical properties with Monte Carlo simulation, some nu-
merical schemes have been obtained which have been called Runge-Kutta Monte
Carlo methods. Quasi-Monte Carlo (QMC) methods [10, 14] are deterministic
version of Monte Carlo (MC) methods, in the sense that the random samples



