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Abstract. In [T. Wu et al., arXiv2310.09775, 2023], a general Dabrowski-Sitarz-
Zalecki type theorem for odd dimensional manifolds with boundary was
proved. In this paper, we give the proof of the another general Dabrowski-
Sitarz-Zalecki type theorem for the spectral Einstein functional associated with
the Dirac operator on odd dimensional manifolds with boundary.
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1 Introduction

The noncommutative residue found in [7, 18] plays a prominent role in non-
commutative geometry. For one-dimensional manifolds, the noncommutative
residue was discovered by Adler [2] in connection with geometric aspects of non-
linear partial differential equations. For arbitrary closed compact n-dimensional
manifolds, the noncommutative residue was introduced by Wodzicki [18] using
the theory of zeta functions of elliptic pseudo-differential operators. Connes [3]
used the noncommutative residue to derive a conformal 4-dimensional Polyakov
action analogy. Connes [4] showed us that the noncommutative residue on a com-
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pact manifold M coincided with the Dixmier’s trace on pseudo-differential oper-
ators of order −dimM. And Connes claimed that the noncommutative residue of
the square of the inverse of the Dirac operator was proportioned to the Einstein-
Hilbert action. Kastler [9] gave a brute-force proof of this theorem. Kalau and
Walze [8] proved this theorem in the normal coordinates system simultaneously.
Ackermann [1] proved that the Wodzicki residue of the square of the inverse of
the Dirac operator Wres(D−2) in turn is essentially the second coefficient of the
heat kernel expansion of D2.

On the other hand, Wang [13, 14] generalized the Connes’ results to the case
of manifolds with boundary, and proved the Kastler-Kalau-Walze type theorem
for the Dirac operator and the signature operator on lower-dimensional mani-

folds with boundary [15]. Wang [15, 16] computed W̃res[π+D−1◦π+D−1] and

W̃res[π+D−2◦π+D−2], where the two operators are symmetric, in these cases

the boundary term vanished. But for W̃res[π+D−1◦π+D−3], the authors got
a non-vanishing boundary term [11], and gave a theoretical explanation for grav-
itational action on boundary. The authors defined bilinear functionals of vector
fields and differential forms, the densities of which yielded the metric and Ein-
stein tensors on even dimensional Riemannian manifolds [5]. In [20], the au-

thors computed the generalized noncommutative residue W̃res[π+(c(X)D−1)◦
π+(D−(2m−2))], W̃res[π+(∇S(TM)

X D−1)◦π+(D−(2m−1))], W̃res[π+(∇S(TM)
X D−2)◦

π+(D−(2m−2))] on odd dimensional manifolds with boundary. Wu and Wang
[19] defined the spectral Einstein functional associated with the Dirac opera-
tor for manifolds with boundary, and computed the noncommutative residue

W̃res[π+(∇S(TM)
X ∇S(TM)

Y D−1)◦π+(D−(n−1))] and W̃res[π+(∇S(TM)
X ∇S(TM)

Y D−2)◦
π+(D−(n−2))] on n-dimensional compact manifolds, n is even. They also com-

puted W̃res[π+(∇S(TM)
X ∇S(TM)

Y D−2)◦π+(D−(n−1))] for n-dimensional manifolds

with boundary, n is odd. That is, they computed W̃res[π+P1◦π+P2] for n-dimen-
sional manifolds, n is odd and n+order(P1)+order(P2) = 1. The motivation of
this paper is to prove the another general Dabrowski-Sitarz-Zalecki type theorem
associated with the Dirac operator for odd dimensional manifolds with bound-

ary. So we want to compute Wres[∇S(TM)
X ∇S(TM)

Y D−n] when dimM=n and n is

odd as in [5]. But Wres[∇S(TM)
X ∇S(TM)

Y D−n]=0. When M is a manifold with the

even dimensional boundary, we hope to compute W̃res[π+(∇S(TM)
X ∇S(TM)

Y D−1)◦
π+(D−(n−1))] and W̃res[π+(∇S(TM)

X ∇S(TM)
Y D−2)◦π+(D−(n−2))] as in [19] and

get the non-zero boundary term, but through the computations, the boundary

term is still zero. The reason is that ∇S(TM)
X ∇S(TM)

Y D−n maps S±(TM) to S∓(TM)


