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Abstract. In [T. Wu et al., arXiv2310.09775, 2023], a general Dabrowski-Sitarz-
Zalecki type theorem for odd dimensional manifolds with boundary was
proved. In this paper, we give the proof of the another general Dabrowski-
Sitarz-Zalecki type theorem for the spectral Einstein functional associated with
the Dirac operator on odd dimensional manifolds with boundary.
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1 Introduction

The noncommutative residue found in [7, 18] plays a prominent role in non-
commutative geometry. For one-dimensional manifolds, the noncommutative
residue was discovered by Adler [2] in connection with geometric aspects of non-
linear partial differential equations. For arbitrary closed compact n-dimensional
manifolds, the noncommutative residue was introduced by Wodzicki [18] using
the theory of zeta functions of elliptic pseudo-differential operators. Connes [3]
used the noncommutative residue to derive a conformal 4-dimensional Polyakov
action analogy. Connes [4] showed us that the noncommutative residue on a com-
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pact manifold M coincided with the Dixmier’s trace on pseudo-differential oper-
ators of order —dimM. And Connes claimed that the noncommutative residue of
the square of the inverse of the Dirac operator was proportioned to the Einstein-
Hilbert action. Kastler [9] gave a brute-force proof of this theorem. Kalau and
Walze [8] proved this theorem in the normal coordinates system simultaneously.
Ackermann [1] proved that the Wodzicki residue of the square of the inverse of
the Dirac operator Wres(D~2) in turn is essentially the second coefficient of the
heat kernel expansion of D?.

On the other hand, Wang [13, 14] generalized the Connes’ results to the case
of manifolds with boundary, and proved the Kastler-Kalau-Walze type theorem
for the Dirac operator and the signature operator on lower-dimensional mani-

folds with boundary [15]. Wang [15, 16] computed \/Tf;e/s[nJrD_lon*D_l] and
V/V;e/s[chrD_zochrD_z], where the two operators are symmetric, in these cases
the boundary term vanished. But for Wres[nrt D~ lonr™ D3], the authors got
a non-vanishing boundary term [11], and gave a theoretical explanation for grav-
itational action on boundary. The authors defined bilinear functionals of vector
tields and differential forms, the densities of which yielded the metric and Ein-
stein tensors on even dimensional Riemannian manifolds [5]. In [20], the au-
thors computed the generalized noncommutative residue V/\;r\e/s[ﬂJr(c(X)D_l)o
Tt (D—(Zm—z) )], V/v_;e/s[n+ (V;(TM) D—l) orrt (D—(2m—1) )], V/\/r\e/s[rﬁ (V;(TM) D—2) o
t(D~@"=2))] on odd dimensional manifolds with boundary. Wu and Wang

[19] defined the spectral Einstein functional associated with the Dirac opera-
tor for manifolds with boundary, and computed the noncommutative residue

Wres[rH (V5 M v ™M D=1y o 7+ (D= (=1))] and Wres[r+ (VW™ p-2)o
7t (D~("=2))] on n-dimensional compact manifolds, 7 is even. They also com-
puted Wres[ T+ (V;(TM)Vi(TM) D~2)oxt (D~ ("=1)] for n-dimensional manifolds
with boundary, # is odd. That is, they computed Wres|7r* Pyorrt Py] for n-dimen-
sional manifolds, # is odd and n+order(P;)+order(P,) =1. The motivation of

this paper is to prove the another general Dabrowski-Sitarz-Zalecki type theorem
associated with the Dirac operator for odd dimensional manifolds with bound-

ary. So we want to compute Wres[V;(TM)Vi(TM)D_”] when dimM =n and n is
odd as in [5]. But Wres[Vi(TM)Vi(TM)D_”] =0. When M is a manifold with the
even dimensional boundary, we hope to compute \//\f;e/s[n+ (V;(TM) Vi(TM) D)o
at(D-("=1)] and V/\;r\e/s[ﬂJr(V;(TM)Vi(TM)D_Z)on*(D_(”_z))] as in [19] and
get the non-zero boundary term, but through the computations, the boundary

term is still zero. The reason is that Vi(TM)Vi(TM)D_” maps ST (TM) to ST(TM)



