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Abstract. In this paper, we investigate a one-dimensional Euler-Poisson sys-
tem with varying background charges, which are two different constants when
the flow speed is less than and greater than the sound speed. Using the shock
matching method, we derive the properties of the solution trajectories and es-
tablish a monotonic relationship between the density at the nozzle exit and the
shock position. This relationship demonstrates the existence and uniqueness
of a transonic shock solution under suitable boundary conditions.
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1 Introduction

The hydrodynamical model for the motion of electrons in semiconductor devices
or plasmas is generally governed by the following Euler-Poisson system, which
consists of equations describing the conservation of mass and momentum, cou-
pled with Poisson’s equation for the electric field:











ρt+(ρu)x =0,

(ρu)t+(p(ρ)+ρu2)x =ρE,

Ex =ρ−b,

(1.1)
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where u,ρ and p represent the average particle velocity, density and pressure,
respectively. E denotes the electric field which is generated by the Coulomb force
of particles, and the function b > 0 stands for the density of positively charged
background ions [17]. Assume that p satisfies

p(0)=0, p′(ρ)>0, p′′(ρ)>0 for ρ>0, p(+∞)=+∞. (1.2)

In the biological field, the system can also be used to simulate the transport of ions
between the extracellular side and the cytoplasmic side of the membranes [7].
In this case, ρ, ρu, and E are the ion concentration, ion translational mass, and
electric field, respectively.

In this study, we focus on the steady case for (1.1) with varying background
charges. These charges are represented as two different constants when the flow
speed is less than and greater than the sound speed, respectively. The boundary
value problem is written as











(ρu)x =0,

(p(ρ)+ρu2)x =ρE,

Ex=ρ−b

(1.3)

with the boundary value conditions

(ρ,u,E)(0)=(ρ0 ,u0,E0), (ρ,u)(L)=(ρe ,ue), (1.4)

where ρ0,u0, E0,ρe and ue are given positive constants. We assume that b is a piece-
wise constant function of the form

b=

{

b1, u> c,

b2, u< c,
(1.5)

where b1 and b2 are positive constants, and, by the terminology of gas dynamics,

c=
√

p′(ρ) represents the sound speed.
The first equation in (1.3) indicates that ρu is a constant and we denote it by J.

Thus the boundary value problem (1.3)-(1.4) can be further reduced to the follow-
ing ODE system for (ρ,E):







ρx =
ρE

p′(ρ)− J2/ρ2
,

Ex =ρ−b
(1.6)

with the boundary conditions

(ρ,E)(0)=(ρ0 ,E0), ρ(L)=ρe . (1.7)


